• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运

    黄丰 许继峰 王保弟 曾云川 刘希军 刘函 余红霞

    黄丰, 许继峰, 王保弟, 曾云川, 刘希军, 刘函, 余红霞, 2020. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学, 45(8): 2785-2804. doi: 10.3799/dqkx.2020.180
    引用本文: 黄丰, 许继峰, 王保弟, 曾云川, 刘希军, 刘函, 余红霞, 2020. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学, 45(8): 2785-2804. doi: 10.3799/dqkx.2020.180
    Huang Feng, Xu Jifeng, Wang Baodi, Zeng Yunchuan, Liu Xijun, Liu Han, Yu Hongxia, 2020. Destiny of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Science, 45(8): 2785-2804. doi: 10.3799/dqkx.2020.180
    Citation: Huang Feng, Xu Jifeng, Wang Baodi, Zeng Yunchuan, Liu Xijun, Liu Han, Yu Hongxia, 2020. Destiny of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Science, 45(8): 2785-2804. doi: 10.3799/dqkx.2020.180

    印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运

    doi: 10.3799/dqkx.2020.180
    基金项目: 

    国家重点研发计划项目 2016YFC0600304

    国家自然科学基金 41973027

    国家自然科学基金 41603033

    博士后创新人才支持计划 BX201700213

    中央高校基本科研业务费 2652019054

    详细信息
      作者简介:

      黄丰(1988-), 男, 副教授, 博士, 主要从事岩石地球化学研究.ORCID:0000-0001-6215-8223.E-mail:fenghuang@cugb.edu.cn

    • 中图分类号: P611

    Destiny of Neo-Tethyan Lithosphere during India-Asia Collision

    • 摘要: 印度-亚洲大陆碰撞之后的新特提斯洋板片的断离过程及其产生的岩浆作用一直是青藏高原南部地质研究中受到广泛关注但存在极大争议的问题.分析了青藏高原南部拉萨地块上新特提斯洋板片断离存在的问题,总结了目前用于限制板片断离过程的岩石学方法.对拉萨地块南部典型地区早新生代镁铁质岩石开展了详细的地质年代学、主微量元素和Sr-Nd-Hf同位素地球化学分析,厘定了~57 Ma和~50 Ma与新特提斯洋板片断离过程密切相关的两套岩石.~57 Ma的镁铁质岩石显示出高的Zr/Y和Ti/Y比值,不同于拉萨地块南部广泛分布的岛弧岩浆地球化学特征,表明它们形成于板内伸展背景下,很可能代表了新特提斯板片断离的开始.~50 Ma的镁铁质岩石为富闪深成岩,反映了印度-亚洲大陆碰撞后南拉萨地块岩石圈中的富水环境,暗示大洋板片断离后仍然持续释放流体至上覆岩石圈地幔中.结合拉萨地块上已有的镁铁质岩石的年代学和地球化学数据,重建了新特提斯洋在印度-亚洲大陆碰撞之后从初始撕裂至板片完全断离的全过程,即新特提斯板片在~57 Ma开始发生初始撕裂,随后以高角度俯冲并与印度大陆岩石圈脱离,导致中拉萨和南拉萨地块同时出现广泛的镁铁质岩浆作用,在~50 Ma大洋板片完全断离.拉萨地块内部岩石圈地幔地球化学组成存在极大的不均一性,中拉萨地块和南拉萨地块东部的局部地区存在古老的岩石圈物质组成,而南拉萨地块中部主要为亏损的岩石圈.拉萨地块内局部古老富集岩石圈可能受到新特提斯洋板片断离后深部地幔物质上涌的影响转变为新生的亏损岩石圈,这一过程很可能促进了拉萨地块的中酸性岩浆大爆发作用和大陆地壳生长.

       

    • 图  1  板片断离过程的简单图示

      Davies and von Blanckenburg(1995). a.大陆碰撞开始,俯冲的大洋岩石圈诱发了周围软流圈地流动;b.板片的撕裂开始,软流圈上涌到断裂带中,俯冲一侧的大陆壳底垫到活动大陆边缘的大陆岩石圈之下;c.窄的岩石圈断裂带持续发展为板片断离,热的软流圈冲击之前交代的岩石圈底部会形成岩浆作用,大陆岩石圈之下板片断离后应力和势能地释放会导致地表的初步抬升;d.大洋板片沉入地幔深部,伴随着地表的进一步抬升,软流圈的深部对流使岩石圈底部遭受高温作用,大陆缝合带变得陡峭,向被动大陆边缘一侧迁移的逆冲断层导致在两侧大陆内部均会出现侵入岩石

      Fig.  1.  Schematic breakoff processes

      图  3  拉萨地块早新生代镁铁质岩石的Zr/TiO2-Nb/Y(a)和Zr/Y-Ti/Y(b)图解

      图a据Winchester and Floyd (1977);图b据Pearce and Gale (1977)

      Fig.  3.  Zr/TiO2-Nb/Y (a) and Zr/Y-Ti/Y (b) diagrams for the Early Cenozoic mafic rocks in the Lhasa Terrane

      图  4  拉萨地块早新生代镁铁质岩石的球粒陨石标准化REE分配模式(a、b)和原始地幔标准化多元素图解(c、d)

