Characteristics and Models of Shallow-Water Environmental River-Lake Interaction in Continental Basins
-
摘要: 通过对现代鄱阳湖盆中沉积体系发育与湖盆季节性湖岸线迁移变化耦合关系研究,结合对新近纪馆陶组时期渤海湾盆地渤东地区沉积岩性、沉积序列及沉积构造等解剖,提出陆相湖盆浅水背景河湖交互沉积模式.基于对浅水湖盆鄱阳湖随季节更替引起的湖平面变化分析,识别出洪-平-枯水线,划分河控主体区(A区)、河湖交互区(B区)和湖泊主体区(C区)3个沉积单元.其中,A区发育河道砂,骨架水系特征明显;B区发育朵状砂,水体分隔作用强烈;C区发育湖泥和席状砂,存在多个分隔的沉积中心.基于所建立的河湖交互沉积模式,在渤东地区新近纪馆陶组浅水背景古湖盆进行实践应用,有效分析了研究区河湖交互单元划分和沉积特征.浅水背景河湖交互沉积模式的建立,对陆相坳陷盆地、克拉通盆地、断陷盆地缓坡带、断坳转换期等类似浅水湖盆背景沉积体系类型识别、砂体预测具有一定参考和指导价值.Abstract: By an integrated investigation of the sedimentary system and the seasonal variation of lake shoreline of the modern Poyang Lake basin, combined with the analyses of sedimentary lithologies, sedimentary sequences, and sedimentary structures of the Neogene Guantao Formation in the Bodong area of the Bohai Bay basin, it proposes a river-lake interaction sedimentary model for continental shallow-water lacustrine basins. Based on the analysis of lake level variations caused by seasonal changes of the Poyang Lake, the flood, static water and low water levels were identified. The Poyang Lake is divided into three sedimentary segments: a river-dominated area (Area A), a river-lake interaction area (Area B) and a lake-dominated area (Area C).Channel-shaped sands are mainly distributed in Area A with distinct skeleton drainage patterns, lobate-shaped sands are developed in Area B which is characterized by intensive water body separation, and lacustrine mudstone and sheet-like sands are developed in Area C and are typically separated by several sub-depocenters. The established sedimentary model of river-lake interaction was applied to interpret the shallow-water Neogene Guantao Formation in the ancient lacustrine basin of the Bodong area, and to effectively subdivide and analyze the sedimentary characteristics of river-lake interaction units in the study area. The river-lake interactional sedimentary model under the shallow-water environment may be used as a reference for sedimentary type identification and sand-body prediction within the same shallow-water environment ranging from continental down-warped lacustrine basin, cratonic basins to the gentle-slope belt of fault-depression basin.
-
图 3 鄱阳湖赣江中支蒋巷镇以北河控主体区河道沉积
据王军等(2017)修改
Fig. 3. River deposits in the main river-dominated area of the north of Jiangxiang Town, the middle branch of Ganjiang River, Poyang Lake
图 6 渤海湾盆地渤东地区新近系馆陶组河湖交互单元地震剖面特征
位置见图 4
Fig. 6. Seismic profile characteristics of the river-lake interaction segments of the Neogene Guantao Formation in Bodong area of Bohai Bay basin
图 7 鄱阳湖现代河湖交互沉积模式
Fig. 7. Modern river-lake interaction sedimentary model of Poyang Lake
-
