• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    湖相混积岩系同沉积淋滤作用识别标志与优质储层形成机理:以石臼坨凸起陡坡带Q29和Q36构造沙一、二段为例

    卢欢 王清斌 牛成民 杜晓峰 宋章强 冯冲

    卢欢, 王清斌, 牛成民, 杜晓峰, 宋章强, 冯冲, 2020. 湖相混积岩系同沉积淋滤作用识别标志与优质储层形成机理:以石臼坨凸起陡坡带Q29和Q36构造沙一、二段为例. 地球科学, 45(10): 3721-3730. doi: 10.3799/dqkx.2020.175
    引用本文: 卢欢, 王清斌, 牛成民, 杜晓峰, 宋章强, 冯冲, 2020. 湖相混积岩系同沉积淋滤作用识别标志与优质储层形成机理:以石臼坨凸起陡坡带Q29和Q36构造沙一、二段为例. 地球科学, 45(10): 3721-3730. doi: 10.3799/dqkx.2020.175
    Lu Huan, Wang Qingbin, Niu Chengmin, Du Xiaofeng, Song Zhangqiang, Feng Chong, 2020. Meteoric Leaching Evidences, Diagenetic Model and Its Geology Significance in Mixed Rock of Steep Slope Zone of Shijiutuo Uplift. Earth Science, 45(10): 3721-3730. doi: 10.3799/dqkx.2020.175
    Citation: Lu Huan, Wang Qingbin, Niu Chengmin, Du Xiaofeng, Song Zhangqiang, Feng Chong, 2020. Meteoric Leaching Evidences, Diagenetic Model and Its Geology Significance in Mixed Rock of Steep Slope Zone of Shijiutuo Uplift. Earth Science, 45(10): 3721-3730. doi: 10.3799/dqkx.2020.175

    湖相混积岩系同沉积淋滤作用识别标志与优质储层形成机理:以石臼坨凸起陡坡带Q29和Q36构造沙一、二段为例

    doi: 10.3799/dqkx.2020.175
    基金项目: 

    国家科技重大专项 2016ZX05024-003

    中海石油(中国)有限公司科技项目 YXKY-2018-KT-01

    详细信息
      作者简介:

      卢欢(1988-), 女, 工程师, 硕士, 主要从事储层沉积研究.ORCID:0000-0003-3590-1127.E-mail:luhuan@cnooc.com.cn

    • 中图分类号: P574.2

    Meteoric Leaching Evidences, Diagenetic Model and Its Geology Significance in Mixed Rock of Steep Slope Zone of Shijiutuo Uplift

    • 摘要: 石臼坨凸起陡坡带Q29和Q36构造中深部储层是渤海最大的湖相碳酸盐岩和扇三角洲碎屑岩的混合沉积,这一亿吨级油气田的发现,刷新了碎屑岩储层最厚、单层油层最厚、测试产能最高纪录.通过岩心观察、薄片鉴定、碳氧同位素分析、元素分析等多种分析手段,认为同沉积大气水淋滤作用,对石臼坨凸起陡坡带混积岩系优质储层的形成起到了至关重要的影响.通过对岩石学标志和元素地球化学标志的分析认为,大气水淋滤作用的主要包括两个过程,一是同沉积淋滤作用下,砾石段产生的选择性溶蚀孔、粒内缝、碎屑高岭石;二是沉积后暴露下,碳酸盐岩段产生的垂直岩溶缝、悬垂状白云石、示顶底构造.在此基础上,提出了大气水淋滤作用的模式,可分为成岩作用差异明显两个成岩带,即大气水渗流带和大气水潜流带,并进一步总结了各带内部的成岩特征和演化模式.

       

    • 图  1  石臼坨凸起构造单元划分

      Fig.  1.  Tectonic unit division of Shijiutuo uplift

      图  2  岩石类型和孔隙类型

      a.Q36-2井,鲕粒原生孔,3 779.50 m,单偏光;b.Q36-2井,生物体腔孔,3 765.43 m,单偏光;c.Q36-2井,选择性溶蚀,保留泥晶套,3 766.23 m,单偏光;d.Q36-2井,溶蚀粒间孔,3 779.58 m,单偏光;e.Q29-E5井,原生粒间孔发育,3 425.00 m,单偏光;f.Q29-E5井,白云质细-中砾岩,3 373.75 m,单偏光;g.Q29-E5井,砾岩微裂缝,3 445.00 m,单偏光;h.Q29-E5井,白云质表鲕状不等粒砂质细砾岩,3 371.00 m,单偏光