      Fig.  4.  Chondrite-normalized rare earth element (REE) patterns (a, b) and primitive-mantle-normalized multi-element patterns (c, d) for the Early Cenozoic mafic rocks in the Lhasa Terrane

      图  5  拉萨地块早新生代镁铁质岩石的Sr-Nd同位素组成

      雅江蛇绿岩数据引自Mahoney et al. (1998)Xu and Castillo (2004)

      Fig.  5.  εNd(t) vs. (87Sr/86Sr)i for the Early Cenozoic mafic rocks in the Lhasa Terrane

      图  6  拉萨地块早新生代镁铁质岩石的锆石εHf(t)-t图解

      南拉萨和中拉萨地块侵入岩锆石Hf同位素数据引自Zhang et al. (2019)

      Fig.  6.  Plots of εHf(t)-t for Early Cenozoic mafic rocks in the Lhasa Terrane

      图  7  拉萨地块早新生代(~57 Ma)新特提斯洋板片初始断离及岩浆活动的概念图

      Huang et al. (2017)修改

      Fig.  7.  A conceptual diagram illustrating the tectonic position of magmatic rocks in the Lhasa Terrane during the Early Cenozoic (~57 Ma)

      图  8  拉萨地块早新生代(~50 Ma)构造-岩浆事件的概念图

      Huang et al. (2019b)修改

      Fig.  8.  Conceptual diagrams illustrating the tectonic and magmatic processes in the Lhasa Terrane during the Early Cenozoic (~50 Ma)

      图  9  拉萨地块早新生代镁铁质岩浆岩的形成时代与其分布纬度的关系

      Fig.  9.  The relations of ages and latitude of Early Cenozoic mafic rocks in the Lhasa Terrane

      表  1  南拉萨地块中部早新生代镁铁质岩石数据

      Table  1.   The Early Cenozoic mafic magmatism in the central part of southern Lhasa Terrane

