Influence of Stress History on Consolidation Coefficient of Saturated Soft Soil
-
摘要: 为了探究不同固结状态下的饱和软土固结系数的变化规律,在太沙基固结理论的基础上,利用渗透系数和孔隙比的关系、孔隙比和固结应力的关系,分别推导出了在正常固结和超固结状态下固结系数(Cv)随固结应力变化的关系式,将关系式代入Terzaghi方程,进而获得考虑应力历史和固结应力影响的修正Terzaghi一维固结方程;通过室内固结试验和工程应用分析对固结系数关系式和修正的Terzaghi一维固结方程的准确性进行验证.结果表明,对于正常固结的软土,当固结应力小于前期固结应力时,固结系数随应力的增大而增大;当固结应力大于前期固结应力时,固结系数随应力的增大而减小.对于超固结状态的软土,固结系数随应力的增大而增大,最后趋于平缓.当上覆荷载较小时,修正前后的Terzaghi一维固结方程计算结果相近;但当上覆荷载较大时,修正后的Terzaghi一维固结方程计算的固结度明显滞后于修正前的计算结果.前期的应力历史和后期的固结应力对软土固结系数的影响是不容忽视的,修正后的Terzaghi一维固结方程更能真实反映土体的固结性状.Abstract: To explore the changing law of the consolidation coefficient of saturated soft soil under different consolidation states, based on Terzaghi's consolidation theory, using the relationship between permeability coefficient and void ratio, void ratio, and consolidation stress, the relationship between consolidation coefficient (Cv) and consolidation stress under normal consolidation and over consolidation is derived. The modified Terzaghi one-dimensional consolidation equation considering the influence of stress history and consolidation stress is obtained by substituting the relationship into the Terzaghi equation; The accuracy of the consolidation coefficient relation and the modified Terzaghi one-dimensional consolidation equation were verified by laboratory consolidation test and engineering application analysis. When the consolidation stress is larger, the results show that for normally consolidated soft soil when the consolidation stress is less than the previous consolidation stress, the consolidation coefficient increases with the increase of stress. When the consolidation stress is larger than the previous consolidation stress, the consolidation coefficient decreases with the increase of the stress. For over consolidated soft soil, the coefficient of consolidation increases with the increase of stress and finally tends to be gentle. When the load is small, the calculation results of the Terzaghi one-dimensional consolidation equation before and after the modification are similar; but when the load is large, the consolidation degree of the corrected Terzaghi one-dimensional consolidation equation lags significantly behind the calculation result before the modification. The influence of the previous stress history and the later consolidation stress on the consolidation coefficient of soft soil can not be ignored. The modified Terzaghi one-dimensional consolidation equation can more truly reflect the consolidation behavior of soil.
-
图 5 林鹏等(2003)试样正常固结时Cv-σ’关系
Fig. 5. Cv-σ' diagram for normal consolidation of samples by Lin et al.(2003)
图 6 林鹏等(2003)试样超固结时Cv-σ’关系
Fig. 6. Cv- σ' diagram for over consolidation of samples by Lin et al.(2003)
表 1 土的物理力学性质指标
Table 1. Physical and mechanical properties of soil
天然重度(kn/m3) 含水率(%) 塑性指数(%) 液限(%) 黏粒含量(%) 孔隙比 压缩指数 回弹指数 16.95 46.42 25.27 58.38 70.7 1.19 0.46 0.06 表 2 试验方案
Table 2. Testing plans for consolidation test
