A Comparative Study and Its Genesis of Porphyroclastic Rhyolite from Ehuling and Daguding Formations in Midwestern of Xiangshan Uranium Orefield, Jiangxi Province
-
摘要: 以在相山中西部钻孔中揭露到的鹅湖岭组和打鼓顶组碎斑流纹岩为研究对象,从岩石矿物学、岩石地球化学、LA-ICP-MS锆石U-Pb年代学和Hf同位素等方面对比研究了这两套碎斑流纹岩.结果显示其矿物学组成较为接近,且具有相似的岩石地球化学特点,岩石富硅、高K2O低Na2O、低MgO;稀土元素配分曲线形态总体一致,均为富集轻稀土的右倾式,鹅湖岭组碎斑流纹岩Eu负异常更为明显,指示其可能经历了更高程度的斜长石结晶分离作用,或源区残留有更多的斜长石;打鼓顶组碎斑流纹岩轻重稀土分馏更为明显,可能与源区岩浆中的榍石、褐帘石和独居石含量有关;蛛网图上显示K、Ba、Sr等大离子亲石元素和Nb、Ti、P等高场强元素亏损,而Rb、Th、Nd等富集的特点.这些相似的岩石地球化学特征暗示两套碎斑流纹岩之间具有一定的同源性.锆石U-Pb测年结果显示鹅湖岭组与打鼓顶组碎斑流纹岩年龄分别为132.4±0.7 Ma和131.9±0.8 Ma;通过计算测得鹅湖岭组碎斑流纹岩εHf(t)为-9.5~-4.5,两阶段模式年龄tDMC为1 470~1 787 Ma,打鼓顶组碎斑流纹岩εHf(t)为-14.2~-8.1,两阶段模式年龄tDMC为1 704~2 087 Ma.以上岩石矿物学特征、岩石地球化学特征、锆石U-Pb年龄及Hf同位素特征表明鹅湖岭组与打鼓顶组碎斑流纹岩具有一定的相似性,但同时又有差别,结合前人研究资料,认为鹅湖岭组和打鼓顶组碎斑流纹岩的形成可能具有同源性,二者均是在早白垩世弧后拉伸环境背景下,主要由古元古代-中元古带基底变质岩部分熔融而形成,可能伴随有不同程度的地幔物质的加入.Abstract: Porphyroclastic rhyolites of Ehuling and Daguding formations were taken as the research objects in this paper, which was sampled from the boreholes in the midwestern parts of Xiangshan uranium orefield. A comparative study of porphyroclastic rhyolite from these two formations were carried out by means of petromineralogy, lithogeochemistry, U-Pb geochronology and Hf isotopes. The results illustrate that the mineralogical composition and lithogeochemical characteristics of porphyroclastic rhyolite from Ehuling and Daguding formations are relatively semblable, the rock enriching Si and K2O, low Na2O and MgO. Chondrite normalized REE curves are generally consistent, showing right-inclined type with enriched LREE. The samples from the Ehuling Formation demonstrate more intensive Eu negative anormaly, indicating that a high degree of crystallizational fractionation of plagioclase was occured, or more plagioclase residued in source area. While the high fractional degree of LREE and HREE of Daguding porphyroclastic rhyolite is likely related to the high contents of secondary minerals, such as titanite, epidoite and monazite. Primitive mantle-normalized spider diagram shows depletion of lithophile elements (K, Ba, Sr) and high field strength elements (Nb, Ti, P), and enrichment of Rb, Th, Nd. These similar petrogeochemical characteristics suggest a certain homology between Ehuling and Daguding porphyroclastic rhyolite. Zircon U-Pb dating results indicate that the age of porphyroclastic rhyolite from Ehuling Formation and Daguding Formation are 132.4±0.7 Ma and 131.9±0.8 Ma respectively. The εHf(t) of porphyroclastic rhyolite of Ehuling Formation is (-9.5)-(-4.5), and the two-stage Hf model age is 1 470-1 787 Ma; while the εHf(t) of porphyroclastic rhyolite of Daguding Formation is (-14.2)-(-8.1), and the two-stage Hf model age is 1 704-2 087 Ma. The above petromineralogy, lithogeochemistry, zircon U-Pb age and Hf isotope characteristics show that the porphyroclastic rhyolite of Ehuling Formation and the Daguding Formation have certain similarities, but at the same time, some differences exist. Combined with previous research data, a conclusion can be drawn, the formation of two sets of porphyroclastic rhyolite maybe homologous, both of them are derived from the partial melting of Paleoproterozoic-Mesoproterozoic metamorphic rock basement under the background of Early Cretaceous regional extensional environment, and may be accompanied by the merging of mantle material in a certain degree.