      样品号 位置 岩性 年龄(Ma) SiO2 (%) Mg# 数据来源
      13DJ-04 达居 辉长岩脉 57.1±1.7 51.15 47.9 Huang et al. (2017)
      13DJ-05 达居 辉长岩脉 57.4±0.9 53.42 46.7 Huang et al. (2017)
      15DJ-07 达居 辉长岩脉 55.9±0.9 50.70 54.0 Huang et al. (2017)
      16PCL-13 彭措林 富闪深成岩 50.8±0.4 46.57 52.5 Huang et al. (2019b)
      16PCL-07 彭措林 富闪深成岩 51.1±0.5 44.83 43.5 Huang et al. (2019b)
      15XTM53 仁钦则 闪长岩包体 50.4±0.4 56.23 47.5 Shu et al. (2018)
      T041F 日喀则 玄武安山岩 49.3±1.2 52.25 41.8 Lee et al. (2009)
      T044C 南木林 石英闪长岩 48.3±1.2 52.10 48.2 Wen et al. (2008)
      T047 南木林 玄武岩 44.0±0.8 50.87 42.0 Lee et al. (2009)
      06FW175 Karu 闪长岩 52.6±1.2 57.57 45.6 Ji et al. (2012)
      06FW174 Karu 闪长岩 50.2±1.5 56.45 43.6 Ji et al. (2012)
      06FW152-2 Qulin 闪长岩 57.3±0.9 53.49 46.8 Ji et al. (2012)
      ST147A 尼木 石英闪长岩 50.6±0.7 53.87 48.4 Wen et al. (2008)
      T1031 尼木 苏长岩 57.3±0.9 54.00 62.8 Wang et al. (2019b)
      06FW176 尼木 闪长岩 53.6±1.0 54.48 42.0 Ji et al. (2012)
      T1034 尼木 辉长岩 57.3±0.9 49.82 63.2 Wang et al. (2019b)
      ST152A 曲水 石英辉长岩 52.7±1.4 49.75 53.9 Wen et al. (2008)
      06FW151 曲水 闪长岩 55.5±1.2 56.09 45.1 Ji et al. (2012)
      06FW146 曲水 二长闪长岩 56.9±1.4 52.88 47.8 Ji et al. (2012)
      T0594 曲水 辉长岩 54.2±1.7 50.54 67.9 Wang et al. (2019b)
      16TB-33 曲水 辉长苏长岩 50.3±2.0 51.15 53.0 Wang et al. (2019a)
      16TB-46 曲水 辉长苏长岩 51.6±1.2 52.80 51.6 Wang et al. (2019a)
      16TB-42 曲水 石英闪长岩 53.0±1.9 55.13 48.2 Wang et al. (2019a)
      T083C 拉萨西 玄武岩 43.2±1.6 50.85 37.5 Lee et al. (2009)
      06FW126 南木电站 花岗闪长岩 55.3±1.0 56.62 43.2 Ji et al. (2012)
      06FW128 南木电站 闪长岩脉 49.9±1.0 54.99 49.9 Ji et al. (2012)
      06FW129 南木 花岗闪长岩 52.9±0.7 57.43 42.4 Ji et al. (2012)
      06FW120 聂当 闪长质包体 50.3±0.6 51.94 42.3 Ji et al. (2012)
      ET021E 驱龙 石英辉长岩 64.0±1.4 55.05 50.9 Wen et al. (2008)
      11DZ-21 达孜 辉长岩脉 56.8±1.7 53.23 43.7 黄丰(2015)
      12DZ-07 达孜 辉长岩脉 57.6±1.2 58.44 50.2 黄丰(2015)
      13DZ-10 达孜 辉长岩脉 57.4±1.2 49.21 54.3 黄丰(2015)
      下载: 导出CSV
    • [1] Ahmad, T., Harris, N., Bickle, M. J., et al., 2000. Isotopic Constraints on the Structural Relationships between the Lesser Himalayan Series and the High Himalayan Crystalline Series, Garhwal Himalaya. Geological Society of America Bulletin, 112(3):467-477.https://doi.org/10.1130/0016-7606(2000)112 < 0467:icotsr > 2.0.co; 2 doi: 10.1130/0016-7606(2000)112<0467:icotsr>2.0.co;2
      [2] Aitchison, J. C., Ali, J. R., Davis, A. M., 2007. When and Where did India and Asia Collide? Journal of Geophysical Research Atmospheres, 112(B5):B05423. https://doi.org/10.1029/2006jb004706
      [3] Altunkaynak, Ş., 2007. Collision-Driven Slab Breakoff Magmatism in Northwestern Anatolia, Turkey. The Journal of Geology, 115(1):63-82. https://doi.org/10.1086/509268
      [4] Atherton, M. P., Ghani, A. A., 2002. Slab Breakoff:A Model for Caledonian, Late Granite Syn-Collisional Magmatism in the Orthotectonic (Metamorphic) Zone of Scotland and Donegal, Ireland. Lithos, 62(3-4):65-85. https://doi.org/10.1016/s0024-4937(02)00111-1
      [5] Bouilhol, P., Jagoutz, O., Hanchar, J. M., et al., 2013. Dating the India-Eurasia Collision through Arc Magmatic Records. Earth and Planetary Science Letters, 366:163-175. https://doi.org/10.1016/j.epsl.2013.01.023
      [6] Cai, F. L., Ding, L., Yue, Y. H., 2011. Provenance Analysis of Upper Cretaceous Strata in the Tethys Himalaya, Southern Tibet:Implications for Timing of India-Asia Collision. Earth and Planetary Science Letters, 305(1-2):195-206. https://doi.org/10.1016/j.epsl.2011.02.055
      [7] Chen, J. L., Xu, J. F., Wang, B. D., et al., 2010. Origin of Cenozoic Alkaline Potassic Volcanic Rocks at Konglong Xiang, Lhasa Terrane, Tibetan Plateau:Products of Partial Melting of a Mafic Lower-Crustal Source? Chemical Geology, 273(3-4):286-299. https://doi.org/10.1016/j.chemgeo.2010.03.003
      [8] Chen, J. L., Xu, J. F., Zhao, W. X., et al., 2011. Geochemical Variations in Miocene Adakitic Rocks from the Western and Eastern Lhasa Terrane:Implications for Lower Crustal Flow beneath the Southern Tibetan Plateau. Lithos, 125(3-4):928-939. https://doi.org/10.1016/j.lithos.2011.05.006
      [9] Chen, X.F., Zhu, L.X., Ma, S.M., et al., 2012. Chronology, Geochemistry and Petrogenesis for Nyainqentanglha Intermediate-Basic Intrusive Rocks. Journal of Jilin University (Earth Science Edition), 42(1):112-125 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201201017.htm
      [10] Chu, M. F., Chung, S. L., O'Reilly, S. Y., et al., 2011. India's Hidden Inputs to Tibetan Orogeny Revealed by Hf Isotopes of Transhimalayan Zircons and Host Rocks. Earth and Planetary Science Letters, 307(3-4):479-486. https://doi.org/10.1016/j.epsl.2011.05.020