固结状态 试样编号 加载路径(kPa)及持续时间 正常固结 1,2 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→50(60 min) 3,4 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→100(60 min) 5,6 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→150(60 min) 7,8 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→200(60 min) 9,10 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→400(60 min) 11,12 25(1 d)→50(1 d)→100(1 d)→150(1 d)→0→800(60 min) 超固结 13,14 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→50(60 min) 15,16 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→100(60 min) 17,18 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→150(60 min) 19,20 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→200(60 min) 21,22 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→400(60 min) 23,24 25(1 d)→50(1 d)→100(1 d)→200(1 d)→400(1 d)→800(1 d)→0→800(60 min) -
[1] Chen, B., Sun, D.A., Lü, H.B., 2013.Experimental Study of Compression Behavior of Marine Soft Clays.Rock and Soil Mechanics, 34(2):381-388(in Chinese with English abstract). [2] Gao, J., Dang, F.N., Ding, J.L., et al., 2019.Research on Soft Soil Consolidation Calculation Method Considering the Impacts of Initial Consolidation State.Chinese Journal of Rock Mechanics and Engineering, 38(Suppl.1):3189-3196(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0013795214001768 [3] GB/T 50123-2019, 2019.Standard for Soil Test Method.China Planning Press, Beijing, 74-80(in Chinese). [4] Ge, Q., Liang, X., Gong, X.L., et al., 2017.Application and Comparison of Various Methods for Determining Hydraulic Conductivity in Saturated Clay-Rich Deposits:A Case Study of Clay-Rich Sediments in North Jiangsu Coastal Plain.Earth Science, 42(5):793-803 (in Chinese with English abstract). [5] Gui, Y., Yu, Z.H., Liu, H.M., et al., 2016.Experimental Study of the Change Law of Consolidation Coefficient of the Plateau Lacustrine Peaty Soil.Chinese Journal of Rock Mechanics and Engineering, 35(Suppl.1):3259-3267(in Chinese with English abstract). [6] Jia, R., Lei, H.Y., 2019.Experimental Study of Anisotropic Consolidation Behavior of Ariake Clay.Rock and Soil Mechanics, 40(6):2231-2238(in Chinese with English abstract). doi: 10.16285/j.rsm.2018.1581 [7] Lei, H.Y., Feng S.X., Jiang, Y., 2018.Geotechnical Characteristics and Consolidation Properties of Tianjin Marine Clay.Geomechanics and Engineering, 16(2):125-140. https://doi.org/10.12989/gae.2018.16.2.125 [8] Lin, P., Xu, Z.H., Xu, P., et al., 2003.Research on Coefficient of Consolidation of Soft Clay under Compression.Rock and Soil Mechanics, 24(1):106-108, 112(in Chinese with English abstract). [9] Lü, W.Q., Dong, Z.L., Chen, P.S., et al., 2009.Research on Relationship between Permeability Coefficient and Consolidation Stress of Normal Consolidation Clay.Rock and Soil Mechanics, 30(3):769-773(in Chinese with English abstract). https://www.researchgate.net/publication/287473339_Research_on_relationship_between_permeability_coefficient_and_consolidation_stress_of_normal_consolidation_clay [10] Meng, G.T., Wang, S.H., Zhang, D.B., et al., 2001.Determination of Consolidation Coefficient by Piezo-Cone Penetration Test.Earth Science, 26(1):93-98(in Chinese with English abstract). [11] Mesri, G., Ajlouni, M., 2007.Engineering Properties of Fibrous Peats.Journal of Geotechnical and Geoenvironmental Engineering, 133(7):850-866. https://doi.org/10.1061/(asce)1090-0241(2007)133:7(850) [12] Singhl, S.K., 2005.Estimating Consolidation Coefficient and Final Settlement:Triangular Excess Pore-Water Pressure.Journal of Geotechnical and Geoenvironmental Engineering, 131(8):1050-1055. https://doi.org/10.1061/(asce)1090-0241(2005)131:8(1050) [13] Singhl, S.K., 2008.Identifying Consolidation Coefficient:Linear Excess Pore-Water Pressure.Journal of Geotechnical and Geoenvironmental