• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基性岩侵入对页岩矿物学特征的影响:以松辽盆地嫩江组为例

    王岩 荣辉 焦养泉 徐尚 贾俊民 曹民强 程璇

    王岩, 荣辉, 焦养泉, 徐尚, 贾俊民, 曹民强, 程璇, 2021. 基性岩侵入对页岩矿物学特征的影响:以松辽盆地嫩江组为例. 地球科学, 46(6): 2188-2203. doi: 10.3799/dqkx.2020.177
    引用本文: 王岩, 荣辉, 焦养泉, 徐尚, 贾俊民, 曹民强, 程璇, 2021. 基性岩侵入对页岩矿物学特征的影响:以松辽盆地嫩江组为例. 地球科学, 46(6): 2188-2203. doi: 10.3799/dqkx.2020.177
    Wang Yan, Rong Hui, Jiao Yangquan, Xu Shang, Jia Junmin, Cao Minqiang, Cheng Xuan, 2021. Effects of Basic Intrusions on Shale Mineralogy: A Case Study from Nenjiang Formation in Songliao Basin. Earth Science, 46(6): 2188-2203. doi: 10.3799/dqkx.2020.177
    Citation: Wang Yan, Rong Hui, Jiao Yangquan, Xu Shang, Jia Junmin, Cao Minqiang, Cheng Xuan, 2021. Effects of Basic Intrusions on Shale Mineralogy: A Case Study from Nenjiang Formation in Songliao Basin. Earth Science, 46(6): 2188-2203. doi: 10.3799/dqkx.2020.177

    基性岩侵入对页岩矿物学特征的影响:以松辽盆地嫩江组为例

    doi: 10.3799/dqkx.2020.177
    基金项目: 

    国家重点研发计划项目 2018YFC0604202

    国家青年科学基金项目 41502105

    中国地质大学(武汉)学科杰出人才基金项目 102-162301192664

    详细信息
      作者简介:

      王岩(1996-), 男, 硕士研究生, 矿产普查与勘探专业. ORCID: 0000-0002-8246-5308. E-mail: 3082592561@qq.com

      通讯作者:

      荣辉, E-mail: ronghui0411@163.com

    • 中图分类号: P572

    Effects of Basic Intrusions on Shale Mineralogy: A Case Study from Nenjiang Formation in Songliao Basin

    • 摘要: 已有研究表明岩浆侵入对页岩矿物学特征产生影响,然而对其影响范围及程度缺少精细解剖,制约了岩浆活动对页岩矿物学特征影响机理的准确认识.以松辽盆地南部与辉绿岩接触的嫩江组页岩为对象,利用岩心观察、XRD、偏光显微镜及扫描电镜等手段,将接触带页岩距辉绿岩由远及近划分为5个带:(1)灰色页岩带,厚19 m,(2)深灰色页岩带,厚11 m,(3)灰黑色页岩带,厚12.9 m,(4)青灰色页岩带,厚1.5 m,(5)灰白色页岩带,厚2.2 m.石英含量增多,平均含量分别为27.0%、33.6%、51.7%、56.7%和52.7%,由陆源碎屑石英过渡为高温自生石英(微晶自形石英及微晶球状石英),重结晶现象加剧;长石含量增多,平均含量分别为8.8%、12.0%、14.0%、15.1%和18.2%,由他形过渡为半自形-自形,重结晶现象加剧;碳酸盐矿物含量先减少后增多,平均含量分别为9.0%、10.0%、7.5%、4.5%和6.0%,菱铁矿及方解石由自形过渡为胶状及脉状;黄铁矿含量逐渐减少,平均含量分别为5.4%、3.5%、1.0%、0%和0%,由草莓状及自形过渡为他形粒状;粘土矿物含量逐渐减少,平均含量分别为46.0%、36.5%、22.5%、20.1%和19.0%,由片状蒙脱石过渡为絮状伊利石.结果表明,基性岩侵入页岩不仅加速了页岩成岩演化进程,而且使页岩脆性矿物增加、塑性矿物减少,可提高页岩储层的脆性及可压性,减弱了页岩气的赋存能力.

       

    • 图  1  地质背景及采样情况

      a.钱家店地区ZKY2-1井的位置;b.钱家店地区地层综合柱状图;c.ZKY2-1井垂向序列;据荣辉等(2016)修改

      Fig.  1.  Geological background and sampling conditions

      图  2  宏观页岩样品

      a.灰白色页岩,含脉体,ZKY2-1,429.8 m;b.灰白色页岩,含脉体,ZKY2-1,431.8 m;c.青灰色页岩,含叶肢介,ZKY2-1,433.2 m;d.灰黑色页岩,含黄铁矿,ZKY2-1,438.2 m;e.深灰色页岩,ZKY2-1,447.2 m;f.灰色页岩,ZKY2-1,469.5 m