      [11] Chung, S. L., Chu, M. F., Ji, J. Q., et al., 2009. The Nature and Timing of Crustal Thickening in Southern Tibet:Geochemical and Zircon Hf Isotopic Constraints from Postcollisional Adakites. Tectonophysics, 477(1-2):36-48. https://doi.org/10.1016/j.tecto.2009.08.008
      [12] Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3-4):173-196. https://doi.org/10.1016/j.earscirev.2004.05.001
      [13] Davies, J.H., von Blanckenburg, F., 1995. Slab Breakoff:A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4):85-102. https://doi.org/10.1016/0012-821x(94)00237-s
      [14] DeCelles, P. G., Ducea, M. N., Kapp, P., et al., 2009. Cyclicity in Cordilleran Orogenic Systems. Nature Geoscience, 2(4):251-257. https://doi.org/10.1038/ngeo469
      [15] DeCelles, P. G., Kapp, P., Gehrels, G. E., et al., 2014. Paleocene-Eocene Foreland Basin Evolution in the Himalaya of Southern Tibet and Nepal:Implications for the Age of Initial India-Asia Collision. Tectonics, 33(5):824-849. https://doi.org/10.1002/2014tc003522
      [16] Ding, L., Maksatbek, S., Cai, F. L., et al., 2017. Processes of Initial Collision and Suturing between India and Asia. Science China Earth Sciences, 60(4):635-651. https://doi.org/10.1007/s11430-016-5244-x
      [17] Ding, L., Xu, Q., Yue, Y. H., et al., 2014. The Andean-Type Gangdese Mountains:Paleoelevation Record from the Paleocene-Eocene Linzhou Basin. Earth and Planetary Science Letters, 392:250-264. https://doi.org/10.1016/j.epsl.2014.01.045
      [18] Ducea, M. N., Paterson, S. R., DeCelles, P. G., 2015. High-Volume Magmatic Events in Subduction Systems. Elements, 11(2):99-104. https://doi.org/10.2113/gselements.11.2.99
      [19] Ferrari, L., 2004. Slab Detachment Control on Mafic Volcanic Pulse and Mantle Heterogeneity in Central Mexico. Geology, 32(1):77-80. https://doi.org/10.1130/g19887.1
      [20] Fox, M., Herman, F., Kissling, E., et al., 2015. Rapid Exhumation in the Western Alps Driven by Slab Detachment and Glacial Erosion. Geology, 43(5):379-382. https://doi.org/10.1130/g36411.1
      [21] Gao, R., Lu, Z.W., Klemperer, S. L., et al., 2016. Crustal-Scale Duplexing beneath the Yarlung Zangbo Suture in the Western Himalaya. Nature Geoscience, 9(7):555. https://doi.org/10.1038/ngeo2730
      [22] Gao, Y.F., Hou, Z.Q., Wei, R.H., et al., 2006. The Geochemistry and Sr-Nd-Pb Isotopes of Basaltic Subvolcanics from the Gangdese:Constraints on Depleted Mantle Source for Post-Collisional Volcanisms in the Tibetan Plateau. Acta Petrologica Sinica, 22(3):547-557 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603003.htm
      [23] Gao, Y. F., Wei, R. H., Hou, Z. Q., et al., 2008. Eocene High-MgO Volcanism in Southern Tibet:New Constraints for Mantle Source Characteristics and Deep Processes. Lithos, 105(1-2):63-72. https://doi.org/10.1016/j.lithos.2008.02.008
      [24] Garzanti, E., Baud, A., Mascle, G., 1987. Sedimentary Record of the Northward Flight of India and Its Collision with Eurasia (Ladakh Himalaya, India). Geodinamica Acta, 1(4-5):297-312. https://doi.org/10.1080/09853111.1987.11105147
      [25] Guo, L., Zhang, H. F., Harris, N., et al., 2016. Late Devonian-Early Carboniferous Magmatism in the Lhasa Terrane and Its Tectonic Implications:Evidences from Detrital Zircons in the Nyingchi Complex. Lithos, 245:47-59. https://doi.org/10.1016/j.lithos.2015.06.018
      [26] Guo, L., Zhang, H. F., Harris, N., et al., 2019. Tectonic Erosion and Crustal Relamination during the India-Asian Continental Collision:Insights from Eocene Magmatism in the Southeastern Gangdese Belt. Lithos, 346-347:105161. https://doi.org/10.1016/j.lithos.2019.105161
      [27] Guo, X. Y., Gao, R., Zhao, J. M., et al., 2018. Deep-seated Lithospheric Geometry in Revealing Collapse of the Tibetan Plateau. Earth-Science Reviews, 185:751-762. https://doi.org/10.1016/j.earscirev.2018.07.013
      [28] Gvirtzman, Z., 2002. Partial Detachment of a Lithospheric Root under the Southeast Carpathians:Toward a Better Definition of the Detachment Concept. Geology, 30(1):51-54.https://doi.org/10.1130/0091-7613(2002)030 < 0051:PDOALR > 2.0.CO; 2 doi: 10.1130/0091-7613(2002)030<0051:PDOALR>2.0.CO;2
      [29] Hou, Z.Q., Duan, L.F., Lu, Y.J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6):1541-1575. https://doi.org/10.2113/econgeo.110.6.1541
      [30] Houseman, G., England, P., 1986. A Dynamical Model of Lithosphere Extension and Sedimentary Basin Formation. Journal of Geophysical Research Atmospheres, 91(B1):719-729. https://doi.org/10.1029/jb091ib01p00719
