A Giant Submarine Landslide and Its Triggering Mechanisms on the Nansha Trough Margin, South China Sea
-
摘要: 大型海底滑坡的研究对认识海底斜坡的稳定性具有重要意义.利用最新的高精度多波束数据和重处理的二维地震资料,识别了南海南沙海槽一处大型海底滑坡,描述了其发育特征,探讨了其可能的形成原因.该滑坡体覆盖面积达6 300 km2,横向最宽50 km,延伸最远140 km.上部源头区外形呈半环形,滑坡后壁的高度落差200~350 m,平均坡度0.7°,发育基底剪切面和掀斜断块.中部滑移区呈拱形,分布于1 600~2 400 m水深段,平均坡度1°~3°,发育基底侵蚀面和大量残余块体.下部堆积区呈扇形,分布于2 400~2 800 m水深段,平均坡度0.1°~1.0°,发育大型碎屑流朵体和逃逸块体.研究表明不断隆升的背斜脊对高供给率沉积物的阻挡是海底斜坡失稳的内在条件,而高通量流体的聚集以及天然气水合物的分解使其变得更加不稳定.Abstract: The research on large-scale submarine landslides is of great significance to understanding the stability of submarine slopes. In this paper, a giant submarine landslide on the Nansha trough margin, South China Sea was identified by using the latest high-precision multibeam bathymetry and reprocessed two-dimensional seismic data, and its development characteristics were described. The possible triggering mechanism was discussed. The landslide covers an area of 6 300 km2, spanning 50 km and extending 140 km at most. The upper semicircular headwall domain has developed a basal shear surface and tilted fault blocks. The headwall scarp is 200-350 m high with an average slope of 0.7°. The middle arch-shaped translational domain has a erosional unconformity and voluminous remnant blocks. It is distributed in the depth section of 1 600-2 400 m with an average slope of 1°-3°. The lower fan-shaped toe domain has a detrital lobe deposit and some out-runner blocks. It is distributed in the water depth section of 2 400-2 800 m with an average slope of 0.1°-1.0°. The study indicates that the barrier of the rising anticline ridge to the sediment with high supply rate is an internal condition, but high flux upward fluids and gas hydrates dissociation may be two key preconditioning factors bringing anticlines closer to failure.
-
Key words:
- submarine landslide /
- anticlinal ridge /
- gas hydrate dissociation /
- Nansha trough /
- marine geology
-
图 1 研究区地理位置(a)、研究区区域地质简图(b)以及横跨南沙海槽至南海东南陆架的A-A’地质剖面(c)
图a来自http://www.mnr.gov.cn/sj/sjfw/;图b底图据杨胜雄等(2015),剖面位置见图 1a;图c修改自Warren et al.(2010),剖面位置见图 1b
Fig. 1. Regional location map for the study area (a), geological map for the study area (b) and regional 2D geological cross-section of "Line A-A'" through Nansha trough and southeastern shelf of South China Sea (c)
图 4 研究区与海底滑坡有关的地形剖面
图内坡度数据中,蓝色为陡坡最大坡角值,红色为缓坡平均值,位置见图 3
Fig. 4. Topographic profile graghs related to submarine landslide in the study area
图 9 受滑移体影响的3类背斜发育特征
图a、c和e的位置见图 5a;图b、d和f的位置见图 2;其地震剖面来自Morley(2009)并做重新解释
Fig. 9. The three growth patterns of anticlines affected by slides
表 1 陆架边缘三角洲的演化阶段及其增长样式
Table 1. The evolution stage and its growth styles of shelf-edge deltas in the study area.