      Fig.  2.  Macroscopic shale samples

      图  3  灰白色页岩带矿物特征

      a.灰白色页岩的微晶球状石英,部分发生重结晶,429.7 m;b.灰白色页岩中的自形微晶长石集合体,430.7 m;c.灰白色页岩中的方解石脉,其外围分布有菱铁矿,429.7 m;d.灰白色页岩中的絮状伊利石,429.7 m;e.灰白色页岩中的硅灰石,分布于石英周围,429.7 m;f.灰白色页岩中的堇青石,呈条状及板状,430.7 m;a为扫描电镜二次电子图像,其余为扫描电镜背散射图像.Qtz.石英;fds.长石;ill.伊利石;Cal.方解石;Sd.菱铁矿;Crd.堇青石;Wi.硅灰石

      Fig.  3.  Mineral characteristics in gray-white shale zone

      图  4  青灰色页岩带矿物特征

      a.青灰色页岩中的自形石英,具良好晶形,432.8 m;b.青灰色页岩中的半自形钾长石,边缘发生破裂,433 m;c.青灰色页岩中的黄铁矿,呈他形粒状交代菱铁矿,433.4 m;d.青灰色页岩中的菱铁矿脉胶结碎屑颗粒,433 m;均为扫描电镜背散射图像.Py.黄铁矿;其他见图 3说明

      Fig.  4.  Mineral characteristics in blue-gray shale zone

      图  5  灰黑色页岩带矿物特征

      a.灰黑色页岩中生长于有机质中的自形石英,436.2 m;b.灰黑色页岩中的钠长石发生破裂,434.2 m;c.灰黑色页岩中黄铁矿晶体残留,442.2 m;d.灰黑色页岩中的方解石及菱铁矿相互交代,438.1 m;a为扫描电镜二次电子图像,其余均为扫描电镜背散射图像.Py.黄铁矿;其他见图 3说明

      Fig.  5.  Mineral characteristics in gray-black shale zone

      图  6  深灰色页岩带矿物特征

      a.深灰色页岩中的他形粒状石英,具一定磨圆,456.7 m;b.深灰色页岩中的他形长石,磨圆较好,456.7 m;c.深灰色页岩中的自形黄铁矿,456.7 m;d.深灰色页岩中的自形菱铁矿及方解石集合体,456.7 m;图中均为扫描电镜背散射图像.Py.黄铁矿;其他见图 3说明

      Fig.  6.  Mineral characteristics in dark-gray shale zone

      图  7  灰色页岩带矿物特征

      a.灰色页岩中的石英,他形,表面有溶孔,471.8 m;b.灰色页岩中的钾长石边缘粘土化,呈他形,474.8 m;c.灰色页岩中的草莓状及由草莓状向自形晶转化的黄铁矿,462.3 m;d.灰色页岩中自形菱铁矿分布,462.3 m;e.灰色页岩中的片状蒙脱石,474.8 m;f.灰色页岩中的有机质,经压实呈塑性,474.8 m;f为扫描电镜二次电子图像,其余均为扫描电镜背散射图像.Py.黄铁矿;Mnt.蒙脱石;OM.有机质;其他见图 3说明

      Fig.  7.  Mineral characteristics in gray shale zone

      图  8  接触带页岩矿物含量分布图(据表 1)

      Fig.  8.  Mineral content distribution in contact zone shale (according to Table 1)

      图  9  接触带页岩矿物学特征分带模式

      Fig.  9.  Zonal pattern of shale mineralogical characteristics in contact zone

      表  1  接触带页岩XRD测试结果(%)