-
图 1 相山铀矿田大地构造位置(a)及地质简图(b)
1.上白垩统砂砾岩;2.碎斑流纹岩;3.凝灰岩、粉砂岩;4.流纹英安岩;5.凝灰质粉砂岩、凝灰岩、熔结凝灰岩;6.上三叠统石英砂岩、页岩;7.下石炭统浅变质石英砂岩;8.中元古界片岩、千枚岩;9.花岗斑岩;10.石英二长斑岩;11.煌斑岩;12.辉绿岩;13.加里东期花岗岩;14.断裂;15.钻孔位置;据王勇剑等(2019)修改
Fig. 1. Geotectonic location (a) and geological sketch map (b) of Xiangshan uranium orefield
图 5 鹅湖岭组与打鼓顶组碎斑流纹岩微量元素原始地幔标准化蛛网图(标准化值引自Sun and McDonough, 1989)
Fig. 5. Primitive mantle-normalized trace element spider diagram of porphyroclastic rhyolite from Ehuling Formation and Daguding Formation(standardized data quoted from Sun and McDonough, 1989)
图 6 鹅湖岭组与打鼓顶组碎斑流纹岩稀土元素球粒陨石标准化配分曲线(标准化值引自Sun and McDonough, 1989)
Fig. 6. Chondrite-normalized REE patterns of porphyroclastic rhyolite from Ehuling Formation and Daguding Formation(standardized data quoted from Sun and McDonough, 1989)
图 9 碎斑流纹岩结晶分异图解
Ap.磷灰石;Aln.褐帘石;Mnz.独居石;Zr.锆石;底图据郭福生等(2016)
Fig. 9. Diagram of fractional crystallization of porphyroclastic rhyolite
表 1 鹅湖岭组与打鼓顶组碎斑流纹岩主量元素含量(%)及相关参数
Table 1. Major element compositions (%) and related parameters of porphyroclastic rhyolite from Ehuling Formation and Daguding Formation
样品号 岩性 层位 SiO2 TiO2 Al2O3 Fe2O3 FeO MnO MgO CaO Na2O K2O P2O5 烧失量* K2O+
Na2ONa2O/K2O SD4-1 鹅湖岭组
碎斑流纹岩K1e 73.30 0.26 12.85 0.39 1.58 0.03 0.41 1.49 2.43 5.18 0.06 1.80 7.61 0.47 SD4-9 76.29 0.11 12.43 0.23 1.07 0.04 0.18 0.59 2.83 5.26 0.03 0.74 8.09 0.54 SD4-10 76.32 0.11 12.33 0.05 1.23 0.04 0.17 0.79 2.90 5.19 0.03 0.65 8.09 0.56 SD4-12 76.30 0.12 12.36 0.33 1.06 0.04 0.20 0.78 2.69 5.38 0.03 0.57 8.07 0.50 SD4-14 75.90 0.11 11.95 0.42 0.8 0.04 0.17 1.13 2.73 5.15 0.03 1.44 7.88 0.53 SD4-16 76.08 0.09 12.05 0.40 0.84 0.04 0.19 0.81 2.80 5.19 0.02 1.34 7.99 0.54 SD4-18 76.89 0.09 11.96 0.11 0.99 0.04 0.18 0.77 2.72 5.25 0.02 0.81 7.97 0.52 SD4-43 77.01 0.12 12.14 0.04 1.36 0.04 0.26 0.58 2.93 4.82 0.03 0.46 7.75 0.61 SD4-54 76.82 0.08 12.1 0.18 1.01 0.05 0.20 0.79 3.01 4.79 0.02 0.80 7.80 0.63 SD4-55 76.42 0.01 12.14 0.34 0.92 0.05 0.22 0.75 3.07 4.97 0.02 0.86 8.04 0.62 SD4-57 76.69 0.08 11.99 0.22 0.94 0.06 0.20 0.87 3.10 4.77 0.02 0.89 7.87 0.65 SD4-63 74.71 0.19 12.56 0.70 1.41 0.16 0.56 0.93 2.31 4.25 0.05 1.99 6.56 0.54 SD4-97 打鼓顶组
碎斑流纹岩K1d 76.59 0.08 11.15 0.68 0.63 0.07 0.26 1.42 3.54 3.61 0.03 1.83 7.15 0.98 SD4-102 77.72 0.08 11.52 0.44 0.61 0.07 0.25 0.95 3.01 3.62 0.03 1.58 6.63 0.83 表 2 鹅湖岭组与打鼓顶组碎斑流纹岩微量元素含量(10-6)
Table 2. Trace element compositions (10-6) of porphyroclastic rhyolites from Ehuling Formation and Daguding Formation
样品号 岩性 层位 Cu Zn Rb Sr Mo Cd Sb Cs Ba W Tl Pb Bi Th U Nb Ta Zr Hf SD4-1 鹅湖岭组
碎斑流纹岩K1e 4.39 45.6 226 126 0.85 0.01 0.21 20.8 316 0.77 1.24 31.5 0.32 22.3 4.88 16.1 1.45 59.1 2.47 SD4-9 2.83 35.3 307 84.6 1.71 < 0.002 0.08 15.6 106 1.35 1.47 36.3 0.60 26.4 7.4 20 2.28 65.7 2.99 SD4-10 4.01 29.3 272 71.2 1.54 < 0.002 0.08 12.7 90.5 1.32 1.36 33.1 1.23 26.4 7.91 18.6 2.2 62.3 2.9 SD4-12 2.53 33.7 306 81.2 1.81 0.03 0.09 15 105 1.48 1.46 35.9 0.59 24.8 7.31 18.8 2.21 55.9 2.74 SD4-14 3.08 30.4 338 76.3 1.81 0.02 0.08 13.9 85.7 0.95 1.54 36.1 0.56 25.9 7.48 17.8 2.22 62.3 3.07 SD4-16 8.21 34.1 357 64.9 2.98 0.01 0.12 17.7 79.7 1.99 1.74 37.3 1.17 27.8 9.46 19 2.51 73.2 3.63 SD4-18 5.66 31 352 56 1.67 0.04 0.13 16.7 71.1 1.92 1.64 37.2 0.96 26.6 8.64 17.7 2.48 63.1 3.19 SD4-43 52.4 107 268 64.1 2.36 0.02 0.16 8.48 92 1.87 1.38 48.3 1.13 28.7 9.84 19.5 2.64 76.6 3.77 SD4-54 4.87 37.4 319 69.7 2.26 0.05 0.16 13.4 69.1 2.49 1.58 45.8 1.17 28 10.3 20.7 2.92 71.8 3.73 SD4-55 4.83 40.5 335 62.7 2.13 0.03 0.12 13.7 90.8 1.85 1.67 42.7 0.77 27.5 9.83 19.5 2.77 69.6 3.57 SD4-57 30.1 37 352 45.9 2.16 0.02 0.14 17 61.6 4.61 1.73 39.9 3.05 29.4 11.4 19.9 3.07 74.4 4.08 SD4-63 43.2 154 338 52.1 2.94 0.55 0.41 21.8 143 2.97 2.03 48.2 1.18 25.6 8.57 16.9 2.23 72.8 3.35 SD4-97 打鼓顶组