      Fig.  2.  Rock types and pore types

      图  3  石臼坨凸起陡坡带储层物性特征

      a.孔隙度(%)随着深度变化散点图;b.渗透率(10-3 μm2)随着深度变化散点图

      Fig.  3.  Reservoir physical properties in steep slope zone in Shijiutuo uplift

      图  4  大气水淋滤作用识别标志

      a.Q29-E5井,白云质不等粒砂质细砾岩,中酸性岩屑溶蚀,3 672.00 m,50-,铸体薄片;b.Q29-E5井,白云质细-中砾岩,流纹质选择性溶蚀,3 375.18 m,50-,铸体薄片;c.Q29-E5井,矿物选择性溶蚀形成的铸模孔,3 375.37 m,50-,铸体薄片;d.Q29-E5井,粒内缝,3 445.00 m,50-,铸体薄片;e.Q29-E5井,扩大的粒内缝,3 378.36 m,100-,铸体薄片;f.Q29-E5井,再次扩大的粒内缝(几乎变成铸模孔),3 378.36 m,100-,铸体薄片;g.Q29-E5井,充填粒间同沉积高岭石,3 445.00 m,40,岩心;h.Q29-E5井,环边和充填裂缝同沉积高岭石,3 378.36 m,100-,铸体薄片,岩心;i.Q29-E5井,碎屑状高岭石,3 378.36 m,100-,扫描电镜;j.Q36-2井,3 772.03~3 772.23 m,垂直岩溶缝,未充填,岩心;k.Q29-E5井,3 375.40~3 375.60 m,垂直岩溶缝,白云石充填,岩心;l.Q2E-5井, 3 372.18 m;m.Q29-E5井,3 385.03 m,25+,示顶底构造,普通薄片;n.Q29-E5井,3 382.35 m,悬垂状白云石胶结,普通薄片;o.Q29-E5井,3 382.34 m,悬垂状方解石胶结,普通薄片

      Fig.  4.  Identification of meteoric water leaching

      图  5  碳酸盐岩δ13C-δ18O(PDB标准)成因图解

      Fig.  5.  Diagenetic genesis of carbonate rocks δ13C-δ18O (PDB standard)

      图  6  石臼坨凸起陡坡带沙一、二段微量元素变化

      Fig.  6.  Trace element analysis in the first and second members of Shijiutuo uplift

      图  7  石臼坨凸起大气水淋滤作用成岩模式

      Fig.  7.  Meteoric water leaching and diagenetic model in Shijiutuo uplift

      图  8  扇根砂砾岩和滩相砂砾岩对比

      a.Q29-E4井3 348.34 m,25-;b.Q29-5井3 384.28 m,25-;c.孔隙度渗透率交会图;d.Q29-E4井3 348.10~3 348.34 m;e.Q29-5井3 383.10~3 383.34 m