      Table  1.   The content (%) of constituents of contact zone shale by XRD

      编号 深度(m) 石英 长石 方解石 白云石 铁白云石 黄铁矿 菱铁矿 粘土矿物 蒙脱石 伊利石 高岭石
      ZKY2-1-58 429.7 42.7 20.9 5.3 0 4.8 0 2.8 17.9 10.6 7.3 0
      ZKY2-1-60 430.7 52.0 18.1 0 0 3.8 0 1.5 20.3 12.9 7.4 0
      ZKY2-1-61 431.1 58.4 15.1 2.7 0 0 0 0 21.0 9.3 11.7 0
      ZKY2-1-62 431.4 57.5 18.5 0 0 2.8 0 0 16.6 0 10.2 6.4
      灰白色页岩带均值 52.7 18.2 2.0 0 2.9 0 1.1 19.0 8.2 9.2 1.6
      ZKY2-1-64 432.4 54.7 11.6 2.4 0 2.6 0 6.4 18.9 7.1 11.8 0
      ZKY2-1-65 432.8 56.2 15.3 2 0 2.6 0 0 19.2 4.7 10.2 4.3
      ZKY2-1-66 433.0 58.8 16.4 0 0 0 0 0 21.4 11.3 10.1 0
      ZKY2-1-68 433.4 57.1 17.2 0 0 0 0 1.9 20.8 7.7 11.1 0
      青灰色页岩带均值 56.7 15.1 1.1 0 1.3 0 2.1 20.1 7.7 10.8 1.1
      ZKY2-1-69 434.2 50.7 15.1 0 0 3.7 3.8 5.8 18.5 8.7 8.8 0
      ZKY2-1-70 435.1 55.7 14.1 0 0 2.3 0 2.1 22.5 11.3 11.2 0
      ZKY2-1-71 436.2 50.9 14.9 2.8 3.9 0 0 3.9 20.1 0 13.1 7.0
      ZKY2-1-77 441.0 49.4 11.7 2.3 2.7 0 0 0 29.0 9.7 12.5 0
      灰黑色页岩带均值 51.7 14.0 1.3 1.7 1.5 1.0 3.0 22.5 7.4 11.4 1.8
      ZKY2-1-80 442.8 48.2 12.8 0 2.6 0 0 2.3 30.9 0 12.4 9.3
      ZKY2-1-84 444.0 37.7 16.8 4.0 3.4 0 5.0 2.1 26.3 0 12.9 7.2
      ZKY2-1-85 445.7 31.5 13.2 3.9 0 3.9 4.2 2.7 36.2 11.6 11.7 6.1
      ZKY2-1-90 456.7 23.1 9.1 6.0 4.6 2.9 4.1 3.1 43.1 19.8 11.9 5.7
      ZKY2-1-91 458.5 27.6 8.1 4.8 0 4.3 4.1 0 46.1 28.3 12.5 5.3
      深灰色页岩带均值 33.6 12.0 3.7 2.1 2.2 3.5 2.0 36.5 11.9 12.3 6.7
      ZKY2-1-92 462.3 26.9 8.3 3.6 0 3 5.5 2.6 46.3 29.8 11.5 5.0
      ZKY2-1-98 471.8 25.6 8.2 4.1 0 4.5 5.5 2.2 46.4 28.2 12.1 6.1
      ZKY2-1-100 474.8 28.5 9.9 3.8 0 3.4 5.2 0 45.3 27.0 12.0 6.3
      灰色页岩带均值 27.0 8.8 3.8 0 3.6 5.4 1.6 46.0 28.3 11.9 5.8
      下载: 导出CSV
    • [1] Bowker, K.A., 2007. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 91(4): 523-533. https://doi.org/10.1306/06190606018
      [2] Cao, H.T., Zhan, G.W., Yu, X.Q., et al., 2019. Major Factors Influencing the Productivity of Deep Shale Gas Wells: A Case Study of Yongchuan Block in Southern Sichuan Basin. Natural Gas Industry, 39(Suppl. 1): 118-122(in Chinese with English abstract).
      [3] Chen, J., Xiao, X.M., 2013. Mineral Composition and Brittleness of Three Sets of Paleozoic Organic-Rich Shales in China South Area. Journal of China Coal Society, 38(5): 822-826(in Chinese with English abstract). http://www.ingentaconnect.com/content/jccs/jccs/2013/00000038/00000005/art00017
      [4] Chen, S.B., Zhu, Y.M., Wang, H.Y., et al., 2011. Characteristics and Significance of Mineral Compositions of Lower Silurian Longmaxi Formation Shale Gas Reservoir in the Southern Margin of Sichuan Basin. Acta Petrolei Sinica, 32(5): 775-782(in Chinese with English abstract). http://ci.nii.ac.jp/ncid/BA77785497
      [5] Dong, C.M., Ma, C.F., Luan, G.Q., et al., 2015. Pyrolysis Simulation Experiment and Diagenesis Evolution Pattern of Shale. Acta Sedimentologica Sinica, 33(5): 1053-1061(in Chinese with English abstract). http://www.cqvip.com/QK/95994X/20155/666513175.html
      [6] Einsele, G., Gieskes, J.M., Curray, J., et al., 1980. Intrusion of Basaltic Sills into Highly Porous Sediments, and Resulting Hydrothermal Activity. Nature, 283: 441-445. https://doi.org/10.1038/283441a0
      [7] Fernando de Ros, L., 1998. Heterogeneous Generation and Evolution of Diagenetic Quartzarenites in the Silurian-Devonian Furnas Formation of the Paraná Basin, Southern Brazil. Sedimentary Geology, 116(1-2): 99-128. https://doi.org/10.1016/s0037-0738(97)00081-x
      [8] Gao, R.Q., Cai, X.Y., 1997. Formation Conditions and Distribution of Oil and Gas Fields in Songliao Basin. Petroleum Industry Press, Beijing(in Chinese).
      [9] Guo, W., Fang, S., Liu, Z.J., et al., 2009. Research on Thermal Evolutionary History during the Period of Quantou-Nenjiang Formation in the South of Songliao Basin. Journal of Oil and Gas Technology, 31(3): 1-6, 13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JHSX200903001.htm
