Zircon U-Pb Dating and Lu-Hf Isotope Results for Feidong Complex: Implications for Coherent Basement of the Yangtze Craton
-
摘要: 扬子克拉通广泛存在太古宙-古元古代的结晶基底,但关于扬子克拉通早前寒武纪基底形成和演化的基本问题尚未完全解决,特别是基底是由多个块体拼合而成还是一个统一的结晶基底尚无定论.对扬子北缘张八岭隆起内肥东杂岩的片麻岩、斜长角闪岩及侵入其中的花岗岩进行了同位素地质年代学和地球化学研究,发现片麻岩具有相似的原岩年龄,分别为2 449±17 Ma、2 444±15 Ma、2 495±23 Ma、2 478±24 Ma,斜长角闪岩和A型花岗岩的原岩年龄分别为2 032±35 Ma和747±4 Ma,表明肥东杂岩出露有扬子克拉通晚太古-古元古代的结晶基底.片麻岩锆石Hf同位素组成相似,εHf(t)平均值为-3.6±0.5,两阶段Hf模式年龄(TDM2)范围主要在3.3~3.0 Ga,平均值为3 185±31 Ma,说明这一期约为2.45~2.50 Ga的岩浆活动主要是对扬子北缘古-中太古代地壳的再造.扬子北缘的鱼洞子群和陡岭杂岩都经历了相同性质的岩浆事件,同时扬子克拉通广泛出现约2.50 Ga的碎屑锆石和捕获锆石,表明扬子克拉通结晶基底是统一的.Abstract: Archean-Paleoproterozoic basement is widespread in the Yangtze craton. However, many essential problems about the formation and evolution of the Precambrian basement of the Yangtze craton are still open, especially whether the basement of the Yangtze craton is coherent or composed of multiple blocks. A geochronological and geochemical study was carried out for the felsic gneiss, amphibolite and intrusive granite from the Feidong complex in the Zhangbaling uplift at the northern margin of the Yangtze craton. Zircon U-Pb dating gives similar protolith ages of 2 449±17 Ma, 2 444±15 Ma, 2 495±23 Ma and 2 478±24 Ma for the felsic gneisses. The ages of the amphibolite and A-type granite are 2 032±35 Ma and 747±4 Ma, respectively. This indicates that the Late Archean-Paleoproterozoic crystalline basement of the Yangtze craton cropped out in this area. The zircon εHf(t) values of the ca. 2.45-2.50 Ga gneisses are negative with an average value of -3.6±0.5 and the corresponding two-stage Hf model ages (TDM2) range from 3.3 to 3.0 Ga with an average of 3 185±31 Ma, which shows that the 2.45-2.50 Ga magmatic event is mainly the reworking of Paleo-Mesoarchean crust. The occurrence of similar magmatic rocks in other terranes, including the Yudongzi Group and Douling complex in the northern Yangtze craton, as well as detrital zircons and volcanic xenocrystals with similar ages widespread in the Yangtze craton, suggests that the basement is coherent throughout the whole Yangtze craton.
-
Key words:
- Archean-Paleoproterozoic /
- Feidong complex /
- Yangtze craton /
- crystalline basement /
- geochemistry
-
图 6 球粒陨石标准化的稀土元素模式配分图(a)和原始地幔标准化的微量元素蛛网图解(b)以及A型花岗岩判别图解(c,d)
据Whalen et al. (1987). A代表A-type granite;I代表Ⅰ-type granite;S代表S-type granite;FG代表Fractionated felsic granite;OGT代表Unfractionated M-, I- and S-type granites
Fig. 6. Chondrite-normalized REE diagram (a), primitive mantle-normalized spidergram (b), discrimination diagrams for A-type granites (c, d)
图 8 扬子和华北克拉通碎屑锆石U-Pb年龄分布
数据来源于Wan et al.(2018)及其参考文献
Fig. 8. Comparison of Precambrian zircon U-Pb age spectra of the Yangtze craton and North China craton
图 9 华北克拉通东部和肥东群2.5 Ga锆石εHf(t)-age图解
岩浆和变质锆石数据来源于Zhang et al.(2014)搜集的华北克拉通东部太古代‒古元古代(2.5 Ga前后)基底岩石
Fig. 9. Zircon εHf(t)-age diagram for the eastern block of the North China craton and Feidong Group
图 10 肥东杂岩、陡岭杂岩和鱼洞子群约中2.5 Ga锆石εHf(t)-age图解
陡岭杂岩数据来源于Hu et al.(2013); Nie et al.(2016); 鱼洞子群数据来自Hui et al. (2017); Zhou et al. (2018)
Fig. 10. Zircon εHf(t)-age diagram for the Feidong complex, Douling complex and Yudongzi Group
-