[1] Bi, L.G., Li, J.P., Qi, Y.M., et al., 2009. Cenozoic Micropalaeobiotas from the Kenli Structure, Qingdong Depression, Bohai Sea and Their Bearing on Palaeoenvironments. Acta Palaeontologica Sinica, 48(2): 155-162 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX200902005.htm [2] Chen, P.P., Hu, W.S., Huang, X., et al., 2018. Sedimentary Characteristics and Genesis Model of Shallow Water Delta in SDG Area of Western Sichuan Depression. Petroleum Geology and Recovery Efficiency, 25(2): 20-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YQCS201802004.htm [3] Duan, D.P., Hou, J.G., Liu, Y.M., et al., 2014. Quantitative Study on the Front Sedimentary System of River-Controlled Delta: A Case Study of Poyang Lake Delta. Acta Sedimentologica Sinica, 32(2): 270-277 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CJXB201402011.htm [4] Fisk, H.N., 1954. Sedimentary Framework of the Modern Mississippi Delta. J. Sediment. Petrol. 24 (2): 76-99. doi: 10.1306/D4269661-2B26-11D7-8648000102C1865D [5] Fisk, H.N., 1961. Bar-Finger Sands of the Mississippi Delta, in Geometry of Sandstone Bodies. AAPG, 45th Annual Meeting, New Jersey, 29-52. [6] Gao, Z.Y., Zhou, C.M., Dong, W.T., et al., 2016. Dynamic Growth Process Model of Shallow Water Delta and Favorable Sand Body Distribution: A Case Study of Ganjiang Delta in Poyang Lake. Geoscience, 30(2): 341-352 (in Chinese with English abstract). [7] Gong, S.L., 1986. Sedimentary and Coal-Accumulating Environments of Shallow-Water Delta in the Late Early Permian in Yuxian, Henan Province. Coal Geology & Exploration, (6): 2-9 (in Chinese with English abstract). [8] Jin, Z.K., Li, Y., Gao, B.S., et al., 2014. Modern Slope Delta Sedimentary Model: A Case Study of Ganjiang Delta in Poyang Lake. Acta Sedimentologica Sinica, 32(4): 710-723 (in Chinese with English abstract). [9] Li, J.G., 2018. Sedimentary Model of Fine-Grained Dryland Meandering River Terminus Systems in a Semi-Arid or Arid Endorheic Basin. Earth Science, 43(S1): 264-276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1023.htm [10] Li, Y., Jin, Z.K., Gao, B.S., et al., 2016. Sedimentary Characteristics and Quantitative Parameters of Sand Bodies in Distributary Channel—A Case Study of Ganjiang Delta in Poyang Lake. Journal of Earth Sciences and Environment, 38(2): 206-216 (in Chinese with English abstract). [11] Li, Y.H., Liu, C.Y., Du, Y.G., et al., 2009. Sedimentary Characteristics of Shallow Water Delta and Sand Control along Lakeshore in Chang 8 Reservoir of Yanchang Formation of Upper Triassic in Northwestern Ordos Basin. Journal of Palaeogeography, 11(3): 265-274 (in Chinese with English abstract). [12] Liang, Y.H., Shi, Y.M., Xu, L., et al., 2016. A Study of Comparative Sedimentology on Fuyu Oilfield. Science Technology and Engineering, 16(14): 115-122 (in Chinese with English abstract). [13] Lou, Z.H., Yuan, D., Jin, A.M., 2004. Types, Characteristics of Sandbodies in Shallow-Water Deltafront and Sedimentary Models in Northern Songliao Basin, China. Journal of Zhejiang University (Science Edition), 31(2): 211-215 (in Chinese with English abstract). [14] North, C. P., Warwick, G. L., 2007. Fluvial Fans: Myths, Misconceptions, and the End of the Terminal-Fan Model. Journal of Sedimentary Research, 77(9-10): 693-701. http://adsabs.harvard.edu/abs/2007JSedR..77..693N [15] Olariu, C., Bhattacharya, J. P., 2006. Terminal Distributary Channels and Delta Front Architecture of River- Dominated Delta Systems. Journal of Sedimentary Research, 76(2): 212-233. doi: 10.2110/jsr.2006.026 [16] Postma, G., 1990. An Analysis of the Variation in Delta Architecture. Terra Nova, 2(2): 124-130. doi: 10.1111/j.1365-3121.1990.tb00052.x [17] Postma, G., 2001. Physical Climate Signatures in Shallow-and Deep-Water Deltas. Global and Planetary Change, 28(1-4): 93-106. doi: 10.1016/S0921-8181(00)00067-9 [18] Sun, J., Xun, J.J., Wu, H.S., et al., 2016. Sedimentary Characteristics and Evolution of Distant and Fine-Grained Shallow-Water Delta: A Case Study of Badaowan Formation in Mosuowan Area in the Hinterland of Junggar Basin. Acta Sedimentologica Sinica, 34(1): 129-136 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201601012.htm [19] Sun, Y., Zhao, D., Yu, L.M., et al., 2015. Sandbody Distribution and Sedimentary Model in Shallow Lacustrine Fluvial-Dominated Delta Front: A Case Study from Putaohua Oil Layer of Yongle Area in Songliao Basin. Acta Sedimentologica Sinica, 33(3): 439-447 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201503002.htm [20] Sun, Z.H., Zhu, H.T., Xu, C.G., et al., 2020. Reconstructing Provenance Interaction of Multiple Sediment Sources in Continental Down-Warped Lacustrine Basins: An Example from the Bodong Area, Bohai Bay Basin, China. Marine and Petroleum Geology, 113: 104142. doi: 10.1016/j.marpetgeo.2019.104142 [21] Tan, G.L., Li, G.W., Yu, Z.W., et al., 2013. Study on the Dynamic Water Level-Area-Volume Relation of Poyang Lake. Annual Academic Conference of China Water Conservancy Society, Guangzhou, 7 (in Chinese). [22] Wan, Z.W., Jia, Y.L., Zhang, M., et al., 2018. Reconstruction and Characteristic Diagnosis of Dry Wet Series in the Poyang Lake Basin from 1470 to 2014. Journal of Arid Land Resources and Environment, 32(6): 114-119 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GHZH201806017.htm [23] Wang, D.Y., Yu, H.B., Wang, Q.M., et al., 2018. Differential Reservoir-Forming Model of Lithologic Reservoirs in Shallow Water Delta during Lake Basin Shrinkage in Bohai Sea. Journal of Northeast Petroleum University, 42(3): 16-25, 112(in Chinese with English abstract). [24] Wang, D.Y., Yu, H.Z., Yu, H.B., et al., 2012. An Analysis and Refined Depiction of Lithologic Trap Development under the Framework of Neogene Sequence Stratigraphy in Bohai Water: A Case of Lower Member of Minghuazhen Formation in Shijiutuo Rise. China Offshore Oil and Gas, 24(z1): 23-28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD2012S1007.htm [25] Wang, J., Yang, Y., Zhang, Y., et al., 2017. Effect of Water Level Change on Sedimentary Characteristics of Distributary Channel in Poyang Lake Delta. Journal of China University of Petroleum, 41(1): 1-10 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-university-petroleum-edition-natural-science_thesis/0201210420723.html [26] Wang, J.G., Wang, T.Q., Wei, P.S., et