      Fig.  8.  Comparison of glutenite in fan root and beach facies

      表  1  同位素温度数据和计算结果

      Table  1.   Isotopic temperature data and calculation results

      井号 深度(m) 岩石/矿物 δ13C δ18O Z 温度(℃)
      (PDB, ‰) (PDB, ‰) SMOW(‰)
      Q29-E5 3 340.78 泥晶白云石Ⅰ 2.33 -6.95 23.755 106 128.610 7 38.22
      3 340.78 亮晶包壳Ⅰ 2.67 -6.36 24.363 349 129.600 9 35.46
      3 380.25 亮晶包壳Ⅰ 2.02 -4.97 25.796 328 128.961 9 29.24
      3 775.06 粒间胶结物Ⅰ 1.88 -4.01 26.786 011 129.153 3 25.15
      3 341.25 亮晶包壳Ⅰ 4.59 -5.58 25.167 466 133.921 5 31.92
      3 382.10 栉壳环边Ⅰ 4.70 -0.76 30.136 501 136.547 1 28.38
      3 775.06 泥晶白云石Ⅱ 0.29 -6.97 23.734 488 124.422 9 48.29
      3 775.06 泥晶白云石Ⅱ 0.15 -6.24 24.487 059 124.499 7 44.54
      3 376.50 孔隙衬垫Ⅱ 0.32 -5.82 23.920 046 125.057 0 42.44
      3 375.65 粒间胶结物Ⅱ 0.65 -5.64 25.105 611 125.822 5 41.56
      下载: 导出CSV
    • [1] Allan, J. R., Matthews, R. K., 1982. Isotope Signatures Associated with Early Meteoric Diagenesis. Sedimentology, 29(6): 797-817. https://doi.org/10.1111/j.1365-3091.1982.tb00085.x
      [2] Anadón, P., Utrilla, R., 1993. Sedimentology and Isotope Geochemistry of Lacustrine Carbonates of the Oligocene Campins Basin, North-East Spain. Sedimentology, 40(4): 699-720. https://doi.org/10.1111/j.1365-3091.1993.tb01356.x
      [3] Andrews, J.E., 1991. Geochemical Indicators of Depositional and Early Diagenetic Facies in Holocene Carbonate Muds, and Their Preservation Potential during Stabilisation. Chemical Geology, 93(3-4): 267-289. https://doi.org/10.1016/0009-2541(91)90118-B
      [4] Banner, J.L., 1995. Application of the Trace Element and Isotope Geochemistry of Strontium to Studies of Carbonate Diagenesis. Sedimentology, 42(5): 805-824. https://doi.org/10.1111/j.1365-3091.1995.tb00410.x
      [5] Brigaud, B., Durlet, C., Deconinck, J., et al., 2009. The Origin and Timing of Multiphase Cementation in Carbonates: Impact of Regional Scale Geodynamic Events on the Middle Jurassic Limestones Diagenesis (Paris Basin, France). Sedimentary Geology, 222(3): 161-180. https://doi.org/10.1016/j.sedgeo.2009.09.002
      [6] Drewry, G.E., Ramsay, A.T.S., Smith, A.G., 1974. Climatically Controlled Sediments, the Geomagnetic Field, and Trade Wind Belts in Phanerozoic Time. The Journal of Geology, 82(5): 531-553. https://doi.org/10.1086/628005
      [7] Du, X.F., Jia, D.H., Wang, Q.M., et al., 2017. Local Provenance System and Its Oil and Gas Exploration Significance: A Case Study of the Paleogene in Bohai Sea Area. China Offshore Oil and Gas, 29(4): 19-27(in Chinese with English abstract).
      [8] Goldstein, R.H., 2001. Fluid Inclusions in Sedimentary and Diagenetic Systems. Lithos, 55(1): 159-193. https://doi.org/10.1016/S0024-4937(00)00044-X
      [9] Goldstein, R.H., Reynolds, T. J., 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM (Society for Sedimentary Geology), Tulsa, Oklahoma.
      [10] Guo, M.Z., Wen, C.J., Yuan, G.H., et al., 2010. Features, Origin and Geological Significance of Geopetal Structures in Carboniferous Volcanic Rocks in Niudong Block, Santanghu Basin. Marine Origin Petroleum Geology, 15(3): 74-78(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201003012
      [11] Hein, J. R., Gray, S. C., Richmond, B. M., et al., 1992. Dolomitization of Quaternary Reef Limestone, Aitutaki, Cook Islands. Sedimentology, 39(4): 645-661. https://doi.org/10.1111/j.1365-3091.1992.tb02142.x
      [12] Kelts, K., Hsij, K.J., 1978. Freshwater Carbonate Sedimentation. In: Lerman, A., ed., Lakes: Chemistry, Geology and Physics. Springer Verlag, Berlin, 295-353.
      [13] Lohmann, K.C., 1988. Geochemical Patterns of Meteoric Diagenetic Systems and Their Applications to Paleokarst. In: Choquette, P.W., James, N.P., eds., Paleokarst. Springer, New York, 58-80.