碎斑流纹岩K1d 2.89 51.1 169 61 0.215 0.15 0.22 8.85 96.1 0.99 0.93 29.6 0.09 26.4 4.43 23.4 1.51 101 4.71 SD4-102 1.94 41 169 50.4 0.213 0.05 0.20 9.95 69.5 0.85 1.08 35.6 0.05 25 4.36 22.9 1.48 93.9 4.38 表 3 鹅湖岭组与打鼓顶组碎斑流纹岩稀土元素含量(10-6)及相关参数
Table 3. REE element compositions (10-6) and related parameters of porphyroclastic rhyolites from Ehuling Formation and Daguding Formation
样品号 岩性 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Y ΣREE LREE HREE LREE/
HREEδEu SD4-1 鹅湖岭组
碎斑流纹岩58.5 109.0 12.50 45.3 8.10 0.94 6.47 1.02 5.08 0.92 2.51 0.40 2.56 0.37 24.9 253.67 234.34 19.33 12.13 0.40 SD4-9 40.7 79.9 9.77 35.7 7.48 0.56 5.79 1.02 4.95 0.88 2.37 0.38 2.44 0.36 24.1 192.29 174.11 18.19 9.57 0.26 SD4-10 34.8 69.3 8.47 31.5 6.79 0.48 5.52 0.96 4.79 0.86 2.28 0.37 2.38 0.34 23.1 168.83 151.34 17.49 8.65 0.24 SD4-12 34.5 69.0 8.38 31.7 6.80 0.51 5.39 0.93 4.47 0.79 2.19 0.35 2.29 0.32 21.9 167.61 150.89 16.73 9.02 0.26 SD4-18 25.1 52.7 6.60 25.5 6.03 0.38 4.70 0.82 4.27 0.79 2.11 0.36 2.34 0.34 20.9 132.05 116.31 15.74 7.39 0.22 SD4-21 24.4 50.7 6.52 25.6 6.13 0.35 5.05 0.95 4.92 0.93 2.63 0.45 2.99 0.45 26.6 132.06 113.70 18.36 6.19 0.19 SD4-26 20.9 43.9 5.77 22.9 6.26 0.32 5.25 1.04 5.80 1.13 3.21 0.58 3.77 0.56 30.3 121.39 100.05 21.34 4.69 0.17 SD4-43 27.2 56.3 7.03 27.8 6.68 0.42 6.16 1.28 6.95 1.44 4.01 0.73 4.60 0.65 39.1 151.25 125.43 25.83 4.86 0.20 SD4-48 27.6 58.0 7.42 29.3 7.61 0.36 7.02 1.44 8.44 1.73 4.79 0.88 5.56 0.82 46.6 160.96 130.29 30.67 4.25 0.15 SD4-54 25.0 53.0 6.61 26.3 6.59 0.37 5.84 1.18 6.80 1.32 3.87 0.71 4.46 0.64 38.2 142.69 117.87 24.82 4.75 0.18 SD4-55 25.6 53.7 6.72 26.9 6.62 0.38 5.84 1.21 6.86 1.36 3.89 0.71 4.46 0.63 38.0 144.88 119.92 24.96 4.80 0.18 SD4-57 23.0 49.3 6.30 25.7 6.85 0.32 6.39 1.39 8.18 1.65 4.79 0.88 5.42 0.80 47.3 140.97 111.47 29.50 3.78 0.15 SD4-63 23.8 47.2 5.83 22.9 5.36 0.44 4.96 0.99 5.68 1.12 3.24 0.59 3.84 0.56 31.8 126.52 105.53 20.99 5.03 0.26 SD4-97 打鼓顶组
碎斑流纹岩34.9 67.3 8.16 32.0 6.10 1.25 4.82 0.75 3.37 0.61 1.68 0.29 1.95 0.30 21.2 163.47 149.71 13.76 10.88 0.71 SD4-102 26.0 50.1 6.06 23.7 4.51 1.11 3.89 0.6 3.06 0.52 1.54 0.28 1.67 0.24 21.4 123.28 111.48 11.80 9.45 0.81 表 4 鹅湖岭组与打鼓顶组碎斑流纹岩LA⁃ICP⁃MS锆石U⁃Pb测年分析结果
Table 4. LA⁃ICP⁃MS zircons U⁃Pb data of porphyroclastic rhyolites from Ehuling Formation and Daguding Formation
样品号及
点号元素含量(10-6) Th/U 同位素比值 同位素年龄(Ma) Th U 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 207Pb/
206Pb1σ 207Pb/
235U1σ 206Pb/
238U1σ 鹅湖岭组碎斑流纹岩(样品号SD3-62) SD3-62-1 69.21 110.22 0.63 0.051 65 0.001 75 0.148 00 0.004 25 0.020 78 0.000 25 270.0 75.9 140.1 3.8 132.6 1.6 SD3-62-2 117.76 221.58 0.53 0.051 30 0.001 31 0.1459 9 0.002 71 0.020 64 0.000 23 254.2 57.7 138.4 2.4 131.7 1.5 SD3-62-3 71.35 133.1 0.54 0.049 33 0.001 61 0.142 59 0.003 88 0.020 96 0.000 25 163.5 74.5 135.3 3.5 133.7 1.6 SD3-62-4 195.06 670.31 0.29 0.048 90 0.001 10 0.138 28 0.001 98 0.020 51 0.000 23 142.9 52.1 131.5 1.8 130.9 1.4 SD3-62-5 133.00 315.54 0.42 0.051 81 0.001 36 0.148 26 0.002 88 0.020 75 0.000 24 277.1 59.0 140.4 2.6 132.4 1.5 SD3-62-6 142.98 563.75 0.25 0.049 81 0.001 13 0.140 57 0.002 03 0.020 47 0.000 23 186.0 51.8 133.6 1.8 130.6 1.4 SD3-62-7 73.88 157.82 0.47 0.047 46 0.001 41 0.136 84 0.003 27 0.020 91 0.000 24 71.6 69.9 130.2 2.9 133.4 1.5 SD3-62-8 100.22 226.02 0.44 0.156 68 0.003 59 0.526 77 0.007 69 0.024 38 0.000 28 2 420.2 38.3 429.7 5.1 155.3 1.8 SD3-62-9 94.95 186.49 0.51 0.047 40 0.001 25 0.136 28 0.002 69 0.020 85 0.000 24 68.7 62.3 129.7 2.4 133.0 1.5 SD3-62-10 127.08 194.99 0.65 0.049 43 0.001 41 0.141 60 0.003 18 0.020 77 0.000 24 168.2 65.5 134.5 2.8 132.5 1.5 SD3-62-11 86.05 226.95 0.38 0.050 84 0.001 40 0.146 31 0.003 09 0.020 87 0.000 24 233.7 62.3 138.6 2.7 133.1 1.5 SD3-62-12 82.52 292.47 0.28 0.050 26 0.001 23 0.144 24 0.002 46 0.020 81 0.000 23 207.2 55.7 136.8 