      [31] Hu, X., Garzanti, E., Moore, T. C., et al., 2015. Direct Stratigraphic Dating of India-Asia Collision Onset at the Selandian (Middle Paleocene, 59 ±1 Ma). Geology, 43(10):859-862. https://doi.org/10.1130/g36872.1
      [32] Hu, X. M., Garzanti, E., Wang, J. G., et al., 2016. The Timing of India-Asia Collision Onset-Facts, Theories, Controversies. Earth-Science Reviews, 160:264-299. https://doi.org/10.1016/j.earscirev.2016.07.014
      [33] Huang, F., 2015. From Continental Collision to Intracontinental Extension: The Cenozoic Magmatism and the Geodynamics Evolution of Lhasa Terrane (Dissertation). The University of Chinese Academy of Sciences, Beijing (in Chinese with English abstract).
      [34] Huang, F., Chen, J. L., Xu, J. F., et al., 2015. Os-Nd-Sr Isotopes in Miocene Ultrapotassic Rocks of Southern Tibet:Partial Melting of a Pyroxenite-bearing Lithospheric Mantle? Geochimica et Cosmochimica Acta, 163:279-298. https://doi.org/10.1016/j.gca.2015.04.053
      [35] Huang, F., Xu, J.F., Chen, J.L., et al., 2015. Early Jurassic Volcanic Rocks from the Yeba Formation and Sangri Group:Products of Continental Marginal Arc and Intra-oceanic Arc during the Subduction of Neo-Tethys Ocean? Acta Petrologica Sinica, 31(7):2089-2100 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201507022.htm
      [36] Huang, F., Xu, J. F., Chen, J. L., et al., 2016. Two Cenozoic Tectonic Events of N-S and E-W Extension in the Lhasa Terrane:Evidence from Geology and Geochronology. Lithos, 245:118-132. https://doi.org/10.1016/j.lithos.2015.08.014
      [37] Huang, F., Xu, J. F., Zeng, Y. C., et al., 2017. Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred from Contemporaneous Melting of the Mantle and Crust. Geochemistry, Geophysics, Geosystems, 18(11):4074-4095. https://doi.org/10.1002/2017gc007039
      [38] Huang, F., Li, M. J., Xu, J. F., et al., 2019a. Geodynamic Transition from Subduction to Extension:Evidence from the Geochronology and Geochemistry of Granitoids in the Sangsang Area, Southern Lhasa Terrane, Tibet. International Journal of Earth Sciences, 108(5):1663-1681. https://doi.org/10.1007/s00531-019-01729-3
      [39] Huang, F., Zhang, Z., Xu, J. F., et al., 2019b. Fluid Flux in the Lithosphere beneath Southern Tibet during Neo-Tethyan Slab Breakoff:Evidence from an Appinite-Granite Suite. Lithos, 344-345:324-338. https://doi.org/10.1016/j.lithos.2019.07.004
      [40] Isacks, B., Molnar, P., 1969. Mantle Earthquake Mechanisms and the Sinking of the Lithosphere. Nature, 223(5211):1121-1124. https://doi.org/10.1038/2231121a0
      [41] Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      [42] Ji, W.Q., Wu, F.Y., Chung, S.L., et al., 2016. Eocene Neo-Tethyan Slab Breakoff Constrained by 45 Ma Oceanic Island Basalt-Type Magmatism in Southern Tibet. Geology, 44(4):283-286. https://doi.org/10.1130/g37612.1
      [43] Ji, W. Q., Wu, F. Y., Liu, C. Z., et al., 2012. Early Eocene Crustal Thickening in Southern Tibet:New Age and Geochemical Constraints from the Gangdese Batholith. Journal of Asian Earth Sciences, 53:82-95. https://doi.org/10.1016/j.jseaes.2011.08.020
      [44] Jia, L.L., Wang, Q., Zhu, D.C., et al., 2013. Rethinking the Geodynamical Implications of the Basic Rocks from Linzhou Basin, Tibet. Acta Petrologica Sinica, 29(11):3671-3680 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201311002.htm
      [45] Kang, Z. Q., Xu, J. F., Wilde, S. A., et al., 2014. Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane:Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 200-201:157-168. https://doi.org/10.1016/j.lithos.2014.04.019
      [46] Keskin, M., 2003. Magma Generation by Slab Steepening and Breakoff beneath a Subduction-Accretion Complex:An Alternative Model for Collision-Related Volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters, 30(24):8046. https://doi.org/10.1029/2003gl018019
      [47] Kimura, J. I., 2017. Modeling Chemical Geodynamics of Subduction Zones Using the Arc Basalt Simulator Version 5. Geosphere, 13(4):992-1025. https://doi.org/10.1130/ges01468.1
      [48] Kohn, M. J., Parkinson, C. D., 2002. Petrologic Case for Eocene Slab Breakoff during the Indo-Asian Collision. Geology, 30(7):591-594.https://doi.org/10.1130/0091-7613(2002)0300591:pcfesb > 2.0.co; 2 doi: 10.1130/0091-7613(2002)0300591:pcfesb>2.0.co;2
      [49] Lee, H.Y., Chung, S.L., Lo, C.H., et al., 2009. Eocene Neotethyan Slab Breakoff in Southern Tibet Inferred from the Linzizong Volcanic Record. Tectonophysics, 477(1-2):20-35. https://doi.org/10.1016/j.tecto.2009.02.031