Engineering, 134(8):1205-1209. https://doi.org/10.1061/(asce)1090-0241(2008)134:8(1205) [14] Terzaghi, K., 1943.Theoretical Soil Mechanic.John Wiley and Sons Inc., New York, 265-296. doi: 10.1002/9780470172766 [15] Wu, X.T., 2013.Research on Relation between Consolidation Coefficient and Consolidation Stress of Silt in Wenzhou Shoal.Rock and Soil Mechanics, 34(6):1675-1680(in Chinese with English abstract). https://www.researchgate.net/publication/281306807_Research_on_relation_between_consolidation_coefficient_and_consolidation_stress_of_silt_in_Wenzhou_shoal [16] Yu, C., Liu, S.Y., 2004.Calculation and Experiment on Consolidation Coefficient for Soft Clay Considering Different Stress Levels.Rock and Soil Mechanics, 25(Suppl.2):103-107(in Chinese with English abstract). [17] Zhang, W.M., Gu, X.W., Wang, F., et al., 2015.Swelling Tests on Soils and Simulation Method for Unloading-Swelling Process.Chinese Journal of Geotechnical Engineering, 37(6):979-987(in Chinese with English abstract). https://www.researchgate.net/publication/283024670_Swelling_tests_on_soils_and_simulation_method_for_unloading-swelling_process [18] Zhang, W.M., Gu, X.W., Wang, F., 2016.Back Analysis of Terzaghi Consolidation Coefficient.Chinese Journal of Geotechnical Engineering, 38(Suppl.1):99-103(in Chinese with English abstract). [19] Zhang, Y.P., Yu, Y.N., Zhang, T.Q., et al., 2002.A Method for Evaluating Coefficient of Consolidation.Chinese Journal of Geotechnical Engineering, 24(5):616-618(in Chinese with English abstract). [20] Zhu, G.F., Yin, J.H., 2005.Consolidation of a Soil Layer Subsequent to Cessation of Deposition.Canadian Geotechnical Journal, 42(2):678-682. https://doi.org/10.1139/t04-105 [21] 陈波, 孙德安, 吕海波, 2013.海相软土压缩特性的试验研究.岩土力学, 34(2):381-388. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201302014.htm [22] 高俊, 党发宁, 丁九龙, 等, 2019.考虑初始固结状态影响的软基固结计算方法研究.岩石力学与工程学报, 38(增刊1):3189-3196. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1060.htm [23] GB/T 50123-2019, 2019.土工试验方法标准.北京: 中国计划出版社, 74-80. [24] 葛勤, 梁杏, 龚绪龙, 等, 2017.不同饱和黏性土渗透系数预测方法的应用与对比:以苏北沿海平原黏土为例.地球科学, 42(5):793-803. doi: 10.3799/dqkx.2017.067 [25] 桂跃, 余志华, 刘海明, 等, 2016.高原湖相泥炭土固结系数变化规律试验研究.岩石力学与工程学报, 35(增刊1):3259-3267. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S1075.htm [26] 加瑞, 雷华阳, 2019.有明黏土各向异性固结特性的试验研究.岩土力学, 40(6):2231-2238. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906022.htm [27] 林鹏, 许镇鸿, 徐鹏, 等, 2003.软土压缩过程中固结系数的研究.岩土力学, 24(1):106-108, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200301025.htm [28] 吕卫清, 董志良, 陈平山, 等, 2009.正常固结软土渗透系数与固结应力关系研究.岩土力学, 30(3):769-773. doi: 10.3969/j.issn.1000-7598.2009.03.035 [29] 孟高头, 王四海, 张德波, 等, 2001.用孔压静力触探求固结系数的研究.地球科学, 26(1):93-98. http://www.earth-science.net/article/id/816 [30] 吴雪婷, 2013.温州浅滩淤泥固结系数与固结应力关系研究.岩土力学, 34(6):1675-1680. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201306024.htm [31] 余闯, 刘松玉, 2004.考虑应力水平的软土固结系数计算与试验研究.岩土力学, 25(增刊2):103-107. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2004S200J.htm [32] 章为民, 顾行文, 王芳, 等, 2015.土的卸荷回弹试验及其时间过程的计算方法.岩土工程学报, 37(6):979-987. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201506003.htm [33] 章为民, 顾行文, 王芳, 2016.Terzaghi固结系数的试验反演分析.岩土工程学报, 38(增刊1):99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2016S1020.htm [34] 张仪萍, 俞亚南, 张土乔, 等, 2002.室内固结系数的一种推算方法.岩土工程学报, 24(5):616-618. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200205016.htm