2.2 132.8 1.5 SD3-62-13 159.21 206.62 0.77 0.049 05 0.001 34 0.140 33 0.002 92 0.020 75 0.000 24 150.1 62.6 133.3 2.6 132.4 1.5 SD3-62-14 173.97 226.97 0.77 0.049 39 0.001 27 0.141 09 0.002 64 0.020 71 0.000 23 166.3 58.8 134.0 2.3 132.2 1.5 SD3-62-15 55.65 110.21 0.50 0.088 34 0.002 65 0.269 76 0.006 42 0.022 14 0.000 28 1 389.8 56.3 242.5 5.1 141.2 1.7 SD3-62-16 124.74 276.92 0.45 0.049 86 0.001 27 0.142 56 0.002 62 0.020 73 0.000 23 188.5 58.1 135.3 2.3 132.3 1.5 SD3-62-17 153.03 694.59 0.22 0.052 39 0.001 20 0.148 41 0.002 21 0.020 54 0.000 23 302.7 51.3 140.5 1.9 131.1 1.4 SD3-62-18 102.15 232.28 0.44 0.050 24 0.001 41 0.144 36 0.003 13 0.020 84 0.000 24 206.0 63.7 136.9 2.9 132.9 1.5 SD3-62-19 88.04 193.50 0.45 0.051 52 0.001 49 0.148 41 0.003 40 0.020 89 0.000 24 263.9 65.1 140.5 3.0 133.3 1.5 SD3-62-20 110.91 218.13 0.51 0.051 06 0.001 38 0.146 42 0.003 01 0.020 80 0.000 24 243.3 61.2 138.7 2.7 132.7 1.5 SD3-62-21 83.12 215.90 0.38 0.050 56 0.001 40 0.145 14 0.003 09 0.020 82 0.000 24 220.8 62.7 137.6 2.7 132.8 1.5 SD3-62-22 100.78 219.85 0.46 0.045 78 0.001 60 0.131 35 0.003 92 0.020 81 0.000 25 0.1 67.4 125.3 3.5 132.7 1.6 SD3-62-23 134.42 205.38 0.65 0.051 35 0.001 29 0.147 35 0.002 66 0.020 81 0.000 23 256.4 56.8 139.6 2.4 132.8 1.5 SD3-62-24 108.39 153.64 0.71 0.052 83 0.001 49 0.152 85 0.003 34 0.020 98 0.000 24 321.4 62.6 144.4 2.9 133.8 1.5 SD3-62-25 33.92 69.94 0.48 0.045 46 0.002 09 0.132 80 0.005 61 0.021 18 0.000 27 0.1 76.2 126.6 5.0 135.1 1.7 打鼓顶组碎斑流纹岩(样品号:SD3-211) SD3-211-1 191.6 356.57 0.54 0.050 91 0.001 19 0.153 48 0.002 38 0.021 86 0.000 24 236.9 53.1 145.0 2.1 139.4 1.5 SD3-211-2 157.62 420.57 0.37 0.048 73 0.001 20 0.137 28 0.002 37 0.020 43 0.000 23 134.9 56.8 130.6 2.1 130.4 1.4 SD3-211-3 655.08 643.40 1.02 0.049 52 0.001 19 0.140 78 0.002 33 0.020 61 0.000 23 172.4 55.3 133.7 2.1 131.5 1.4 SD3-211-4 174.43 662.16 0.26 0.048 52 0.001 09 0.138 41 0.001 95 0.020 68 0.000 22 124.9 51.9 131.6 1.7 132.0 1.4 SD3-211-5 102.57 237.11 0.43 0.052 56 0.001 37 0.153 60 0.002 95 0.021 19 0.000 24 309.7 58.1 145.1 2.6 135.2 1.5 SD3-211-6 170.69 336.24 0.51 0.048 37 0.001 18 0.137 51 0.002 35 0.020 61 0.000 23 117.6 56.6 130.8 2.1 131.5 1.4 SD3-211-7 127.00 306.03 0.41 0.051 01 0.001 24 0.145 24 0.002 45 0.020 65 0.000 23 241.2 55.0 137.7 2.2 131.7 1.4 SD3-211-8 436.89 1143.63 0.38 0.069 06 0.001 49 0.197 33 0.002 56 0.020 72 0.000 23 900.5 44.0 182.9 2.2 132.2 1.4 SD3-211-9 148.85 407.71 0.37 0.049 95 0.001 16 0.141 72 0.002 21 0.020 57 0.000 23 192.8 53.3 134.6 2.0 131.3 1.4 SD3-211-10 85.47 160.61 0.53 0.043 99 0.001 45 0.126 14 0.003 49 0.020 79 0.000 25 0.1 0.00 120.6 3.1 132.7 1.6 SD3-211-11 130.72 509.02 0.26 0.050 62 0.001 15 0.144 61 0.002 11 0.020 71 0.000 23 223.7 51.5 137.1 1.9 132.2 1.4 SD3-211-12 94.05 288.59 0.33 0.066 86 0.001 50 0.211 97 0.003 02 0.022 99 0.000 25 833.5 46.0 195.2 2.5 146.5 1.6 SD3-211-13 105.68 249.55 0.42 0.046 65 0.001 24 0.133 97 0.002 70 0.020 82 0.000 24 31.5 61.7 127.7 2.4 132.8 1.5 SD3-211-14 151.35 336.84 0.45 0.050 32 0.001 24 0.142 65 0.002 50 0.020 56 0.000 23 209.8 56.1 135.4 2.2 131.2 1.5 SD3-211-15 79.16 175.71 0.45 0.046 69 0.001 31 0.134 64 0.002 98 0.020 91 0.000 24 33.3 65.1 128.3 2.7 133.4 1.5 SD3-211-16 190.95 598.10 0.32 0.048 21 0.001 08 0.137 50 0.001 99 0.020 68 0.000 23 109.5 52.1 130.8 1.8 132.0 1.4 SD3-211-17 88.66 150.74 0.59 0.048 69 0.001 42 0.148 16 0.003 45 0.022 07 0.000 26 132.8 67.0 140.3 3.1 140.7 1.6 SD3-211-18 63.05 136.16 0.46 0.051 56 0.001 39 0.158 48 0.003 28 0.022 29 0.000 26 266.0 60.8 149.4 2.9 142.1 1.6 SD3-211-19 132.38 433.81 0.31 0.049 07 0.001 12 0.138 98 0.002 10 0.020 54 0.000 23 151.3 52.6 132.1 1.9 131.0 1.4 SD3-211-20 109.83 270.89 0.41 0.051 61 0.001 26 0.149 13 0.002 60 0.020 95 0.000 24 268.4 55.1 