      [10] Guo, Y.Y., 2008. Sedimentary System Analysis of Yaojia Formation in Southern Songliao Basin (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      [11] Hou, D.J., Feng, Z.H., Huang, Q.H., 2003. Geological and Geochemical Evidences of Anoxic Event in the Songliao Basin, China. Geoscience, 17(3): 311-317(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200303012.htm
      [12] Huang, F.T., Huang, Q.H., Chen, C.R., 1998. Rhythm of Geological Events and Interaction of Different Earth Spheres in Mesozoic of the Songliao Basin. Petroleum Exploration and Development, 25(5): 86-89(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK805.024.htm
      [13] Huang, Q.H., Liang, W.L., Ye, D.Q., et al., 2007. The Characteristics of Cretaceous Microbiotas and Formation of Hydrocarbon-Rich Source Rocks in Songliao Basin. Acta Palaeontologica Sinica, 46(3): 380-386(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSWX200703013.htm
      [14] Jia, J.L., Liu, Z.J., Bechtel, A., et al., 2014. Major Factors Controlling Formation of Oil Shale in Nenjiang Formation of Songliao Basin. Earth Science, 39(2): 174-186(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201402006.htm
      [15] Jiang, K, Zhou, W., Deng, N.E., et al., 2020. Characteristics and Geological Significance of Pyrites in Wufeng and Longmaxi Formation Reservoir Shale in Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 47(1): 50-64(in Chinese with English abstract).
      [16] Jiao, Y.Q., Wu, L.Q., Peng, Y.B., et al., 2015. Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201501018.htm
      [17] Li, D., Sun, J., He, J.J., 2014. Reservoir Characteristics and Development Model of Mudstone Metamorphic Belts around the Near-Surface Intrusions: A Case Study in Northern Slope of Gaoyou Sag, Jiangsu Province. Global Geology, 33(1): 164-170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/ http://search.cnki.net/down/default.aspx?filename=SJDZ201401018&dbcode=CJFD&year=2014&dflag=pdfdown
      [18] Li, H.T., Wu, S.X., Cai, C.F., et al., 2008. Forming Processes of Petroleum-Related Sandstone-Type Uranium Ore: Example from Qianjiadian Uranium Deposit. Geochimica, 37(6): 523-532(in Chinese with English abstract).
      [19] Li, X., 2016. Impact of Granite Intrusion on Shale Composition and Pore Structure (Dissertation). Nanjing University, Nanjing(in Chinese with English abstract).
      [20] Li, X.L., Liu, S.W., Xu, M., et al., 2015. Measurement and Analysis of Thermal Properties of Mudstones and Shales in the Lower Yangtze Area, South China. Natural Gas Geoscience, 26(8): 1525-1533(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-TDKX201508013.htm
      [21] Li, Y.L., Cai, J.G., 2014. Effect of Smectite Illitization on Shale Gas Occurrence in Argillaceous Source Rocks. Petroleum Geology & Experiment, 36(3): 352-358(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201403015.htm
      [22] Li, Y.X., Nie, H.K., Long, P.Y., 2009. Development Characteristics of Organic-Rich Shale and Strategic Selection of Shale Gas Exploration Area in China. Natural Gas Industry, 29(12): 115-118, 152-153(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200912040.htm
      [23] Liu, C., Xie, Q.B., Wang, G.W., et al., 2015. The Influence of Igneous Intrusion to Detrital Reservoir: Advances and Outlook. Advances in Earth Science, 30(6): 654-667(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ201506004.htm
      [24] Liu, C., Xie, Q.B., Wang, G.W., et al., 2017. Diagenetic and Metamorphic Characteristics and Implications for Hydrocarbon Reservoirs in the Country Rocks Influenced by Magmatic Emplacement: A Case Study from an Outcrop of Diabase Intrusion in the Southern Songliao Basin. Chinese Journal of Geology, 52(2): 453-469(in Chinese with English abstract). http://www.researchgate.net/publication/319335869_Diagenetic_and_metamorphic_characteristics_and_implications_for_hydrocarbon_reservoirs_in_the_country_rocks_influenced_by_magmatic_emplacement_A_case_study_from_an_outcrop_of_diabase_intrusion_in_the_
      [25] Liu, H.Y., Shen, A.J., Wang, Y.Q., et al., 2003. Study on Sequence Stratigraphy and Genesis Assemblages Forming Oil and Gas from Quantou Fm. to Nenjiang Fm. in Southern Songliao Basin. Journal of Changchun University of Science and Technology, 33(4): 469-473(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200304014.htm