[1] Chavagnac, V., Jahn, B., Villa, I.M., et al., 2001. Multichronometric Evidence for an In-Situ Origin of the Ultrahigh-Pressure Metamorphic Terrane of Dabieshan, China. The Journal of Geology, 109: 633-646. doi: 10.1086/321961 [2] Chen, Y.L., Luo, Z.H., Zhao, J.X., et al., 2004. The Genesis of Kangding Complex in Mianning, Sichuan Province is Discussed from Zircon SHRIMP Age and Petrogeochemical Characteristics. Science in China (Series D: Earth Sciences), 34(8): 687-697 (in Chinese). [3] Chen, Z.H., Xing, G.F., 2016. Geochemical and Zircon U-Pb-Hf-O Isotopic Evidence for a Coherent Paleoproterozoic Basement beneath the Yangtze Block, South China. Precambrian Research, 279: 81-90. doi: 10.1016/j.precamres.2016.04.002 [4] Ge, N.J., Zhou, D.Z., 1993. The Isotopic Dating of Metamorphic Rock Series of Feidong Group, Anhui Province. Geology of Anhui, 3(3): 22-25 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-AHDZ199303003.htm [5] Greentree, M.R., Li, Z.X., 2008. The Oldest Known Rocks in South-Western China: SHRIMP U-Pb Magmatic Crystallisation Age and Detrital Provenance Analysis of the Paleoproterozoic Dahongshan Group. Journal of Asian Earth Science, 33: 289-302. doi: 10.1016/j.jseaes.2008.01.001 [6] Guo, J.L., Gao, S., Wu, Y.B., et al., 2014. 3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242(3): 82-95. http://smartsearch.nstl.gov.cn/paper_detail.html?id=c7584d0d02638dc42c6c498eb0d11542 [7] Han, Q., Peng, S., Kusky, T., et al., 2017. A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China: Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation. Precambrian Research, 293: 13-38. doi: 10.1016/j.precamres.2017.03.004 [8] Han, Q., Peng, S., Polat, A., et al., 2018. A ca. 2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China: Evidence from High-Mg Basalts and Andesites. Precambrian Research, 309: 309-324. doi: 10.1016/j.precamres.2017.05.015 [9] Han, Q., Peng, S., Polat, A., et al., 2019. Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex: Evidence for a Collisional Orogenic Event in the Yangtze Craton. Lithos, 342: 513-529. [10] Hu, J., Liu, X. C., Chen, L. Y., et al., 2013. A ∼2.5 Ga Magmatic Event at the Northern Margin of the Yangtze Craton: Evidence from U-Pb Dating and Hf Isotope Analysis of Zircons from the Douling Complex in the South Qinling Orogen. Chinese Science Bulletin, 58(28/29): 3564-3579. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb-e201328017 [11] Hui, B., Dong, Y., Cheng, C., et al., 2017. Zircon U-Pb Chronology, Hf Isotope Analysis and Whole-Rock Geochemistry for the Neoarchean-Paleoproterozoic Yudongzi Complex, Northwestern Margin of the Yangtze Craton, China. Precambrian Research, 301: 65-85. doi: 10.1016/j.precamres.2017.09.003 [12] Kang, T., Liu, X.Y., Wang, J., et al., 2013. Analysis of Metamorphic Attribution and Geochronology for the Feidong Terrane in the East of the Tan-Lu Fault. Acta Petrologica Sinica, 29(9): 3142-3158 (in Chinese with English abstract). [13] Li, Y., Zheng, J., Ping, X., et al., 2018. Complex Growth and Reworking Processes in the Yangtze Cratonic Nucleus. Precambrian Research, 311: 262-277. doi: 10.1016/j.precamres.2018.04.016 [14] Liu, X. M., Gao, S., Diwu, C. R., et al., 2008. Precambrian Crustal Growth of Yangtze Craton as Revealed by Detrital Zircon Studies. American Journal of Science, 308(4): 421-468. doi: 10.2475/04.2008.02 [15] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2): 537-571. doi: 10.1093/petrology/egp082 [16] Nie, F., Shi, Y.H., Zhang, Z.B., et al., 2015. The Initial Time of the Tan-Lu Wrench Fault: In the View of Geochronological Data of the Basement Rocks, Northern Anhui Province. Chinese Science Bulletin, 60(24): 2315-2326 (in Chinese). doi: 10.1360/N972015-00349 [17] Nie, H., Yao, J., Wan, X., et al., 2016. Precambrian Tectonothermal Evolution of South Qinling and Its Affinity to the Yangtze Block: Evidence from Zircon Ages and Hf-Nd Isotopic Compositions of Basement Rocks. Precambrian Research, 286: 167-179. doi: 10.1016/j.precamres.2016.10.005 [18] Qiu, X.F., Yang, H.M., Zhao, X.M., et al., 2019. Neoarchean Granitic Gneisses in the Kongling Complex, Yangtze Craton: Petrogenesis and Tectonic Implications. Earth Science, 44(2): 415-426 (in Chinese with English abstract). [19] Shi, Y.H., Wang, J., Zhang, Z.B., et al., 2016. Analysis of Metamorphic Petrology and Geochronology for Feidong Group and Its Discussion on the Deformation Period. Acta Petrologica Sinica, 32(4): 1067-1086 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201604009.htm [20] Tu, Y.J., Yang, X.Y., Zheng, Y.F., et al., 2001. U-Pb Dating of Zircon from Gneiss at Nanhuang in East Anhui. Acta Petrologica Sinica, 17(1): 157-160 (in Chinese with English abstract). [21] Wan, Y. S., Xie, H. Q., Dong, C. Y., et al., 2018. Hadean to Paleoarchean Rocks and Zircons in China. Earth's Oldest Rocks, 2nd Edition. Elsevier, Amsterdam, 293-327. [22] Wang, K., Dong, S., Li, Z.X., et al., 2018. Age and Chemical Composition of Archean Metapelites in the Zhongxiang Complex and Implications for Early Crustal Evolution of the Yangtze Craton. Lithos, 320-321: 280-301. doi: 10.1016/j.lithos.2018.09.027 [23] Wang, W., Cawood, P.A., Zhou, M.F., et al., 2016. Paleoproterozoic Magmatic and Metamorphic Events Link Yangtze to Northwest Laurentia in the Nuna Supercontinent. Earth and Planetary Science Letters, 433: 269-279. doi: 10.1016/j.epsl.2015.11.005 [24] Wang, Z., Wang, J., Deng, Q., et al., 2015. Paleoproterozoic Ⅰ-Type Granites and Their Implications for the Yangtze Block Position in the Columbia Supercontinent: Evidence from the Lengshui Complex, South China. Precambrian Res., 263: 157-173. doi: 10.1016/j.precamres.2015.03.014 [25] Wei, Y.X., Xu, D.L., Zhou, W.X., et al., 2018. 3.00-2.93 Ga Metamorphic Event Recorded in the Mesoarchean Granitoid from Huangling Complex of the Yangtze Craton. Earth Science, 43(7): 2309-2312 (in Chinese with English abstract). [26] Whalen, J. B., Currie, K. L., Chappell, B. W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419. doi: 10.1007/BF00402202 [27] Wu, Y., Zheng, Y., Gao, S., et al., 2008. Paleoproterozoic Granulite-Facies Zircon U-Pb Age and Trace Element Evidence for Metamorphism and Crustal Rocks in the Dabie Orogen. Lithos, 101(3): 308-322. http://www.sciencedirect.com/science/article/pii/S0024493707001569 [28] Wu, Y. B., Gao, S., Zhang, H. F., et al., 2012. Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications. Precambrian Research, 200/201/202/203: 26-37. http://www.sciencedirect.com/science/article/pii/S0301926812000046 [29] Ye, H., Wu, C. Z., Yang, T., et al., 2017. Updating the Geologic Barcodes for South China: Discovery of Late Archean Banded Iron Formations in the Yangtze Craton. Scientific Reports, 7(1): 15082. doi: 10.1038/s41598-017-15013-4 [30] Yin, C.Q., Lin, S.F., Davis, D.W., et al., 2013. 2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China: Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia. Lithos, 182: 200-210. http://www.sciencedirect.com/science/article/pii/S0024493713003162 [31] Yin, C.Y., Liu, D.Y., Gao, L.Z., et al., 2003. The Age of Bottom Boundary of the Nanhua System and Gucheng Glaciation Period: Evidence from SHRIMP Ⅱ Dating. Chinese Science Bulletin, 48(16): 1721-1725 (in Chinese). doi: 10.1360/csb2003-48-16-1721 [32] Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 20(1): 6-25. doi: 10.1016/j.gr.2011.02.005 [33] Zhang, Q., Jian, P., Liu, D.Y., et al., 2003. The SHRIMP Dating of Zircon of Ningwu Volcanic Rock and Its Significance. Science in China (Series D: Earth Sciences), 4: 309-314 (in Chinese). [34] Zhang, S.B., He, Q., Zheng, Y.F., 2015. Geochronological and Geochemical Evidence for the Nature of the Dongling Complex in South China. Precambrian Research, 256: 17-30. doi: 10.1016/j.precamres.2014.10.013 [35] Zhang, S.B., Tang, J., Zheng, Y.F., 2014. Contrasting Lu-Hf Isotopes in Zircon from Precambrian Metamorphic