      [14] López-Quirós, A., Barbier, M., Martín, J. M., et al., 2016. Diagenetic Evolution of Tortonian Temperate Carbonates Close to Evaporites in the Granada Basin (SE Spain). Sedimentary Geology, 335: 180-196. https://doi.org/10.1016/j.sedgeo.2016.02.011
      [15] Matthews, R.K., 1968. Carbonate Diagenesis: Equilibration of Sedimentary Mineralogy to the Subaerial Environment; Coral Cap of Barbados, West Indies. SEPM Journal of Sedimentary Research, 38: 1110-1119. https://doi.org/10.1306/74d71b13-2b21-11d7-8648000102c1865d
      [16] Mount, J.F., 1984. Mixing of Siliciclastic and Carbonate Sediments in Shallow Shelf Environments. Geology, 12(7): 432-435. https://doi.org/10.1130/0091-7613(1984)12432:mosacs > 2.0.co; 2 doi: 10.1130/0091-7613(1984)12432:mosacs>2.0.co;2
      [17] Pang, X.J., Du, X.F., Ma, Z.W., et al., 2017. Study on the Relationship between Provenance Denudation Quantity and Sandy Conglomerate Volume of the Paleogene Es1-2 in Eastern Shijiutuo Uplift, Bohai Sea. China Offshore Oil and Gas, 29(4): 68-75(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201704008
      [18] Platt, N.H., 1989. Lacustrine Carbonates and Pedogenesis: Sedimentology and Origin of Palustrine Deposits from the Early Cretaceous Rupelo Formation, W Cameros Basin, N Spain. Sedimentology, 36(4): 665-684. https://doi.org/10.1111/j.1365-3091.1989.tb02092.x
      [19] Quinn, T.M.Q., 1991. Meteoric Diagenesis of Plio-pleistocene Limestones at Enewetak Atoll. SEPM Journal of Sedimentary Research, 61(5): 681-703. https://doi.org/10.1306/d42677b2-2b26-11d7-8648000102c1865d
      [20] Saller, A.H., Moore, C.H., 1989. Meteoric Diagenesis, Marine Diagenesis, and Microporosity in Pleistocene and Oligocene Limestones, Enewetak Atoll, Marshall Islands. Sedimentary Geology, 63: 253-272. https://doi.org/10.1016/0037-0738(89)90135-8
      [21] Wang, Q.B., Liu, L., Niu, C.M., et al., 2018. Impacts of the Freshwater Diagenetic Environment to the Mix-Deposition of Lacustrine Carbonate and Clastic at the Steep Slope of Shijiutuo Uplift, Bohai Bay Basin. Earth Science, 43(Suppl.2): 234-242(in Chinese with English abstract).
      [22] Xie, X.N., Ye, M, S., Xu, C.G., et al., 2018.High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43(10): 3526-3539(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015
      [23] Ye, M.S., Xie, X.N., Xu, C.G., et al., 2018. Discussion for Classification-Designation System of Mixed Siliciclastic-Carbonate Sediments and the Implication for Their Reservoir Prediction: A Case Study of Mixed Sediments from Bohai Sea Area. Geological Review, 64(5): 1118-1131(in Chinese with English abstract).
      [24] Zhao, R., Wu, Y.S., Jiang, H.X., et al., 2014. Origin Evidenced by Statistic Feature and Orientation Fabric in the Upper Permian Changxing Formation Dolostone of Panlongdong, Northeastern Sichuan. Acta Geologica Sinica, 88(6): 152-164(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201406013
      [25] 杜晓峰, 加东辉, 王启明, 等, 2017.盆内局部物源体系及其油气勘探意义:以渤海海域古近系为例.中国海上油气, 29(4): 19-27.
      [26] 郭沫贞, 文川江, 苑国辉, 等, 2010.三塘湖盆地牛东石炭系火山岩示顶底构造特征、成因及地质意义.海相油气地质, 15(3): 74-78. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hxyqdz201003012
      [27] 庞小军, 杜晓峰, 马正武, 等, 2017.石臼坨凸起东段沙一、二段沉积时期物源剥蚀量与砂砾岩沉积量关系.中国海上油气, 29(4): 68-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201704008
      [28] 王清斌, 刘立, 牛成民, 等, 2018.石臼坨凸起陡坡带大气淡水成岩环境对湖相混积岩储层的影响.地球科学, 43(增刊2): 234-242. doi: 10.3799/dqkx.2018.138
      [29] 解习农, 叶茂松, 徐长贵, 等, 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43(10): 3526-3539. doi: 10.3799/dqkx.2018.277
      [30] 叶茂松, 解习农, 徐长贵, 等, 2018.混积岩分类命名体系探讨及对混积岩储层评价的启示:以渤海海域混积岩研究为例.地质论评, 64(5): 1118-1131.
      [31] 赵锐, 吴亚生, 姜红霞, 等, 2014.四川宣汉盘龙洞上二叠统长兴组白云岩组构定向与统计特征及其成因意义.地质学报, 88(6): 152-164. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201406013
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  756
    • HTML全文浏览量:  289
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-04-10
    • 刊出日期:  2020-11-17

    目录

      /

      返回文章
      返回