al., 2007. Shallow Water Delta Sedimentary Model of Large Depression Lacustrine Basin: A Case Study of Putaohua Reservoir in Northern Songliao Basin. Lithologic Reservoirs, 19(2): 28-34 (in Chinese with English abstract). [27] Xi, S.L., Li, W. H., Liu, X. S., et al., 2009. Sedimentary Characteristics of Shallow Water Delta of the Lower Permian Taiyuan Formation in Shenmu Area, Ordos Basin. Journal of Palaeogeography, 11(2): 187-194 (in Chinese with English abstract). [28] Ye, L., Zhu, X.M., Qin, Y., et al., 2018. Depositional System of Shallow Water Delta in Rifted Lacustrine Basin. Journal of Earch Sciences and Environment, 40(2): 186-202 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201802007.htm [29] Yin, T.J., Zhang, C.M., Zhu, Y.J., et al., 2014. Overlapping Delta: A New Special Type of Delta Formed by Overlapped Lobes. Acta Geologica Sinica, 88(2): 263-272 (in Chinese with English abstract). [30] Zeng, H.L., Zhao, X.Z., Zhu, X.M., et al., 2015. Seismic Sedimentology Characteristics of Sub-Clinoformal Shallow-Water Meandering River Delta: A Case from the Suning Area of Raoyang Sag in Jizhong Depression, Bohai Bay Basin, NE China. Petroleum Exploration and Development, 42(5): 566-576 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_petroleum-exploration-development_thesis/0201218127110.html [31] Zhang, C.M., Yin, T.J., Zhu, Y.J., et al., 2010. Shallow-Water Deltas and Models. Acta Sedimentologica Sinica, 28(5): 933-944 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-CJXB201005012.htm [32] Zhang, C.S., Chen, Q.S., 1996. Holocene Sedimentary Environment and Characteristics in the Poyang Lake. Journal of Jianghan Petroleum Institute, (1): 24-29 (in Chinese with English abstract). http://www.cqvip.com/Main/Detail.aspx?id=2036229 [33] Zhang, J.M., Wang, M.Q., Wang, Y.J., et al., 2017. Identification and Sedimentary Evolution of the Shallow Water Delta of Bird-Foot in Bozhong 28-2S Oilfield Group of Bohai Bay Basin. Periodical of Ocean University of China, 47(9): 77-85 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-QDHY201709010.htm [34] Zhang, N.N., Wang, W., Wang, Y., 2012. Estimate the Area of the Poyang Lake Using Satellite Remote Sensing Data and Analyze Its Relationship with Water Level. Remote Sensing Technology and Application, 27(6): 947-953 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YGJS201206019.htm [35] Zhu, H.H., Zheng, C.S., Wang, Y.F., et al., 1981. A Study of the Sedimentary Facies of the Deltas in Poyang Lake. Oil & Gas Geology, (2): 89-103 (in Chinese with English abstract). [36] Zhu, H.T., Liu, K.Y., Zhu, X.M., et al., 2018. Varieties of Sequence Stratigraphic Configurations in Continental Basins. Earth Science, 43(3): 770-785 (in Chinese with English abstract). [37] Zhu, H.T., Liu, Y.M., Liu, K.Y., et al., 2013a. Source-ward Retro-Gradational Stacking Patterns of Sequence Stratigraphic Architectures of Intra-Cratonic Basin: One Example from Shanxi Formatin of Ordos Basin, China. Earth