Rocks in the Jiaodong Peninsula: Constraints on the Tectonic Suture between North China and South China. Precambrian Research, 245: 29-50. doi: 10.1016/j.precamres.2014.01.006 [36] Zhang, S.B., Zheng, Y.F., 2013. Formation and Evolution of Precambrian Continental Lithosphere in South China. Gondwana Research, 23(4): 1241-1260. doi: 10.1016/j.gr.2012.09.005 [37] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006a. Zircon Isotope Evidence for ≥3.5 Ga Continental Crust in the Yangtze Craton of China. Precambrian Research, 146(1-2): 16-34. doi: 10.1016/j.precamres.2006.01.002 [38] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006b. Zircon U-Pb Age and Hf Isotope Evidence for 3.8 Ga Crustal Remnant and Episodic Reworking of Archean Crust in South China. Earth and Planetary Science Letters, 252: 56-71. doi: 10.1016/j.epsl.2006.09.027 [39] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006c. Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China. Precambrian Research, 151(3-4): 265-288. doi: 10.1016/j.precamres.2006.08.009 [40] Zhao, T., Zhu, G., Lin, S., et al., 2014. Protolith Ages of Metamorphic Rocks of the Zhangbaling Group along the Southern Segment of the Tan-Lu Fault Zone and Their Tectonic Implications. Geological Review, 60(6): 1265-1283. [41] Zhao, X. F., Zhou, M. F., Li, J. W., et al., 2010. Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182(1/2): 57-69. http://www.sciencedirect.com/science/article/pii/S0301926810001695 [42] Zheng, J., Griffin, W.L., Oreilly, S.Y., et al., 2006. Widespread Archean Basement beneath the Yangtze Craton. Geology, 34(6): 417-420. doi: 10.1130/G22282.1 [43] Zheng, Y.F., Xiao, X.J., Zhao, G.C., 2013. Introduction to Tectonics of China. Gondwana Research, 23(4): 1189-1206. doi: 10.1016/j.gr.2012.10.001 [44] Zhou, G.Y., Wu, Y.B., Li, L., et al., 2018. Identification of ca. 2.65 Ga TTGs in the Yudongzi Complex and Its Implications for the Early Evolution of the Yangtze Block. Precambrian Research, (314): 240-263. http://www.sciencedirect.com/science/article/pii/S0301926818300548 [45] Zhou, K., Chen, Y.X., Zhang, S.B., et al., 2020. Zircon Evidence for the Eoarchean (~3.7 Ga) Crustal Remnant in the Sulu Orogen, Eastern China. Precambrian Research, 337: 105529. doi: 10.1016/j.precamres.2019.105529 [46] 陈岳龙, 罗照华, 赵俊香, 等, 2004. 从锆石SHRIMP年龄及岩石地球化学特征论四川冕宁康定杂岩的成因. 中国科学(D辑: 地球科学), 34(8): 687-697. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200408000.htm [47] 葛宁洁, 周导之, 1993. 安徽肥东群变质岩系的同位素地质定年. 安徽地质, 3(3): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ199303003.htm [48] 康涛, 刘晓燕, 王娟, 等, 2013. 郯庐断裂东侧肥东地块变质属性及年代学研究, 岩石学报, 29(9): 3142-3158. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309015.htm [49] 聂峰, 石永红, 张忠宝, 等, 2015. 安徽北部郯庐断裂两侧基底岩石年龄及对郯庐断裂初始开启时间的限定. 科学通报, 60(24): 2315-2326. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201524006.htm [50] 邱啸飞, 杨红梅, 赵小明, 等, 2019. 扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义. 地球科学, 44(2): 415-426. doi: 10.3799/dqkx.2018.198 [51] 石永红, 王娟, 张忠宝, 等, 2016. 肥东群变质岩石学、年代学分析及变形时限的探讨. 岩石学报, 32(4): 1067-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201604009.htm [52] 涂荫玖, 杨晓勇, 郑永飞, 等, 2001. 皖东南黄片麻岩的锆石U-Pb年龄. 岩石学报, 17(1): 157-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200101015.htm [53] 魏运许, 徐大良, 周文孝, 等, 2018. 扬子克拉通核部黄陵地区中太古代花岗杂岩中发现3.00~2.93 Ga变质事件. 地球科学, 43(7): 2309-2312. doi: 10.3799/dqkx.2018.234 [54] 尹崇玉, 刘敦一, 高林志, 等, 2003. 南华系底界与古城冰期的年龄: SHRIMP Ⅱ定年证据. 科学通报, 48(16): 1721-1725. doi: 10.3321/j.issn:0023-074X.2003.16.002 [55] 张旗, 简平, 刘敦一, 等, 2003. 宁芜火山岩的锆石SHRIMP定年及其意义. 中国科学(D辑: 地球科学), 4: 309-314. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200304002.htm -
dqkxzx-46-5-1630-附表1-4.pdf dqkxzx-46-5-1630-附图1.zip