期次 定量参数 陆架边缘三角洲类型 相对海平面变化 加积距离(m) 进积距离(km) 轨迹角度(°) 轨迹类型 增长样式 3 129.46 0.98 7.52 高角度上升型 加积型 快速上升 2 93.78 2.42 2.22 低角度上升型 进积与加积混合型 轻微上升 1 37.25 4.29 0.49 平缓或轻微上升型 快速进积型 降低 注:依据重处理地震资料得到的速度谱计算出的层速度和平均速度,进而通过深度(D)和时间(T)散点图得到拟合公式,D=736.8×T+301.5×T2—20.0×T3(考虑水深对速度的影响),其中D的单位是m,T的单位是s. -
[1] Alves, T. M., 2015. Submarine Slide Blocks and Associated Soft-Sediment Deformation in Deep-Water Basins: A Review. Marine and Petroleum Geology, 67: 262-285. https://doi.org/10.1016/j.marpetgeo.2015.05.010 [2] Bull, S., Cartwright, J., Huuse, M., 2009. A Review of Kinematic Indicators from Mass-Transport Complexes Using 3D Seismic Data. Marine and Petroleum Geology, 26(7): 1132-1151. https://doi.org/10.1016/j.marpetgeo.2008.09.011 [3] Chai, M. F., Lau, T. L., Majid, T. A., 2014. Potential Impacts of the Brunei Slide Tsunami over East Malaysia and Brunei Darussalam. Ocean Engineering, 81: 69-76. https://doi.org/10.1016/j.oceaneng.2014.02.028 [4] Curiale, J., Morelos, J., Lambiase, J., et al., 2000. Brunei Darussalam: Characteristics of Selected Petroleums and Source Rocks. Organic Geochemistry, 31(12): 1475-1493. https://doi.org/10.1016/S0146-6380(00)00084-X [5] Gee, M. J. R., Uy, H. S., Warren, J., et al., 2007. The Brunei Slide: A Giant Submarine Landslide on the North West Borneo Margin Revealed by 3D Seismic Data. Marine Geology, 246(1): 9-23. https://doi.org/10.1016/j.margeo.2007.07.009 [6] Han, B., Zhu, B. D., Wan, L., et al., 2015. Deep-Water Fold and Thrust Tectonics in Southeastern Nansha Trough. Geological Review, 61(5): 1061-1067 (in Chinese with English abstract). [7] He, Y., Zhong, G. F., 2015. Current Status of Submarine Landslides and Their Seismic Recognition. Marine Sciences, 39(1): 116-125 (in Chinese with English abstract). [8] Hesse, S., Back, S., Franke, D., 2009. The Deep-Water Fold-and-Thrust Belt Offshore NW Borneo: Gravity-Driven Versus Basement-Driven Shortening. Geological Society of America Bulletin, 121(5-6): 939-953. https://doi.org/10.1130/b26411.1 [9] Hesse, S., Back, S., Franke, D., 2010. The Structural Evolution of Folds in a Deepwater Fold and Thrust Belt-A Case Study from the Sabah Continental Margin Offshore NW Borneo, SE Asia. Marine and Petroleum Geology, 27(2): 442-454. https://doi.org/10.1016/j.marpetgeo.2009.09.004 [10] Huang, Y., Wang, S. H., Yan, W., et al., 2018. Gas Hydrate Dissociation Event and Its Relationship with Submarine Slide in Dongsha Area of Northern South China Sea. Journal of Tropical Oceanography, 37(4): 61-69 (in Chinese with English abstract). [11] Huhn, K., Arroyo, M., Cattaneo, A., et al., 2020. Modern Submarine Landslide Complexes: A Short Review. In: Ogata, K., Festa, A., Pini, G. A., eds., Submarine Landslides Subaqueous Mass Transport Deposits from Outcrops to Seismic Profiles. The American Geophysical Union and John Wiley and Sons, Inc. Washington, D.C. and Hoboken. [12] Ingram, G. M., Chisholm, T. J., Grant, C. J., et al., 2004. Deepwater North West Borneo: Hydrocarbon Accumulation in an Active Fold and Thrust Belt. Marine and Petroleum Geology, 21(7): 879-887. https://doi.org/10.1016/j.marpetgeo.2003.12.007 [13] King, R. C., Hillis, R. R., Tingay, M. R. P., et al., 2009. Present-Day Stress and Neotectonic Provinces of the Baram Delta and Deep-Water Fold-Thrust Belt. Journal of the Geological Society, 166(2): 197-200. https://doi.org/10.1144/0016-76492008-062r [14] Le Bouteiller, P., Lafuerza, S., Charléty, J., et al., 2019. A New Conceptual Methodology for Interpretation of Mass Transport Processes from Seismic Data. Marine and Petroleum Geology, 103: 438-455. https://doi.org/10.1016/j.marpetgeo.2018.12.027 [15] Li, L. L., Shi, F. Y., Ma, G. F., et