Science, 38(4): 776-782 (in Chinese with English abstract). [38] Zhu, H.T., Yang, X.H., Zhou, X.H., et al., 2013b. Sediment Transport Pathway Characteristics of Continental Lacustrine Basins Based on 3-D Seismic Data: An Example from Dongying Formation of Western Slope of Bozhong Sag. Earth Science, 38(1): 121-129 (in Chinese with English abstract). [39] Zhu, H.T., Yang, X.H., Zhou, X.H., et al., 2011. High Resolution Three-Dimensional Facies Architecture Delineation Using Sequence Stratigraphy, Seismic Sedimentology Example from Dongying Formation in BZ3-1 Block of Western Slope of Bozhong Sag Bohai Bay Basin. Earth Science, 36(6): 1073-1084 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201106013.htm [40] Zhu, W.L., Li, J.P., Zhou, X.H., et al., 2008. Neogene Shallow Water Delta Sedimentary System and Large Oil and Gas Field Exploration in Bohai Sea. Acta Sedimentologica Sinica, (4): 575-582 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200804007.htm [41] Zhu, Y.J., Yin, T.J., Liu, L.L., 2011. Progress and Discussion on Shallow-Water Delta Sediment. Journal of Oil and Gas Technology, 33(3): 22-26 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/jhsyxyxb201103005 [42] Zhu, Y.J., Zhang, C.M., Yin, T.J., 2013. Characteristics of Superimposed Shallow-Lacustrine Delta and Its Experimental Simulation. Geological Science and Technology Information, 32(3): 59-65 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201303010.htm [43] 毕力刚, 李建平, 齐玉民, 等, 2009. 渤海青东凹陷垦利构造新生代微体古生物群特征及古环境分析. 古生物学报, 48(2): 155-162. doi: 10.3969/j.issn.0001-6616.2009.02.004 [44] 陈佩佩, 胡望水, 黄鑫, 等, 2018. 川西坳陷Sdg地区浅水三角洲沉积特征及沉积成因模式. 油气地质与采收率, 25(2): 20-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201802004.htm [45] 段冬平, 侯加根, 刘钰铭, 等, 2014. 河控三角洲前缘沉积体系定量研究——以鄱阳湖三角洲为例. 沉积学报, 32(2): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201402011.htm [46] 高志勇, 周川闽, 董文彤, 等, 2016a. 浅水三角洲动态生长过程模型与有利砂体分布——以鄱阳湖赣江三角洲为例. 现代地质, 30(2): 341-352. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201602009.htm [47] 龚绍礼, 1986. 河南禹县早二叠世晚期浅水三角洲沉积和聚煤环境. 煤田地质与勘探, (6): 2-9. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT198606000.htm [48] 金振奎, 李燕, 高白水, 等, 2014. 现代缓坡三角洲沉积模式——以鄱阳湖赣江三角洲为例. 沉积学报, 32(4): 710-723. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201404012.htm [49] 李嘉光, 2018. 干旱湖盆曲流河末端细粒沉积体系及沉积模式. 地球科学, 43(S1): 264-276. doi: 10.3799/dqkx.2018.525 [50] 李燕, 金振奎, 高白水, 等, 2016. 分流河道内砂体沉积特征及定量参数: 以鄱阳湖赣江三角洲为例. 地球科学与环境学报, 38(2): 206-216. doi: 10.3969/j.issn.1672-6561.2016.02.008 [51] 李元昊, 刘池洋, 独育国, 等, 2009. 鄂尔多斯盆地西北部上三叠统延长组长8油层组浅水三角洲沉积特征及湖岸线控砂. 古地理学报, 11(3): 265-274. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200903002.htm [52] 梁耀欢, 师永民, 徐蕾, 等, 2016. 扶余油层河湖频繁交替的比较沉积学依据. 科学技术与工程, 16(14): 115-122. doi: 10.3969/j.issn.1671-1815.2016.14.021 [53] 楼章华, 袁笛, 金爱民, 2004. 松辽盆地北部浅水三角洲前缘砂体类型、特征与沉积动力学过程分析. 浙江大学学报(理学版), 31(2): 211-215. doi: 10.3321/j.issn:1008-9497.2004.02.022 [54] 孙靖, 薛晶晶, 吴海生, 等, 2016. 远源、细粒型浅水三角洲沉积特征与演化——以准噶尔盆地腹部莫索湾地区八道湾组为例. 沉积学报, 34(1): 129-136. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201601012.htm [55] 孙雨, 赵丹, 于利民, 等, 2015. 浅水湖盆河控三角洲前缘砂体分布特征与沉积模式探讨: 以松辽盆地北部永乐地区葡萄花油层为例. 沉积学报, 33(3): 439-447. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201503002.htm [56] 谭国良, 李国文, 喻中文, 等, 2013. 鄱阳湖动态水位—面积—容积关系研究. 广州: 中国水利学会年, 7. [57] 万智巍, 贾玉连, 章鸣, 等, 2018.1470-2014年鄱阳湖流域干湿变化与特征分析. 干旱区资源与环境, 32(6): 114-119. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH201806017.htm [58] 王德英, 于海波, 王启明, 等, 2018. 渤海海域湖盆萎缩期浅水三角洲岩性油气藏差异成藏模式. 东北石油大学学报, 42(3): 16-25, 112. doi: 10.3969/j.issn.2095-4107.2018.03.002 [59] 王德英, 余宏忠, 于海波, 等, 2012. 渤海海域新近系层序地层格架约束下岩性圈闭发育特征分析及精细刻画: 以石臼坨凸起明下段为例. 中国海上油气, 24(z1): 23-28. doi: 10.3969/j.issn.1673-1506.2012.z1.006 [60] 王军, 杨勇, 张阳, 等, 2017. 水位变化对鄱阳湖三角洲分流河道沉积特征的影响. 中国石油大学学报(自然科学版), 41(1): 1-10. doi: 10.3969/j.issn.1673-5005.2017.01.001 [61] 王建功, 王天琦, 卫平生, 等, 2007. 大型坳陷湖盆浅水三角洲沉积模式——以松辽盆地北部葡萄花油层为例. 岩性油气藏, 19(2): 28-34. doi: 10.3969/j.issn.1673-8926.2007.02.005 [62] 席胜利, 李文厚, 刘新社, 等, 2009. 鄂尔多斯盆地神木地区下二叠统太原组浅水三角洲沉积特征. 古地理学报, 11(2): 187-194. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX200902006.htm [63] 叶蕾, 朱筱敏, 秦祎, 等, 2018. 断陷湖盆浅水三角洲沉积体系. 地球科学与环境学报, 40(2): 186-202. doi: 10.3969/j.issn.1672-6561.2018.02.006 [64] 尹太举, 张昌民, 朱永进, 等, 2014. 叠覆式三角洲: 一种特殊的浅水三角洲. 地质学报, 88(2): 263-272. doi: 10.3969/j.issn.1004-9665.2014.02.016 [65] 曾洪流, 赵贤正, 朱筱敏, 等, 2015. 隐性前积浅水曲流河三角洲地震沉积学特征——以渤海湾盆地冀中坳陷饶阳凹陷肃宁地区为例. 石油勘探与开发, 42(5): 566-576. doi: 10.11698/PED.2015.05.03 [66] 张昌民, 尹太举, 朱永进, 等, 2010. 浅水三角洲沉积模式. 沉积学报, 28(5): 933-944. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201005012.htm [67] 张春生, 陈庆松, 1996. 全新世鄱阳湖沉积环境及沉积特征. 江汉石油学院学报, (1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX601.004.htm [68] 张建民, 王梦琪, 王月杰, 等, 2017. 渤海湾盆地渤中28-2南油田群鸟足状浅水三角洲识别与沉积演化. 中国海洋大学学报(自然科学版), 47(9): 77-85. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201709010.htm [69] 张楠楠, 王文, 王胤, 2012. 鄱阳湖面积的卫星遥感估计及其与水位关系分析. 遥感技术与应用, 27(6): 947-953. https://www.cnki.com.cn/Article/CJFDTOTAL-YGJS201206019.htm [70] 朱海虹, 郑长苏, 王云飞, 等, 1981. 鄱阳湖现代三角洲沉积相研究. 石油与天然气地质, (2): 89-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198102000.htm [71] 朱红涛, 刘可禹, 朱筱敏, 等, 2018. 陆相盆地层序构型多元化体系. 地球科学, 43(3): 770-785. doi: 10.3799/dqkx.2018.906 [72] 朱红涛, 刘依梦, Liu Keyu, 等, 2013a. 陆内克拉通盆地"溯源退积"层序构型构建: 以鄂尔多斯盆地山西组为例. 地球科学, 38(4): 776-782. doi: 10.3799/dqkx.2013.075 [73] 朱红涛, 杨香华, 周心怀, 等, 2013b. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例. 地球科学, 38(1): 121-129. doi: 10.3799/dqkx.2013.012 [74] 朱红涛, 杨香华, 周心怀, 等, 2011. 基于层序地层学和地震沉积学的高精度三维沉积体系: 以渤中凹陷西斜坡Bz3-1区块东营组为例. 地球科学, 36(6): 1073-1084. http://www.earth-science.net/article/id/2183 [75] 朱伟林, 李建平, 周心怀, 等, 2008. 渤海新近系浅水三角洲沉积体系与大型油气田勘探. 沉积学报, (4): 575-582. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200804007.htm [76] 朱永进, 尹太举, 刘玲利, 2011. 浅水型三角洲沉积研究进展及问题讨论. 石油天然气学报, 33(3): 22-26. doi: 10.3969/j.issn.1000-9752.2011.03.005 [77] 朱永进, 张昌民, 尹太举, 2013. 叠覆式浅水三角洲沉积特征与沉积模拟. 地质科技情报, 32(3): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201303010.htm -
dqkxzx-46-5-1771-附图1.zip