      [26] Luan, G.Q., Dong, C.M., Ma, C.F., et al., 2016. Pyrolysis Simulation Experiment Study on Diagenesis and Evolution of Organic-Rich Shale. Acta Sedimentologica Sinica, 34(6): 1208-1216(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201606018.htm
      [27] Luo, W.J., Chen, J.Q., 1997. Bidirectional Convergence Hydrothermal Metallogenesis. Acta Geologica Sinica, 6(Suppl. l): 47-52(in Chinese with English abstract).
      [28] Luo, Y., He, Z.B., Ma, H.F., et al., 2012. Metallogenic Characteristics of Qianjiadian Sandstone Uranium Deposit in Songliao Basin. Mineral Deposits, 31(2): 391-400(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201202019.htm
      [29] Ma, Y.M., Lu, X.C., Zhang, X.F., et al., 2013. A Numerical Simulation of the Heat Transfer in Granite Intrusion-Mudstone Contact Zone and Its Geological Implication: A Case Study from Eastern Guangdong Province, China. Geological Journal of China Universities, 19(2): 307-315(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201302013.htm
      [30] McKinley, J.M., Worden, R.H., Ruffell, A.H., 2001. Contact Diagenesis: The Effect of an Intrusion on Reservoir Quality in the Triassic Sherwood Sandstone Group, Northern Ireland. Journal of Sedimentary Research, 71(3): 484-495. doi: 10.1306/2DC40957-0E47-11D7-8643000102C1865D
      [31] Milliken, K.L., Esch, W.L., Reed, R.M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8): 1553-1578. https://doi.org/10.1306/12011111129
      [32] Nie, H.K., Zhang, J.C., Bao, S.J., et al., 2012. Shale Gas Accumulation Conditions of the Upper Ordovician-Lower Silurian in Sichuan Basin and Its Periphery. Oil & Gas Geology, 33(3): 335-345(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-chongqing-university-science-technology-natural-sciences-edition_thesis/0201248990730.html
      [33] Othman, R., Arouri, K.R., Ward, C.R., et al., 2001. Oil Generation by Igneous Intrusions in the Northern Gunnedah Basin, Australia. Organic Geochemistry, 32(10): 1219-1232. https://doi.org/10.1016/s0146-6380(01)00089-4
      [34] Pang, Y.Q., Chen, X.L., Fang, X.H., et al., 2010. Discussion on the Interlayer Oxidation and Uranium Metallogenesis in Qianjiadian Uranium Deposit, Songliao Basin. Uranium Geology, 26(1): 9-16, 23(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKDZ201001001.htm
      [35] Peng, X.L., 2006. Transformation of Sandstone by Magmatic Activity in Petroliferous Basins: A Case Study of the Songliao Basin and Its Peripheral Mesozoic Basins (Dissertation). Jilin University, Changchun(in Chinese with English abstract).
      [36] Pollastro, R.M., 2007. Total Petroleum System Assessment of Undiscovered Resources in the Giant Barnett Shale Continuous (Unconventional) Gas Accumulation, Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 551-578. https://doi.org/10.1306/06200606007
      [37] Rong, H., 2012. Fine Zoning Model of Interlayer Oxidation Zone in Qianjiadian Uranium Deposit and Its Constraints on Uranium Mineralization (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [38] Rong, H., Jiao, Y.Q., Wu, L.Q., et al., 2016. Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 41(1): 153-166(in Chinese with English abstract).
      [39] Ross, D.J.K., Bustin, R.M., 2009. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
      [40] Shen, A.J., Kang, W.L., Wang, Y.Q., et al., 2006. Exploration of Cretaceous Sequence Strata and Lithologic Strata in the South of Songliao Basin. Petroleum Industry Press, Beijing(in Chinese).
      [41] Sun, C.X., Nie, H.K., Liu, G.X., et al., 2019. Quartz Type and Its Control on Shale Gas Enrichment and Production: A Case Study of the Wufeng-Longmaxi Formations in the Sichuan Basin and Its Surrounding Areas, China. Earth Science, 44(11): 3692-3704(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911009.htm
      [42] Vaclav, S., Jan, S., Ivana, S., et al., 2004. Contact Metamorphism of Silurian Black Shales by a Basalt Sill: Geological Evidence and Thermal Modeling in the Barrandian Basin. Bulletin of Geosciences, 79(3): 133-145. https://doi.org/10.3140/bull.geosci.2004.03.133.