141.1 2.3 133.7 1.5 SD3-211-21 81.09 165.03 0.49 0.053 20 0.001 44 0.150 02 0.003 13 0.020 45 0.000 24 337.5 60.3 141.9 2.8 130.5 1.5 SD3-211-22 115.00 245.05 0.47 0.046 59 0.001 25 0.133 55 0.002 76 0.020 79 0.000 24 28.1 62.4 127.3 2.5 132.6 1.5 SD3-211-23 152.48 307.34 0.50 0.051 67 0.001 17 0.152 76 0.002 28 0.021 44 0.000 24 270.9 51.1 144.3 2.0 136.7 1.5 SD3-211-24 130.57 380.93 0.34 0.054 02 0.001 39 0.151 87 0.002 89 0.020 39 0.000 23 371.7 56.6 143.6 2.6 130.1 1.5 SD3-211-25 81.56 170.08 0.48 0.050 21 0.001 37 0.144 11 0.003 03 0.020 81 0.000 24 204.8 61.9 136.7 2.7 132.8 1.5 表 5 鹅湖岭组与打鼓顶组碎斑流纹岩Lu⁃Hf同位素分析结果
Table 5. Lu⁃Hf isotopic data of porphyroclastic rhyolite from Ehuling Formation and Daguding Formation
样品测点号 t
(Ma)176Yb/177Hf 176Lu/177Hf 2σ 176Hf/177Hf 2σ εHf(0) εHf(t) tDM(Ma) tDMC
(Ma)fLu/Hf 鹅湖岭组碎斑流纹岩(样品号SD3-62) SD3-62-1 132.6 0.029 988 0.001 170 0.000 008 0.282 433 0.000 023 -11.98 -9.18 1 161 1 769 -0.96 SD3-62-2 131.7 0.021 733 0.000 834 0.000 006 0.282 536 0.000 016 -8.35 -5.52 1 008 1 539 -0.97 SD3-62-3 133.7 0.017 610 0.000 705 0.000 003 0.282 467 0.000 015 -10.78 -7.92 1 100 1 690 -0.98 SD3-62-4 130.9 0.013 598 0.000 540 0.000 006 0.282 500 0.000 012 -9.61 -6.78 1 049 1 616 -0.98 SD3-62-5 132.4 0.024 355 0.000 982 0.000 002 0.282 467 0.000 015 -10.80 -7.99 1 108 1 692 -0.97 SD3-62-6 130.6 0.019 147 0.000 758 0.000 006 0.282 468 0.000 013 -10.76 -7.95 1 100 1 690 -0.98 SD3-62-7 133.4 0.021 721 0.000 879 0.000 005 0.282 499 0.000 016 -9.66 -6.80 1 060 1 619 -0.97 SD3-62-8 133.0 0.030 149 0.001 152 0.000 003 0.282 509 0.000 015 -9.30 -6.49 1 054 1 599 -0.97 SD3-62-9 132.5 0.026 411 0.001 019 0.000 007 0.282 538 0.000 015 -8.26 -5.44 1 009 1 533 -0.97 SD3-62-10 133.1 0.016 663 0.000 652 0.000 001 0.282 451 0.000 011 -11.35 -8.50 1 121 1 727 -0.98 SD3-62-11 132.8 0.012 534 0.000 498 0.000 003 0.282 424 0.000 016 -12.32 -9.46 1 154 1 787 -0.99 SD3-62-12 132.4 0.029 903 0.001 119 0.000 010 0.282 566 0.000 019 -7.27 -4.45 972 1 470 -0.97 SD3-62-13 132.2 0.026 309 0.001 030 0.000 013 0.282 486 0.000 016 -10.13 -7.32 1 083 1 651 -0.97 SD3-62-14 132.3 0.021 373 0.000 844 0.000 003 0.282 496 0.000 015 -9.76 -6.93 1 064 1 628 -0.97 打鼓顶组碎斑流纹岩(样品号SD3-211) SD3-211-1 132.5 0.023 517 0.000 911 0.000 003 0.282 399 0.000 018 -13.18 -10.35 1 200 1 843 -0.97 SD3-211-2 130.4 0.015 427 0.000 610 0.000 002 0.282 402 0.000 016 -13.08 -10.26 1 187 1 837 -0.98 SD3-211-3 131.5 0.077 555 0.002 818 0.000 029 0.282 320 0.000 023 -15.98 -13.35 1 380 2 030 -0.92 SD3-211-4 132.0 0.015 915 0.000 631 0.000 005 0.282 429 0.000 013 -12.15 -9.30 1 151 1 777 -0.98 SD3-211-5 135.2 0.013 182 0.000 519 0.000 004 0.282 460 0.000 016 -11.02 -8.10 1 104 1 704 -0.98 SD3-211-6 131.5 0.033 978 0.001 296 0.000 015 0.282 404 0.000 017 -13.00 -10.23 1 206 1 835 -0.96 SD3-211-7 131.7 0.020 091 0.000 791 0.000 001 0.282 438 0.000 013 -11.81 -8.99 1 143 1 757 -0.98 SD3-211-8 132.2 0.049 472 0.001 857 0.000 024 0.282 293 0.000 151 -16.95 -14.22 1 384 2 087 -0.94 SD3-211-9 131.3 0.018 276 0.000 718 0.000 007 0.282 447 0.000 012 -11.50 -8.68 1 128 1 736 -0.98 SD3-211-10 132.7 0.020 658 0.000 811 0.000 002 0.282 424 0.000 015 -12.30 -9.46 1 163 1 788 -0.98 SD3-211-11 132.2 0.017 028 0.000 670 0.000 002 0.282 395 0.000 011 -13.33 -10.47 1 199 1 852 -0.98 SD3-211-12 132.8 0.032 942 0.001 272 0.000 009 0.282 445 0.000 015 -11.58 -8.79 1 148 1 744 -0.96 SD3-211-13 131.2 0.016 687 0.000 653 0.000 009 0.282 388 0.000 013 -13.59 -10.77 1 209 1 870 -0.98 SD3-211-14 133.4 0.027 795 0.001 066 0.000 006 0.282 424 0.000 018 -12.31 -9.48 1 171 1 789 -0.97 -