      [50] Lee, T. Y., Lawver, L. A., 1995. Cenozoic Plate Reconstruction of Southeast Asia. Tectonophysics, 251(1-4):85-138. https://doi.org/10.1016/0040-1951(95)00023-2
      [51] Li, L. G., Liao, X. H., Fu, R. S., 2002. Slab Breakoff Depth:A Slowdown Subduction Model. Geophysical Research Letters, 29(3):1041. https://doi.org/10.1029/2001gl013420
      [52] Liu, A. L., Wang, Q., Zhu, D. C., et al., 2018. Origin of the ca. 50 Ma Linzizong Shoshonitic Volcanic Rocks in the Eastern Gangdese Arc, Southern Tibet. Lithos, 304-307:374-387. https://doi.org/10.1016/j.lithos.2018.02.017
      [53] Ma, L., Kerr, A. C., Wang, Q., et al., 2019. Nature and Evolution of Crust in Southern Lhasa, Tibet:Transformation from Microcontinent to Juvenile Terrane. Journal of Geophysical Research:Solid Earth, 124(7):6452-6474. https://doi.org/10.1029/2018jb017106
      [54] Ma, L., Wang, Q., Li, Z. X., et al., 2017. Subduction of Indian Continent beneath Southern Tibet in the Latest Eocene (~35 Ma):Insights from the Quguosha Gabbros in Southern Lhasa Block. Gondwana Research, 41:77-92. https://doi.org/10.1016/j.gr.2016.02.005
      [55] Ma, L., Wang, Q., Wyman, D. A., et al., 2013. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese:Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet. Lithos, 175-176:315-332. https://doi.org/10.1016/j.lithos.2013.04.006
      [56] Ma, L., Wang, Q., Wyman, D. A., et al., 2015. Late Cretaceous Back-Arc Extension and Arc System Evolution in the Gangdese Area, Southern Tibet:Geochronological, Petrological, and Sr-Nd-Hf-O Isotopic Evidence from Dagze Diabases. Journal of Geophysical Research:Solid Earth, 120(9):6159-6181. https://doi.org/10.1002/2015jb011966
      [57] Ma, X., Xu, Z., Meert, J. G., 2016. Eocene Slab Breakoff of Neotethys as Suggested by Dioritic Dykes in the Gangdese Magmatic Belt, Southern Tibet. Lithos, 248-251:55-65. https://doi.org/10.1016/j.lithos.2016.01.008
      [58] Mahoney, J. J., Frei, R., Tejada, M. L. G., et al., 1998. Tracing the Indian Ocean Mantle Domain through Time:Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor. Journal of Petrology, 39(7):1285-1306. https://doi.org/10.1093/petrology/39.7.1285
      [59] McKenzie, D., Bickle, M. J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 29(3):625-679. https://doi.org/10.1093/petrology/29.3.625
      [60] Mo, X. X., Hou, Z. Q., Niu, Y. L., et al., 2007. Mantle Contributions to Crustal Thickening during Continental Collision:Evidence from Cenozoic Igneous Rocks in Southern Tibet. Lithos, 96(1-2):225-242. https://doi.org/10.1016/j.lithos.2006.10.005
      [61] Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
      [62] Murphy, J. B., 2013. Appinite Suites:A Record of the Role of Water in the Genesis, Transport, Emplacement and Crystallization of Magma. Earth-Science Reviews, 119:35-59. https://doi.org/10.1016/j.earscirev.2013.02.002
      [63] Orme, D. A., Carrapa, B., Kapp, P. A., 2015. Sedimentology, Provenance and Geochronology of the Upper Cretaceous-Lower Eocene Western Xigaze Forearc Basin, Southern Tibet. Basin Research, 27(4):387-411. https://doi.org/10.1111/bre.12080
      [64] Owens, T. J., Zandt, G., 1997. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387(6628):37-43. https://doi.org/10.1038/387037a0
      [65] Pan, F. B., Zhang, H. F., Xu, W. C., et al., 2016. U-Pb Zircon Dating, Geochemical and Sr-Nd-Hf Isotopic Compositions of Mafic Intrusive Rocks in the Motuo, SE Tibet Constrain on Their Petrogenesis and Tectonic Implication. Lithos, 245:133-146. https://doi.org/10.1016/j.lithos.2015.05.011
      [66] Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018
      [67] Pearce, J. A., Gale, G. H., 1977. Identification of Ore-Deposition Environment from Trace-Element Geochemistry of Associated Igneous Host Rocks. Geological Society, London, Special Publications, 7(1):14-24. https://doi.org/10.1144/gsl.sp.1977.007.01.03
      [68] Pichavant, M., 2002. Physical Conditions, Structure, and Dynamics of a Zoned Magma Chamber:Mount Pelée (Martinique, Lesser Antilles Arc). Journal of Geophysical Research Atmospheres, 107(B5):2093. https://doi.org/10.1029/2001jb000315
      [69] Rowley, D. B., 1996. Age of Initiation of Collision between India and Asia:A Review of Stratigraphic Data. Earth and Planetary Science Letters, 145(1-4):1-13. https://doi.org/10.1016/s0012-821x(96)00201-4