      [43] Wang, C., Zhang, B.Q., Shu, Z.G., et al., 2019. Shale Lamination and Its Influence on Shale Reservoir Quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba Area. Earth Science, 44(3): 972-982(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201903024.htm
      [44] Wang, M.Z., Liu, S.B., Ren, Y.J., et al., 2015. Pore Characteristics and Methane Adsorption of Clay Minerals in Shale Gas Reservoir. Geological Review, 61(1): 207-216(in Chinese with English abstract). http://www.researchgate.net/publication/303637132_Pore_characteristics_and_methane_adsorption_of_clay_minerals_in_shale_gas_reservoir
      [45] Wang, Q.B., Liu, L., Niu, C.M., et al., 2019. The Geological Evidences and Impacts of Deep Thermal Fluid on Lacustrine Carbonate Reservoir in the Actic Area of the North Part of Bozhong Depression, Bohai Bay Basin. Earth Science, 44(8): 2751-2760(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201908020.htm
      [46] Wang, Y., Xie, D.L., Xue, C.G., et al., 2010. Influence of Diabase Intrusion on Oil and Gas Reservoir: A Case Study of Fushan Member in the Central and Eastern Part of the North Slope of Gaoyou Sag. Journal of Petroleum and Natural Gas, 32(2): 174-177(in Chinese with English abstract).
      [47] Xia, Y.L., Lin, J.R., Li, Z.Y., et al., 2003. Prediction and Evaluation of Sandstone-Type Uranium Deposits in Qianjiadian Sag, Songliao Basin and Study on Uranium Metallogenic Regularity. China Nuclear Science and Technology Report, (3): 105-117(in Chinese).
      [48] Yi, T., Zhou, W., Yang, F., et al., 2020. Types and Characteristics of Quartzs in Shale Gas Reservoirs of the Longmaxi Formation, Sichuan Basin, China. Acta Mineralogica Sinica, 40(2): 127-136(in Chinese with English abstract).
      [49] Yin, J.H., Zhang, H., Zan, G.J., et al., 2000. Sedimentation Factors Analysis of Uranium Mineralization of Qianjiadian Depression, Kailu Basin, East Inner Mongolia Autonomous Region. Journal of Palaeogeography, 2(4): 76-83(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDLX200004012.htm
      [50] Yu, W.B., 2009. Study on Mineralization Conditions of Cretaceous Sandstone Type Uranium Deposits in Southern Songliao Basin (Dissertation). Jilin University Changchun(in Chinese with English abstract).
      [51] Yu, Z.C., Liu, L., Sun, X.M., et al., 2012. Evidence of Paleogene Thermal Fluid Activities and Their Impact on Porosity-Permeability of Reservoir in Qikou Sag. Journal of Jilin University (Earth Science Edition), 42(Suppl. 3): 1-13(in Chinese with English abstract). http://www.researchgate.net/publication/286279509_Evidence_of_Paleogene_thermal_fluid_activities_and_their_impact_on_porosity-permeability_of_reservoir_in_Qikou_sag
      [52] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017. Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China. Earth Science, 42(7): 1057-1068(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707002.htm
      [53] Zhang, L.Y., Li, Z., Zhu, R.F., 2009. The Formation and Exploitation of Shale Gas. Natural Gas Industry, 29(1): 124-128, 148(in Chinese with English abstract). http://www.researchgate.net/publication/291688552_The_formation_and_exploitation_of_shale_gas
      [54] Zhang, Q., Jin, W.J., Wang, J.R., et al., 2016. Influence of Magma Hot Field on Hydrocarbon Accumulation. Progress in Geophysics, 31 (4): 1525-1541(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201604016.htm
      [55] Zhang, X.M., Shi, W.Z., Xu, Q.H., et al., 2015. Reservoir Characteristics and Controlling Factors of Shale Gas in Jiaoshiba Area, Sichuan Basin. Acta Petrolei Sinica, 36(8): 926-939, 953(in Chinese with English abstract). http://www.cqvip.com/QK/95667X/20158/83898866504849534856484852.html
      [56] Zhang, Y.H., Zhu, X.M., Wu, X.Z., et al., 2000. Lithofacies and Reservoir Model of Intrusive Rocks and Their Metamorphic Belts. Petroleum Exploration and Development, 27(2): 22-26(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK200002008.htm