[1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1-2): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [3] Bowring, S.A., Schmitz, M.D., 2003. High-Precision U-Pb Zircon Geochronology and the Stratigraphic Record. Reviews in Mineralogy and Geochemistry, 53(1): 305-326. https://doi.org/10.2113/0530305 [4] Chen, W.F., Chen, P.R., Xu, X.S., et al., 2005. Geochemical Characteristics of Cretaceous Basaltic Rocks in South China and Constraints on Pacific Plate Subduction. Science in China: Earth Sciences, 35(11): 1007-1018(in Chinese). [5] Chen, Z.L., Wang, Y., Zhou, Y.G., et al., 2013. SHRIMP U-Pb Dating of Zircons from Volcanic-Intrusive Complexes in the Xiangshan Uranium Orefield, Jiangxi Province, and Its Geological Implications. Geology in China, 40(1): 217-228(in Chinese with English abstract). [6] Corfu, F., Hanchar, J.M., Hoskin, P.W.O., et al., 2003. Atlas of Zircon Textures. Reviews in Minernalogy and Geochemistry, 53(1): 469-500. doi: 10.2113/0530469 [7] Fan, H.H., Ling, H.F., Shen, W.Z., et al., 2001a. Nd-Sr-Pb Isotope Geochemistry of the Volcanic-Intrusive Complex at Xiangshan, Jiangxi Province. Acta Petrologica Sinica, 17(3): 395-402(in Chinese with English abstract). http://www.researchgate.net/publication/288606463_Nd-Sr-Pb_isotope_geochemistry_of_the_volcanic-intrusive_complex_at_Xiangshan_Jiangxi_province [8] Fan, H.H., Wang, D.Z., Liu, C.S., et al., 2001b. Discovery of Quenched Enclaves in Subvolcanic Rocks in Xiangshan, Jiangxi Province and Its Genetic Mechanism. Acta Geologica Sinica, 75(1): 64-69, 146(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE200101011&dbcode=CJFD&year=2001&dflag=pdfdown [9] Fan, H.H., Wang, D.Z., Shen, W.Z., et al., 2005. Formation Age of the Intermediate-Basic Dikes and Volcanic-Intrusive Complex in Xiangshan, Jiangxi Province. Geological Review, 51(1): 86-91(in Chinese with English abstract). http://www.researchgate.net/publication/290130318_Formation_age_of_the_intermediate-basic_dikes_and_volcanic-intrusive_complex_in_Xiangshan_Jiangxi_province [10] Fang, X.H., Hou, W.Y., Wan, G.L., 1982. Petrographic Studies of the Volcanic Complex in the Xiangshan Caldera. Rock and Mineral Analysis, 1(1): 1-10(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS198201002.htm [11] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [12] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3-4): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [13] Guo, F.S., Yang, Q.K., Meng, X.J., et al., 2016. Geochemical Characteristics and Petrogenesis of the Acidic Volcano-Intrusive Complexes, Xiangshan, Jiangxi. Acta Geologica Sinica, 90(4): 769-784(in Chinese with English abstract). [14] He, Z.Y., Xu, X.S., Chen, R., et al., 2007. Genesis of Middle Jurassic Syenite-Gabbro in Southern Jiangxi Province and Their Geological Significance. Acta Petrologica Sinica, 23(6): 1457-1469 (in Chinese with English abstract). http://www.oalib.com/paper/1492361 [15] Hou, K.J., Li, Y.H., Zou, T.R., et al., 2007. Laser Ablation-MC-ICP-MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710026.htm [16] Jiang, Y.H., Ling, H.F., Jiang, S.Y., et al., 2005. Petrogenesis of a Late Jurassic Peraluminous Volcanic Complex and Its High-Mg, Potassic, Quenched Enclaves at Xiangshan, Southeast China. Journal of Petrology, 46(6): 1121-1154. https://doi.org/10.1093/petrology/egi012 [17] Li, X.H., 2000. Cretaceous Magmatism and Lithospheric Extension in Southeast China. Journal of Asian Earth Sciences, 18(3): 293-305. https://doi.org/10.1016/s1367-9120(99)00060-7 [18] Li, S.Z., Zang, Y.B., Wang, P.C., et al., 2017. Mesozoic Tectonic Transition in South China and Initiation of Palaeo-Pacific Subduction. Earth Science Frontiers, 24(4): 213-225(in Chinese with English abstract). [19] Liu, C.S., Zhu, J.C., Shen, W.Z., et al., 1990. Classification and Source Materials of Continental Crust Trasformation Series Grantoids in South China. Acta Geologica Sinica, 64(1): 