Detrital Zircon Compositions of U-Pb Ages and Hf Isotope for Sandstone of Liantuo Formation from Three Gorges Area, Yangtze Block and Its Geological Significance
-
摘要: 对扬子陆块三峡地区黄牛岩剖面莲沱组顶部砂岩中的120颗碎屑锆石进行了U-Pb定年和Lu-Hf同位素分析.结果显示,黄牛岩剖面莲沱组中碎屑锆石的年龄谱具有~880~800 Ma、~2 000 Ma、~2 500 Ma及~2 700 Ma的峰值,其中最年轻的碎屑锆石年龄为724±8 Ma.结合前人对该地区莲沱组顶部凝灰岩开展的年代学工作,将莲沱组顶部砂岩沉积时代限定为724~714 Ma.莲沱组砂岩沉积时间与其中最年轻的碎屑锆石U-Pb年龄接近,反映了其源区地壳物质的快速再循环.碎屑锆石Hf同位素两阶段模式年龄(TDM2)集中在~3.7~3.1 Ga、~2.5~2.0 Ga和~1.3~1.0 Ga,反映其物源区存在古-中太古代、古元古代以及中元古代末期的初生地壳生长.对比近年来三峡地区不同剖面莲沱组砂岩中已报道的碎屑锆石年龄和Hf同位素数据,黄牛岩剖面的莲沱组碎屑锆石年龄和Hf同位素组成与之以北的王丰岗剖面均存在明显差异,说明莲沱组沉积期两者的陆源物质供给区有较大差别.Abstract: In this study, 120 detrital zircons from the sandstone at the top of the Liantuo Formation in the Huangniuyan Section of the Three Gorges area were measured for U-Pb dating and Lu-Hf isotopic compositions. The U-Pb ages of the zircons from the Huangniuyan Section cluster at~800-880 Ma, ~2 000 Ma, ~2 500 Ma, ~2 700 Ma, among which the youngest zircon age is 724±8 Ma. According to the previous geochronological study of tuff on the top of the Liantuo Formation, the sedimentary age of the sandstone in the upper most part of the Liantuo Formation is limited to~724-714 Ma. The sedimentary time of the Liantuo sandstone is close to the U-Pb age of the youngest detrital zircon, which may reflect a rapid recycling of crustal materials. The Hf isotopic two-stage model ages (TDM2) of zircon are concentrated at~3.7-3.1 Ga, ~2.5-2.0 Ga and~1.3-1.0 Ga, which indicates that the provenance of the sandstone has juvenile crustal growth in the Paleo-Mesoarchean, Paleoproterozoic and Late Mesoproterozoic. By comparing the detrital zircon U-Pb ages and Hf isotopic data from different sections of the Liantuo Formation in the nucleus of the Yangtze craton reported in recent years, it is suggested that the Huangniuyan Section has distinct detrital zircon U-Pb ages and Hf isotopic compositions compared with the Wangfenggang Section, revealing different provenance between them.
-
Key words:
- Yangtze block /
- Liantuo Formation /
- detrital zircon /
- U-Pb age /
- Hf isotope /
- petrology
-
图 1 宜昌三峡地区地质简图及采样位置(据Liu et al.(2008)和Li et al.(2020)修改)
Fig. 1. Sketch geological map of the study area at the Three Gorges area and sampling locations
图 2 宜昌三峡地区黄牛岩剖面南华系地层柱状图(据赵小明等(2011)修改)
Fig. 2. Stratigraphic column for the Nanhua System sedimentary successions from the Huangniuyan Section at the Three Gorges area (modified after Zhao et al., 2011)
图 5 宜昌三峡地区黄牛岩剖面莲沱组顶部砂岩锆石U-Pb年龄谐和图(a)、年龄分布(b)、Th/U比值与年龄关系(c)和U-Pb年龄与εHf(t)关系(d)
Fig. 5. Diagram of U-Pb concordia (a), age distribution (b), U-Pb age vs. Th/U ratios (c) and U-Pb age vs. εHf(t) value plots (d) for zircons from the sandstone of the uppermost Liantuo Formation from the Huangniuyan Section at the Three Gorges area
图 7 扬子陆核莲沱组砂岩锆石U-Pb年龄分布对比(a)和Hf同位素模式年龄分布对比(b)
王丰岗剖面数据来自Zhang et al.(2006); 江南剖面数据来自Liu et al.(2008); Hofmann et al.(2011); 宋芳等(2016); Wang et al.(2013)
Fig. 7. Comparison diagrams of zircon ages (a) and zircon Hf model ages (b) for the sandstone of the Liantuo Formation at the nucleus of the Yangtze block
-
[1] Albarède, F., Scherer, E.E., Blichert-Toft, J., et al., 2006. γ-Ray Irradiation in the Early Solar System and the Conundrum of the 176Lu Decay Constant. Geochimica et Cosmochimica Acta, 70(5): 1261-1270. https://doi.org/10.1016/j.gca.2005.09.027 [2] Blichert-Toft, J., Albarède, F., 1997. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 148(1): 243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [3] Chen, J.F., Foland, K.A., Xing, F.M., et al., 1991. Magmatism along the Southeast Margin of the Yangtze Block: Precambrian Collision of the Yangtze and Cathysia Blocks of China. Geology, 19(8): 815-818. https://doi.org/10.1130/0091-7613(1991)0190815:matsmo>2.3.co;2 doi: 10.1130/0091-7613(1991)0190815:matsmo>2.3.co;2 [4] Chen, K., Gao, S., Wu, Y.B., et al., 2013. 