      [57] Zhao, D.F., Xie, D.L., Zang, J.C., et al., 2014. Mineral Compositions of Shale Reservoirs and Related Discussions. Coal Technology, 33(4): 92-95(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTJS201404036.htm
      [58] Zhao, K., Yang, L.Q., Li, P., et al., 2013. Morphology and Chemistry Composition of Pyrite in the Laowangzhai Gold Deposit, Ailaoshan Orogenic Belt, SW China. Acta Petrologica Sinica, 29(11): 3937-3948(in Chinese with English abstract). http://www.researchgate.net/publication/285631704_Morphology_and_chemistry_composition_of_pyrite_in_the_Laowangzhai_gold_deposit_Ailaoshan_orogenic_belt_SW_China
      [59] Zhao, P., Li, X.Q., Sun, J., et al., 2014. Study on Mineral Composition and Brittleness Characteristics of Shale Gas Reservoirs from the Lower Paleozoic in the Southern Sichuan Basin. Geoscience, 28(2): 396-403(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ201402018.htm
      [60] Zhu, X.J., Cai, J.G., 2012. Progress and Significance of Research on Relation between Specific Surface Area and Organic Matter in Argillaceous Source Rocks. Oil & Gas Geology, 33(3): 375-384(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201203008.htm
      [61] Zou, C.N., Dong, D.Z., Wang, S.J., et al., 2010. Geological Characteristics, Formation Mechanism and Resource Potential of Shale Gas in China. Petroleum Exploration and Development, 37(6): 641-653(in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60001-3
      [62] 曹海涛, 詹国卫, 余小群, 等, 2019. 深层页岩气井产能的主要影响因素——以四川盆地南部永川区块为例. 天然气工业, 39(增刊1): 118-122. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1021.htm
      [63] 陈吉, 肖贤明, 2013. 南方古生界3套富有机质页岩矿物组成与脆性分析. 煤炭学报, 38(5): 822-826. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305020.htm
      [64] 陈尚斌, 朱炎铭, 王红岩, 等, 2011. 四川盆地南缘下志留统龙马溪组页岩气储层矿物成分特征及意义. 石油学报, 32(5): 775-782. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201105007.htm
      [65] 董春梅, 马存飞, 栾国强, 等, 2015. 泥页岩热模拟实验及成岩演化模式. 沉积学报, 33(5): 1053-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201505021.htm
      [66] 高瑞祺, 蔡希源, 1997. 松辽盆地油气田形成条件与分布规律. 北京: 石油工业出版社.
      [67] 郭巍, 方石, 刘招君, 等, 2009. 松辽盆地南部泉头组-嫩江组热演化史研究. 石油天然气学报, 31(3): 1-6, 13. doi: 10.3969/j.issn.1000-9752.2009.03.001
      [68] 郭莹莹, 2008. 松辽盆地南部姚家组沉积体系分析(硕士学位论文). 长春: 吉林大学.
      [69] 侯读杰, 冯子辉, 黄清华, 2003. 松辽盆地白垩纪缺氧地质事件的地质地球化学特征. 现代地质, 17(3): 311-317. doi: 10.3969/j.issn.1000-8527.2003.03.012
      [70] 黄福堂, 黄清华, 陈春瑞, 1998. 松辽盆地中生代地质事件节律及圈层耦合. 石油勘探与开发, 25(5): 86-89. doi: 10.3321/j.issn:1000-0747.1998.05.025
      [71] 黄清华, 梁万林, 叶得泉, 等, 2007. 松辽盆地白垩纪微体生物群分布特征与富烃源岩层的形成. 古生物学报, 46(3): 380-386. doi: 10.3969/j.issn.0001-6616.2007.03.013
      [72] 贾建亮, 刘招君, Bechtel, A., 等, 2014. 松辽盆地嫩江组油页岩发育控制因素. 地球科学, 39(2): 174-186. doi: 10.3799/dqkx.2014.017
      [73] 蒋柯, 周文, 邓乃尔, 等, 2020. 四川盆地五峰组-龙马溪组页岩储层中黄铁矿特征及地质意义. 成都理工大学学报(自然科学版), 47(1): 50-64. doi: 10.3969/j.issn.1671-9727.2020.01.05
      [74] 焦养泉, 吴立群, 彭云彪, 等, 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积——构造背景综合分析. 地学前缘, 22(1): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501018.htm
      [75] 李丹, 孙建, 何娇娇, 2014. 浅层侵入体泥岩变质带储集特征及发育模式-以江苏高邮凹陷北斜坡侵入体泥岩变质带为例. 世界地质, 33(1): 164-170. doi: 10.3969/j.issn.1004-5589.2014.01.017
      [76] 李宏涛, 吴世祥, 蔡春芳, 等, 2008. 油气相关砂岩型铀矿的形成过程: 以钱家店铀矿床为例. 地球化学, 37(6): 523-532. doi: 10.3321/j.issn:0379-1726.2008.06.001
      [77] 李霞, 2016. 花岗岩侵入对页岩成分和孔隙结构的影响(硕士学位论文). 南京: 南京大学.
      [78] 李香兰, 刘绍文, 徐明, 等, 2015. 华南下扬子区泥页岩热物性测试与分析. 天然气地球科学, 26(8): 1525-1533. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508013.htm
      [79] 李颖莉, 蔡进功, 2014. 泥质烃源岩中蒙脱石伊利石化对页岩气赋存的影响. 石油实验地质, 36(3): 352-358. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201403015.htm
      [80] 李玉喜, 聂海宽, 龙鹏宇, 2009. 我国富含有机质泥页岩发育特点与页岩气战略选区. 天然气工业, 29(12): 115-118, 152-153. doi: 10.3787/j.issn.1000-0976.2009.12.034
      [81] 刘超, 谢庆宾, 王贵文, 等, 2015. 岩浆侵入作用影响碎屑围岩储层的研究进展与展望. 地球科学进展, 30(6): 654-667. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201506004.htm
      [82] 刘超, 谢庆宾, 王贵文, 等, 2017. 岩浆侵入对围岩储层的成岩及其变质特征的影响及意义——以松辽盆地南部辉绿岩侵入带露头研究为例. 地质科学, 52(2): 453-469.