al., 2019. Tsunamigenic Potential of the Baiyun Slide Complex in the South China Sea. Journal of Geophysical Research: Solid Earth, 124(8): 7680-7698. https://doi.org/10.1029/2019JB018062 [16] Mc Gilvery, T. A. M., Cook, D. L., 2003. The Influence of Local Gradients on Accommodation Space and Linked Depositional Elements across a Stepped Slope Profile, Offshore Brunei. In: Roberts, H., Rose, N., Fillon, R.H., et al., eds., Shelf Margin Deltas and Linked Down Slope Petroleum Systems: Global Significance and Future Exploration Potential. Gulf Coast Section Society of Economic Paleontologists and Sedimentologists, 23rd Annual Research Conference, Houston. [17] Morley, C. K., 2007. Interaction between Critical Wedge Geometry and Sediment Supply in a Deep-Water Fold Belt. Geology, 35(2): 139. https://doi.org/10.1130/g22921a.1 [18] Morley, C. K., 2009. Growth of Folds in a Deep-Water Setting. Geosphere, 5(2): 59-89. https://doi.org/10.1130/ges00186.1 [19] Moscardelli, L., Wood, L., Mann, P., 2006. Mass-Transport Complexes and Associated Processes in the Offshore Area of Trinidad and Venezuela. AAPG Bulletin, 90(7): 1059-1088. https://doi.org/10.1306/02210605052 [20] Mosher, D. C., Shipp, R. C., Moscardelli, L., et al., 2010. Submarine Mass Movements and Their Consequences-4th International Symposium. Springer, Dordrecht. [21] Paganoni, M., Cartwright, J. A., Foschi, M., et al., 2018. Relationship between Fluid-Escape Pipes and Hydrate Distribution in Offshore Sabah (NW Borneo). Marine Geology, 395: 82-103. https://doi.org/10.1016/j.margeo.2017.09.010 [22] Shanmugam, G., 2015. The Landslide Problem. Journal of Palaeogeography, 4(2): 109-166. https://doi.org/10.3724/SP.J.1261.2015.00071 [23] Silva, P. F., Roque, C., Drago, T., et al., 2020. Multidisciplinary Characterization of Quaternary Mass Movement Deposits in the Portimão Bank (Gulf of Cadiz, SW Iberia). Marine Geology, 420: 106086. https://doi.org/10.1016/j.margeo.2019.106086 [24] Sultan, N., Cochonat, P., Canals, M., et al., 2004. Triggering Mechanisms of Slope Instability Processes and Sediment Failures on Continental Margins: A Geotechnical Approach. Marine Geology, 213(1-4): 291-321. https://doi.org/10.1016/j.margeo.2004.10.011 [25] Sun, Q. L., Alves, T. M., Lu, X. Y., et al., 2018a. True Volumes of Slope Failure Estimated from a Quaternary Mass-Transport Deposit in the Northern South China Sea. Geophysical Research Letters, 45(6): 2642-2651. https://doi.org/10.1002/2017GL076484 [26] Sun, Q. L., Alves, T., Xie, X. N., et al., 2017. Free Gas Accumulations in Basal Shear Zones of Mass-Transport Deposits (Pearl River Mouth Basin, South China Sea): An Important Geohazard on Continental Slope Basins. Marine and Petroleum Geology, 81: 17-32. https://doi.org/10.1016/j.marpetgeo.2016.12.029 [27] Sun, Q. L., Cartwright, J., Xie, X. N., et al., 2018b. Reconstruction of Repeated Quaternary Slope Failures in the Northern South China Sea. Marine Geology, 401: 17-35. https://doi.org/10.1016/j.margeo.2018.04.009 [28] Sun, Q. L., Leslie, S., 2020. Tsunamigenic Potential of an Incipient Submarine Slope Failure in the Northern South China Sea. Marine and Petroleum Geology, 112: 104-111. https://doi.org/10.1016/j.marpetgeo.2019.104111 [29] Terry, J. P., Winspear, N., Goff, J., et al., 2017. Past and Potential Tsunami Sources in the South China Sea: A Brief Synthesis. Earth-Science Reviews, 167: 47-61. https://doi.org/10.1016/j.earscirev.2017.02.007 [30] Wang, D. W., Wu, S. G., Lü, F. L., et al., 2011. Mass Transport Deposits and Its Significance for Oil & Gas Exploration in Deep-Water Regions of South China Sea. Journal of China University of