      [70] Schildgen, T. F., Yıldırım, C., Cosentino, D., et al., 2014. Linking Slab Break-Off, Hellenic Trench Retreat, and Uplift of the Central and Eastern Anatolian Plateaus. Earth-Science Reviews, 128:147-168. https://doi.org/10.1016/j.earscirev.2013.11.006
      [71] Schoonmaker, A., Kidd, W. S. F., Bradley, D. C., 2005. Foreland-Forearc Collisional Granitoid and Mafic Magmatism Caused by Lower-Plate Lithospheric Slab Breakoff:The Acadian of Maine, and Other Orogens. Geology, 33(12):961-964. https://doi.org/10.1130/g21832.1
      [72] Sevin, B., Cluzel, D., Maurizot, P., et al., 2014. A Drastic Lower Miocene Regolith Evolution Triggered by Post Obduction Slab Break-Off and Uplift in New Caledonia. Tectonics, 33(9):1787-1801. https://doi.org/10.1002/2014tc003588
      [73] Shu, C. T., Long, X. P., Yin, C. Q., et al., 2018. Continental Crust Growth Induced by Slab Breakoff in Collisional Orogens:Evidence from the Eocene Gangdese Granitoids and Their Mafic Enclaves, South Tibet. Gondwana Research, 64:35-49. https://doi.org/10.1016/j.gr.2018.06.004
      [74] Sinclair, H. D., 1997. Flysch to Molasse Transition in Peripheral Foreland Basins:The Role of the Passive Margin versus Slab Breakoff. Geology, 25(12):1123-1126.https://doi.org/10.1130/0091-7613(1997)0251123:ftmtip > 2.3.co; 2 doi: 10.1130/0091-7613(1997)0251123:ftmtip>2.3.co;2
      [75] Sisson, T. W., Grove, T. L., 1993. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 113(2):143-166. https://doi.org/10.1007/bf00283225
      [76] Tian, Y., Huang, F., Xu, J., et al., 2020. Neo-Tethyan Slab Tearing Constrained by Paleocene N-MORB-Like Magmatism in the Southern Tibet. Geological Journal, doi: 10.1002/gj.3937
      [77] Turner, S., Arnaud, N., Liu, J., et al., 1996. Post-Collision, Shoshonitic Volcanism on the Tibetan Plateau:Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts. Journal of Petrology, 37(1):45-71. https://doi.org/10.1093/petrology/37.1.45
      [78] van de Zedde, D. M. A., Wortel, M. J. R., 2001. Shallow Slab Detachment as a Transient Source of Heat at Midlithospheric Depths. Tectonics, 20(6):868-882. https://doi.org/10.1029/2001tc900018
      [79] van den Beukel, J., 1992. Some Thermomechanical Aspects of the Subduction of Continental Lithosphere. Tectonics, 11(2):316-329. https://doi.org/10.1029/91tc01039
      [80] van der Voo, R., Spakman, W., Bijwaard, H., 1999. Tethyan Subducted Slabs under India. Earth and Planetary Science Letters, 171(1):7-20. https://doi.org/10.1016/s0012-821x(99)00131-4
      [81] van Hinsbergen, D. J. J., Lippert, P. C., Dupont-Nivet, G., et al., 2012. Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia. PNAS, 109(20):7659-7664. https://doi.org/10.1073/pnas.1117262109
      [82] van Hunen, J., Allen, M. B., 2011. Continental Collision and Slab Break-Off:A Comparison of 3-D Numerical Models with Observations. Earth and Planetary Science Letters, 302(1-2):27-37. https://doi.org/10.1016/j.epsl.2010.11.035
      [83] Wang, B., Wang, L., Chung, S., et al., 2016. Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites. Lithos, 245:18-33. https://doi.org/10.1016/j.lithos.2015.07.016
      [84] Wang, R. Q., Qiu, J. S., Yu, S. B., et al., 2019a. Magma Mixing Origin for the Quxu Intrusive Complex in Southern Tibet:Insights into the Early Eocene Magmatism and Geodynamics of the Southern Lhasa Subterrane. Lithos, 328:14-32. https://doi.org/10.1016/j.lithos.2019.01.019
      [85] Wang, Y. F., Zeng, L. S., Gao, J. H., et al., 2019b. Along-Arc Variations in Isotope and Trace Element Compositions of Paleogene Gabbroic Rocks in the Gangdese Batholith, Southern Tibet. Lithos, 324-325:877-892. https://doi.org/10.1016/j.lithos.2018.11.036
      [86] Wang, X. C., Li, X. H., Li, W. X., et al., 2007. ca. 825 Ma Komatiitic Basalts in South China:First Evidence for > 1 500℃ Mantle Melts by a Rodinian Mantle Plume. Geology, 35(12):1103-1106. https://doi.org/10.1130/g23878a.1
      [87] Wen, D. R., Liu, D., Chung, S., et al., 2008. Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 252(3-4):191-201. https://doi.org/10.1016/j.chemgeo.2008.03.003
      [88] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2
      [89] Wu, F.Y., Ji, W.Q., Wang, J.G., et al., 2014. Zircon U-Pb and Hf Isotopic Constraints on the Onset Time of India-Asia Collision. American Journal of Science, 314(2):548-579. https://doi.org/10.2475/02.2014.04
      [90] Xu, B., Griffin, W. L., Xiong, Q., et al., 2017. Ultrapotassic Rocks and Xenoliths from South Tibet:Contrasting Styles of Interaction between Lithospheric Mantle and Asthenosphere during Continental Collision. Geology, 45(1):51-54. https://doi.org/10.1130/g38466.1