      [83] 刘鸿友, 沈安江, 王艳清, 等, 2003. 松辽盆地南部泉头组-嫩江组层序地层与油气藏成因成藏组合. 吉林大学学报(地球科学版), 33(4): 469-473. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200304014.htm
      [84] 栾国强, 董春梅, 马存飞, 等, 2016. 基于热模拟实验的富有机质泥页岩成岩作用及演化特征. 沉积学报, 34(6): 1208-1216. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201606018.htm
      [85] 罗文积, 陈家清, 1997. 双向汇聚热液成矿. 甘肃地质学报, 6(增刊1): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ7S1.010.htm
      [86] 罗毅, 何中波, 马汉峰, 等, 2012. 松辽盆地钱家店砂岩型铀矿成矿地质特征. 矿床地质, 31(2): 391-400. doi: 10.3969/j.issn.0258-7106.2012.02.018
      [87] 马野牧, 陆现彩, 张雪芬, 等, 2013. 花岗岩侵入体-泥质围岩热传输过程的数值模拟及其地质意义: 以粤东典型接触带剖面为例. 高校地质学报, 19(2): 307-315. doi: 10.3969/j.issn.1006-7493.2013.02.013
      [88] 聂海宽, 张金川, 包书景, 等, 2012. 四川盆地及其周缘上奥陶统-下志留统页岩气聚集条件. 石油与天然气地质, 33(3): 335-345. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201203004.htm
      [89] 庞雅庆, 陈晓林, 方锡珩, 等, 2010. 松辽盆地钱家店铀矿床层间氧化与铀成矿作用. 铀矿地质, 26(1): 9-16, 23. doi: 10.3969/j.issn.1000-0658.2010.01.002
      [90] 彭晓蕾, 2006. 含油气盆地中岩浆活动对砂岩的改造——以松辽盆地及其外围中生代盆地为例(博士学位论文). 长春: 吉林大学.
      [91] 荣辉, 2012. 钱家店铀矿床层间氧化带精细分带模型及其对铀成矿的约束(博士学位论文). 武汉: 中国地质大学.
      [92] 荣辉, 焦养泉, 吴立群, 等, 2016. 松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束. 地球科学, 41(1): 153-166. doi: 10.3799/dqkx.2016.012
      [93] 沈安江, 康伟力, 王艳清, 等, 2006. 松辽盆地南部白垩纪层序地层与岩性地层油气藏勘探. 北京: 石油工业出版社.
      [94] 孙川翔, 聂海宽, 刘光祥, 等, 2019. 石英矿物类型及其对页岩气富集开采的控制: 以四川盆地及其周缘五峰组-龙马溪组为例. 地球科学, 44(11): 3692-3704. doi: 10.3799/dqkx.2019.203
      [95] 王超, 张柏桥, 舒志国, 等, 2019. 焦石坝地区五峰组-龙马溪组页岩纹层发育特征及其储集意义. 地球科学, 44(3): 972-982. doi: 10.3799/dqkx.2019.018
      [96] 王茂桢, 柳少波, 任拥军, 等, 2015. 页岩气储层粘土矿物孔隙特征及其甲烷吸附作用. 地质论评, 61(1): 207-216. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201501024.htm
      [97] 王清斌, 刘立, 牛成民, 等, 2019. 渤中凹陷北部陡坡带热液活动及其对湖相碳酸盐岩储层的影响. 地球科学, 44(8): 2751-2760. doi: 10.3799/dqkx.2018.347
      [98] 王颖, 谢东霖, 薛成刚, 2010. 辉绿岩侵入作用对油气储层的影响——以高邮凹陷北斜坡中东部地区阜三段为例. 石油天然气学报, 32(2): 174-177. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201002045.htm
      [99] 夏毓亮, 林锦荣, 李子颖, 等, 2003. 松辽盆地钱家店凹陷砂岩型铀矿预测评价和铀成矿规律研究. 中国核科技报告, (3): 105-117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHBG200303008.htm
      [100] 易婷, 周文, 杨璠, 等, 2020. 四川盆地龙马溪组页岩气储层石英类型与特征. 矿物学报, 40(2): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB202002003.htm
      [101] 殷敬红, 张辉, 昝国军, 等, 2000. 内蒙古东部开鲁盆地钱家店凹陷铀矿成藏沉积因素分析. 古地理学报, 2(4): 76-83. doi: 10.3969/j.issn.1671-1505.2000.04.009
      [102] 于文斌, 2009. 松辽盆地南部白垩系砂岩型铀矿成矿条件研究(博士学位论文). 长春: 吉林大学.
      [103] 于志超, 刘立, 孙晓明, 等, 2012. 歧口凹陷古近纪热流体活动的证据及其对储层物性的影响. 吉林大学学报(地球科学版), 42(增刊3): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2012S3002.htm
      [104] 翟刚毅, 王玉芳, 包书景, 等, 2017. 我国南方海相页岩气富集高产主控因素及前景预测. 地球科学, 42(7): 1057-1068. doi: 10.3799/dqkx.2017.085
      [105] 张林晔, 李政, 朱日房, 2009. 页岩气的形成与开发. 天然气工业, 29(1): 124-128, 148. doi: 10.3787/j.issn.1000-0976.2009.01.036
      [106] 张旗, 金维浚, 王金荣, 等, 2016. 岩浆热场对油气成藏的影响. 地球物理学进展, 31(4): 1525-1541. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201604016.htm
      [107] 张晓明, 石万忠, 徐清海, 等, 2015. 四川盆地焦石坝地区页岩气储层特征及控制因素. 石油学报, 36(8): 926-939, 953. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201508004.htm
      [108] 张映红, 朱筱敏, 吴小洲, 等, 2000. 侵入岩及其外变质带岩相与储集层模型. 石油勘探与开发, 27(2): 22-26. doi: 10.3321/j.issn:1000-0747.2000.02.007
      [109] 赵迪斐, 解德录, 臧俊超, 等, 2014. 页岩储层矿物成分及相关讨论. 煤炭技术, 33(4): 92-95. https://www.cnki.com.cn/Article/CJFDTOTAL-MTJS201404036.htm
      [110] 赵凯, 杨立强, 李坡, 等, 2013. 滇西老王寨金矿床黄铁矿形貌特征与化学组成. 岩石学报, 29(11): 3937-3948. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201311024.htm
      [111] 赵佩, 李贤庆, 孙杰, 等, 2014. 川南地区下古生界页岩气储层矿物组成与脆性特征研究. 现代地质, 28(2): 396-403. doi: 10.3969/j.issn.1000-8527.2014.02.018
      [112] 朱晓军, 蔡进功, 2012. 泥质烃源岩的比表面与有机质关系研究进展及意义. 石油与天然气地质, 33(3): 375-384. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201203008.htm
      [113] 邹才能, 董大忠, 王社教, 等, 2010. 中国页岩气形成机理、地质特征及资源潜力. 石油勘探与开发, 37(6): 641-653. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201006003.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  620
    • HTML全文浏览量:  231
    • PDF下载量:  40
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-30
    • 刊出日期:  2021-06-15

    目录

      /

      返回文章
      返回