Petroleum (Edition of Natural Science), 35(5): 14-19 (in Chinese with English abstract). [31] Wang, L. Z., Yao, Y. J., Lin, W. B., et al., 2018. Sediment Waves in the South of South China Sea: Soft Sediment Deformation and Its Triggering Mechanism. Earth Science, 43(10): 3462-3470 (in Chinese with English abstract). [32] Warren, J. K., Alwyn, C., Ian, C., 2010. Organic Geochemical, Isotopic, and Seismic Indicators of Fluid Flow in Pressurized Growth Anticlines and Mud Volcanoes in Modern Deep-Water Slope and Rise Sediments of Offshore Brunei Darussalam: Implications for Hydrocarbon Exploration in Other Mud- and Salt-Diapir Provinces. In: Wood, L., ed., Shale Tectonics. AAPG Memoir, 93: 163-196. https://doi.org/10.1306/13231314M933424 [33] Wu, S. G., Chen, S. S., Wang, Z. J., et al., 2008. Submarine Landslide and Risk Evaluation on Its Instability in the Deepwater Continental Margin. Geoscience, 22(3): 430-437 (in Chinese with English abstract). [34] Yang, S. X., Qiu, Y., Zhu, B. D., 2015. Atlas of Geology and Geophysics of the South China Sea. China Navigation Publications Press, Tianjin (in Chinese). [35] Yao, Y. J., Yang, C. P., Li, X. J., et al., 2013. The Seismic Reflection Characteristics and Tectonic Significance of the Tectonic Revolutionary Surface of Mid-Miocene (T3 Seismic Interface) in the Southern South China Sea. Chinese Journal of Geophysics, 56(4): 1274-1286 (in Chinese with English abstract). [36] Zhang, B. K., Li, S. Z., Xia, Z., et al., 2014. Time Sequence of Submarine Landslides and Gas Hydrates in the Northern South China Sea. Geotectonica et Metallogenia, 38(2): 434-440 (in Chinese with English abstract). [37] Zhang, H. H., Liu, P., Liao, Z. B., et al., 2017. Distribution and Hydrocarbon Geological Characteristics of Large and Medium Fields in Nansha Sea Area. Offshore Oil, 37(4): 1-7, 20 (in Chinese with English abstract). [38] Zhu, C. Q., Cheng, S., Li, Q. P., et al., 2019. Giant Submarine Landslide in the South China Sea: Evidence, Causes, and Implications. Journal of Marine Science and Engineering, 7(5): 152. https://doi.org/10.3390/jmse7050152 [39] Zhu, C. Q., Jia, Y. G., Liu, X. L., et al., 2015. Classification and Genetic Machanism of Submarine Landslide: A Review. Marine Geology & Quaternary Geology, 35(6): 153-163 (in Chinese with English abstract). [40] 韩冰, 朱本铎, 万玲, 等, 2015. 南沙海槽东南缘深水逆冲推覆构造. 地质论评, 61(5): 1061-1067. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201505009.htm [41] 何叶, 钟广法, 2015. 海底滑坡及其反射地震识别综述. 海洋科学, 39(1): 116-125. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201501017.htm [42] 黄怡, 王淑红, 颜文, 等, 2018. 南海北部东沙海域天然气水合物分解事件及其与海底滑塌的关系. 热带海洋学报, 37(4): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-RDHY201804009.htm [43] 王大伟, 吴时国, 吕福亮, 等, 2011. 南海深水块体搬运沉积体系及其油气勘探意义. 中国石油大学学报(自然科学版), 35(5): 14-19. doi: 10.3969/j.issn.1673-5005.2011.05.003 [44] 王龙樟, 姚永坚, 林卫兵, 等, 2018. 南海南部沉积物波: 软变形及其触发机制. 地球科学, 43(10): 3462-3470. doi: 10.3799/dqkx.2018.303 [45] 吴时国, 陈珊珊, 王志君, 等, 2008. 陆边缘深水区海底滑坡及其不稳定性风险评估. 现代地质, 22(3): 430-437. doi: 10.3969/j.issn.1000-8527.2008.03.013 [46] 杨胜雄, 邱燕, 朱本铎, 2015. 南海地质地球物理图系. 天津: 中国航海图书出版社. [47] 姚永坚, 杨楚鹏, 李学杰, 等, 2013. 南海南部海域中中新世(T3界面)构造变革界面地震反射特征及构造含义. 地球物理学报, 56(4): 1274-1286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201304024.htm [48] 张丙坤, 李三忠, 夏真, 等, 2014. 南海北部海底滑坡与天然气水合物形成与分解的时序性. 大地构造与成矿学, 38(2): 434-440. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402022.htm [49] 张厚和, 刘鹏, 廖宗宝, 等, 2017. 南沙海域大中型油气田分布与油气地质特征. 海洋石油, 37(4): 1-7, 20. doi: 10.3969/j.issn.1008-2336.2017.04.001 [50] 朱超祁, 贾永刚, 刘晓磊, 等, 2015. 海底滑坡分类及成因机制研究进展. 海洋地质与第四纪地质, 35(6): 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201506023.htm