      [91] Xu, J. F., Castillo, P. R., 2004. Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere:Implications for the Origin of the Indian Ocean Mantle Domain. Tectonophysics, 393(1-4):9-27. https://doi.org/10.1016/j.tecto.2004.07.028
      [92] Yi, Z. Y., Huang, B. C., Chen, J. S., et al., 2011. Paleomagnetism of Early Paleogene Marine Sediments in Southern Tibet, China:Implications to Onset of the India-Asia Collision and Size of Greater India. Earth and Planetary Science Letters, 309(1-2):153-165. https://doi.org/10.1016/j.epsl.2011.07.001
      [93] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [94] Yue, Y.H., Ding, L., 2006. 40Ar/39Ar Geochronology, Geochemical Characteristics and Genesis of the Linzhou Basic Dikes, Tibet. Acta Petrologica Sinica, 22(4):855-866 (in Chinese with English abstract).
      [95] Zhang, L.Y., Huang, F., Xu, J.F., et al., 2019. Petrogenesis and Geochemistry of Meso-Cenozoic Granitic Rocks and Implication of Crustal Structure Changes in Shannan Area, Southern Tibet. Earth Science, 44(6):1822-1833 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201906006.htm
      [96] Zhang, X. H., Xue, F.H., Yuan, L.L., et al., 2012. Late Permian Appinite-Granite Complex from Northwestern Liaoning, North China Craton:Petrogenesis and Tectonic Implications. Lithos, 155:201-217. https://doi.org/10.1016/j.lithos.2012.09.002
      [97] Zhang, Y. H., Cao, H. W., Hollis, S. P., et al., 2019. Geochronology, Geochemistry and Sr-Nd-Pb-Hf Isotopes of the Early Paleogene Gabbro and Granite from Central Lhasa, Southern Tibet:Petrogenesis and Tectonic Implications. International Geology Review, 61(7):868-894. https://doi.org/10.1080/00206814.2018.1476187
      [98] Zhao, Z.D., Mo, X.X., Dilek, Y., et al., 2009. Geochemical and Sr-Nd-Pb-O Isotopic Compositions of the Post-Collisional Ultrapotassic Magmatism in SW Tibet:Petrogenesis and Implications for India Intra-Continental Subduction beneath Southern Tibet. Lithos, 113(1-2):190-212. https://doi.org/10.1016/j.lithos.2009.02.004
      [99] Zhao, Z.D., Zhu, D.C., Dong, G.C., et al., 2011. The~54 Ma Gabbro-Granite Intrusive in Southern Dangxung Area, Tibet:Petrogenesis and Implications. Acta Petrologica Sinica, 27(12):3513-3524 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201112002.htm
      [100] Zhu, D. C., Wang, Q., Cawood, P. A., et al., 2017. Raising the Gangdese Mountains in Southern Tibet. Journal of Geophysical Research:Solid Earth, 122(1):214-223. https://doi.org/10.1002/2016jb013508
      [101] Zhu, D. C., Wang, Q., Zhao, Z. D., et al., 2015. Magmatic Record of India-Asia Collision. Scientific Reports, 5(1):14289. https://doi.org/10.1038/srep14289
      [102] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      [103] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      [104] Zou, J.Q., Yu, H.X., Wang, B.D., et al., 2018. Petrogenesis and Geological Implications of Early Jurassic Granodiorites in Renqinze Area, Central Part of Southern Lhasa Subterrane. Earth Science, 43(8):2795-2810 (in Chinese with English abstract).
      [105] 陈晓锋, 朱立新, 马生明, 等, 2012.念青唐古拉中基性侵入岩年代学、地球化学及岩石成因.吉林大学学报(地球科学版), 42(1):112-125. http://d.wanfangdata.com.cn/Periodical/cckjdxxb201201014
      [106] 高永丰, 侯增谦, 魏瑞华, 等, 2006.冈底斯基性次火山岩地球化学和Sr-Nd-Pb同位素:碰撞后火山作用亏损地幔源区的约束.岩石学报, 22(3):547-557. http://www.cqvip.com/Main/Detail.aspx?id=23324707
      [107] 黄丰, 2015.从大陆碰撞到陆内伸展: 拉萨地块新生代岩浆活动及其构造演化(博士学位论文).北京: 中国科学院大学. http://d.g.wanfangdata.com.cn/Thesis_Y3055345.aspx
      [108] 黄丰, 许继峰, 陈建林, 等, 2015.早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?岩石学报, 31(7):2089-2100. http://d.wanfangdata.com.cn/Periodical/ysxb98201507022
      [109] 贾黎黎, 王青, 朱弟成, 等, 2013.重新认识西藏林周盆地基性岩石的地球动力学含义.岩石学报, 29(11):3671-3680. http://www.ixueshu.com/document/6880d4cbb106d1b52d11c9d024b72c99318947a18e7f9386.html
      [110] 岳雅慧, 丁林, 2006.西藏林周基性岩脉的40Ar/39Ar年代学、地球化学及其成因.岩石学报, 22(4):855-866. http://d.wanfangdata.com.cn/Periodical/ysxb98200604009
      [111] 张丽莹, 黄丰, 许继峰, 等, 2019.西藏山南地区花岗质岩石成因及其对地壳结构变化的记录.地球科学, 44(6):1822-1833. doi: 10.3799/dqkx.2018.385
      [112] 赵志丹, 朱弟成, 董国臣, 等, 2011.西藏当雄南部约54 Ma辉长岩-花岗岩杂岩的岩石成因及意义.岩石学报, 27(12):3513-3524. http://www.cqvip.com/QK/94579X/201112/40715464.html
      [113] 邹洁琼, 余红霞, 王保弟, 等, 2018.南拉萨地块中部早侏罗世仁钦则花岗闪长岩成因及其地质意义.地球科学, 43(8):2795-2810. doi: 10.3799/dqkx.2018.589
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  1752
    • HTML全文浏览量:  660
    • PDF下载量:  198
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-05-29
    • 刊出日期:  2020-08-15

    目录

      /

      返回文章
      返回