43-52(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZXE199001004.htm [20] Ludwing, K.R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel. Geochronology Center. Special Publication, Berkeley. [21] Regional Geological Survey Brigade of Jiangxi Geological Bureau, 1977.1: 20 000 Regional Geology and Mineral Resources Survey Report in Xingan. Geological Survey of Jiangxi Province, Nanchang(in Chinese). [22] Scherer, E.E., Münker, C., Mezger, K., 2001. Calibration of the Luteium-Hafnium Clock. Science, 293 (5536): 638-687. [23] Si, Z.F., Li, Z.Y., Nie, J.T., et al., 2018. Geochemistry, Zircon U-Pb Geochronology and Hf-Sr-Nd Isotopic Characteristics of the Rhyolite Porphyry at Heyuanbei in Xiangshan Uranium Ore-Field, Jiangxi Province. Geoscience, 32(1): 45-55(in Chinese with English abstract) [24] Söderlund, U., Patchett, P.J., Vervoort, J.D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/s0012-821x(04)00012-3 [25] Song, B., Zhang, Y.H., Liu, D.Y., 2002. Introduction to the Naissance of SHRIMP and Its Contribution to Isotope Geology. Journal of Chinese Mass Spectrometry Society, 23(1): 58-62(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZPXB200201010.htm [26] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [27] Wang, Y.J., Lin, J.R., Hu, Z.H., et al., 2019. Zircon U-Pb Geochronology, Geochemistry and Hf Isotopic Compositions of Dacitic Porphyry in Zoujiashan Deposit of Xiangshan Uranium Orefield and Its Geological Implication. Earth Science, 46(1): 31-42(in Chinese with English abstract). [28] Wang, C.W., Hou, W.Y., 1980. Characteristics and Genetic Mechanism of Porphyroclastic Rhyolite in Xiangshan-Genetic and Geological Significance of Crystal Pyroclast-Rich Porphyroclastic Rhyolitic Volcanic Rocks. Beijing Research Institute of Uranium Geology, Beijing (in Chinese). [29] Wu, F.Y., Li, X.H., Zheng, Y.F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220(in Chinese with English abstract). http://www.oalib.com/paper/1492671 [30] Xing, G.F., Lu, Q.D., Chen, R., et al., 2008. Study on the Ending Time of Late Mesozoic Tectonic Regime Transition in South China: Comparing to the Yanshan Area in North China. Acta Geologica Sinica, 82(4): 451-463 (in Chinese with English abstract). [31] Yang, S.Y., 2013. Petrogenesis and Geodynamic Setting of Magmatic Rocks from Uranium-Bearing Volcanic Basins, Gan-Hang Belt, Southeast China (Dissertation). Nanjing University, Nanjing(in Chinese with English abstract). [32] Yang, S.Y., Jiang, S.Y., Jiang, Y.H., et al., 2010. Zircon U-Pb Geochronology, Hf Isotopic Composition and Geological Implications of the Rhyodacite and Rhyodacitic Porphyry in the Xiangshan Uranium Ore Field, Jiangxi Province, China. Science China: Earth Sciences, 40(8): 953-969(in Chinese). http://qikan.cqvip.com/Qikan/Article/Detail?id=1003599060 [33] Yang, S.Y., Jiang, S.Y., Jiang, Y.H., et al., 2011. Geochemical, Zircon U-Pb Dating and Sr-Nd-Hf Isotopic Constraints on the Age and Petrogenesis of an Early Cretaceous Volcanic-Intrusive Complex at Xiangshan, Southeast China. Mineralogy and Petrology, 101(1): 21-48. https://doi.org/10.1007/s00710-010-0136-4 [34] Yu, Z.Q., Chen, W.F., Chen, P.R., et al., 2019. Chemical Composition and Sr Isotopes of Apatite in the Xiangshan A-Type Volcanic-Intrusive Complex, Southeast China: New Insight into Petrogenesis. Journal of Asian Earth Sciences, 172: 66-82. https://doi.org/10.1016/j.jseaes.2018.08.019 [35] Yuan, H.Y., Wu, F.Y., Gao, S., et al., 2003. Zircon Laser Probe U-Pb Dating and REE Composition Analysis of Cenozoic Intrusions in Northeast China. Chinese Science Bulletin, 48(14): 1511-1520(in Chinese). doi: 10.1360/csb2003-48-14-1511 [36] Zhang, W.L., 2016. New Understanding of the Genesis of Cryptoexplosive Intrusive Rock, Xiangshan. Jiangxi Geology, 17(3): 184-189(in Chinese). [37] Zhang, W.L., Li, Z.Y., 2007. Single Zircon U-Pb Age of Rhyodacite from Xiangshan Area and Its Geological Implications. Acta Petrologica et Mineralogica, 26(1): 21-26(in Chinese with English abstract). [38] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247 (in Chinese with English abstract). [39] Zhou, X.M., Sun, T., Shen, W.Z., et al., 2006. Petrogenesis of Mesozoic Granitoids and Volcanic Rocks in South China: A Response to Tectonic Evolution. Episodes, 29(1): 26-33. https://doi.org/10.18814/epiiugs/2006/v29i1/004 [40] Zhou, T.F., Fan, Y., Yuan, F., et al., 2010. Temporal-Spatial Framework of Magmatic Intrusions in Luzong Volcanic Basin in East China and Their Constrain to Mineralizations. Acta Petrologica Sinica, 26(9): 2694-2714 (in Chinese with English abstract). [41] 陈卫锋, 陈培荣, 徐夕生, 等, 2005. 华南白垩纪玄武质岩石的地球化学特征及其对太平洋板块俯冲作用的制约. 中国科学: 地球科学, 35(11): 1007-1018. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200511000.htm [42] 陈正乐, 王永, 周永贵, 等, 2013. 江西相山火山-侵入杂岩体锆石SHRIMP定年及其地质意义. 中国地质, 40(1): 217-228. doi: 10.3969/j.issn.1000-3657.2013.01.015 [43] 范洪海, 凌洪飞, 沈渭洲, 等, 2001a. 相山火山-侵入杂岩Nd-Sr-Pb同位素地球化学特征. 岩石学报, 17(3): 395-402. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200103006.htm [44] 范洪海, 王德滋, 刘昌实, 等, 2001b. 江西相山潜火山岩中淬冷包体的发现及其成因机制探讨. 地质学报, 75(1): 64-69, 146. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200101011.htm [45] 范洪海, 王德滋, 沈渭洲, 等, 2005. 江西相山火山-侵入杂岩及中基性脉岩形成时代研究. 地质论评, 51(1): 86-91. doi: 10.3321/j.issn:0371-5736.2005.01.011 [46] 方锡珩, 侯文尧, 万国良, 1982. 相山破火山口火山杂岩体的岩石学研究. 岩矿测试, 1(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS198201002.htm [47] 郭福生, 杨庆坤, 孟祥金, 等, 2016. 江西相山酸性火山-侵入杂岩体地球化学特征与岩石成因. 地质学报, 90(4): 769-784. doi: 10.3969/j.issn.0001-5717.2016.04.012 [48] 贺振宇, 徐夕生, 陈荣, 等, 2007. 赣南中侏罗世正长岩-辉长岩的起源及其地质意义. 岩石学报, 23(6): 1457-1469. doi: 10.3969/j.issn.1000-0569.2007.06.021 [49] 侯可军, 李延河, 邹天人, 等, 2007. LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. doi: 10.3969/j.issn.1000-0569.2007.10.025 [50] 华东608大队, 1966. 江西省乐安-崇仁县相山地区1: 5万地质测量总结报告. 南昌: 核工业270研究所. [51] 江西省地质局区域地质调查大队, 1977. 新干幅1: 20万区域地质矿产调查报告. 南昌: 江西省地质调查院. [52] 李三忠, 臧艺博, 王鹏程, 等, 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704028.htm [53] 刘昌实, 朱金初, 沈渭洲, 等, 1990. 华南陆壳改造系列花岗岩类型划分和成岩物质来源. 地质学报, 64(1): 43-52. doi: 10.3321/j.issn:0001-5717.1990.01.001 [54] 司志发, 李子颖, 聂江涛, 等, 2018. 江西相山铀矿田河元背地区流纹斑岩地球化学、锆石U-Pb年龄及Hf-Sr-Nd同位素特征. 现代地质, 32(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201801004.htm [55] 宋彪, 张玉海, 刘敦一, 2002. 微量原位分析仪器SHRIMP的产生与锆石同位素地质年代学. 质谱学报, 23(1): 58-62. doi: 10.3969/j.issn.1004-2997.2002.01.011 [56] 王传文, 候文尧. 1980. 相山碎斑流纹岩特征及其成因机制-兼论浙赣富晶屑碎斑流纹质火山岩成因和地质意义. 北京: 核工业北京地质研究院. [57] 王勇剑, 林锦荣, 胡志华, 等, 2019. 相山铀矿田邹家山矿床英安斑岩脉锆石U-Pb年代学、地球化学、Hf同位素组成及其地质意义. 地球科学, 46(1): 31-42. doi: 10.3799/dqkx.2019.257 [58] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [59] 邢光福, 卢清地, 陈荣, 等, 2008. 华南晚中生代构造体制转折结束时限研究: 兼与华北燕山地区对比. 地质学报, 82(4): 451-463. doi: 10.3321/j.issn:0001-5717.2008.04.003 [60] 杨水源, 蒋少涌, 姜耀辉, 等, 2010. 江西相山流纹英安岩和流纹英安斑岩锆石U-Pb年代学和Hf同位素组成及其地质意义. 中国科学: 地球科学, 40(8): 953-969. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201008003.htm [61] 杨水源, 2013. 华南赣杭构造带含铀火山盆地岩浆岩的成因机制及动力学背景(博士学位论文). 南京: 南京大学. [62] 袁洪林, 吴福元, 高山, 等, 2003. 东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析. 科学通报. 48(14): 1511-1520. doi: 10.3321/j.issn:0023-074X.2003.14.008 [63] 张万良, 李子颖, 2007. 相山"流纹英安岩"单颗粒锆石U-Pb年龄及地质意义. 岩石矿物学杂志, 26(1): 21-26. doi: 10.3969/j.issn.1000-6524.2007.01.004 [64] 张万良, 2016. 隐爆侵入岩-相山碎斑熔岩成因新认识. 江西地质, 17(3): 184-189. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-JXDZ201706002027.htm [65] 张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026 [66] 周涛发, 范裕, 袁峰, 等, 2010. 庐枞盆地侵入岩的时空格架及其对成矿的制约. 岩石学报, 26(9): 2694-2714. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201009016.htm