2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China. Precambrian Research, 224: 472-490. doi: 10.1016/j.precamres.2012.10.017 [5] Dong, Y.P., Zhang, G.W., Zhao, X., et al., 2004. Geochemistry of the Subduction-Related Magmatic Rocks in the Dahong Mountains, Northern Hubei Province—Constraint on the Existence and Subduction of the Eastern Mianlüe Oceanic Basin. Science in China (Series D), 47(4): 366-377. doi: 10.1360/02YD0486 [6] Fedo, C.M., 2003. Detrital Zircon Analysis of the Sedimentary Record. Reviews in Mineralogy and Geochemistry, 53(1): 277-303. https://doi.org/10.2113/0530277 [7] Gao, W., Zhang, C.H., 2009. Zircon SHRIMP U-Pb Ages of the Huangling Granite and the Tuff Beds from Liantuo Formation in the Three Gorges Area of Yangtze River, China and Its Geological Significance. Geological Bulletin of China, 28(1): 45-50(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200901007.htm [8] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [9] Griffin, W.L., Wang, X., Jackson, S.E., et al., 2002. Zircon Chemistry and Magma Mixing, SE China: In-Situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 61(3): 237-269. https://doi.org/10.1016/s0024-4937(02)00082-8 [10] Guo, J.L., Gao, S., Wu, Y.B., et al., 2014. 3.45 Ga Granitic Gneisses from the Yangtze Craton, South China: Implications for Early Archean Crustal Growth. Precambrian Research, 242: 82-95. https://doi.org/10.1016/j.precamres.2013.12.018 [11] Guo, J.L., Wu, Y.B., Gao, S., et al., 2015. Episodic Paleoarchean-Paleoproterozoic (3.3-2.0 Ga) Granitoid Magmatism in Yangtze Craton, South China: Implications for Late Archean Tectonics. Precambrian Research, 270: 246-266. https://doi.org/10.1016/j.precamres.2015.09.007 [12] Han, P.Y., Guo, J.L., Chen, K., et al., 2017. Widespread Neoarchean (~2.7-2.6 Ga) Magmatism of the Yangtze Craton, South China, as Revealed by Modern River Detrital Zircons. Gondwana Research, 42: 1-12. https://doi.org/10.1016/j.gr.2016.09.006 [13] Hawkesworth, C.J., Kemp, A.I.S., 2006. Evolution of the Continental Crust. Nature, 443(7113): 811-817. https://doi.org/10.1038/nature05191 [14] Hofmann, M., Linnemann, U., Rai, V., et al., 2011. The India and South China Cratons at the Margin of Rodinia-Synchronous Neoproterozoic Magmatism Revealed by LA-ICP-MS Zircon Analyses. Lithos, 123(1-4): 176-187. https://doi.org/10.1016/j.lithos.2011.01.012 [15] Hu, R., Li, S.Q., Wang, W., et al., 2016. Source Characteristics of Tillite the Nantuo Formation in Three Gorges, Northern Yangtze Block: Evidences from Zircon Ages and Geochemical Composition. Earth Science, 41(10): 1630-1654(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201610002.htm [16] Lan, Z.W., Li, X.H., Zhu, M.Y., et al., 2015. Revisiting the Liantuo Formation in Yangtze Block, South China: SIMS U-Pb Zircon Age Constraints and Regional and Global Significance. Precambrian Research, 263: 123-141. https://doi.org/10.1016/j.precamres.2015.03.012 [17] Lee, J.S., 1924. Geology of the Gorge District of the Yangtze (from Ichang to Tzekuei) with Special Reference to the Development of the Gorges. Bulletin of the Geological Society of China, 34: 351-392. http://www.cnki.com.cn/Article/CJFDTotal-DZXE1924Z1003.htm [18] Li, H.Q., Zhou, W.X., Wei, Y.X., et al., 2020. Two Extensional Events in the Early Evolution of the Yangtze Block, South China: Geochemical and Isotopic Evidence from Two Sets of Paleoproterozoic Alkali Porphyry in the Northern Kongling Terrane. Geological Journal, 55(9): 6296-6324. https://doi.org/10.1002/gj.3802 [19] Li, L.M., Lin, S.F., Davis, D.W., et al., 2014. Geochronology and Geochemistry of Igneous Rocks from the Kongling Terrane: Implications for Mesoarchean to Paleoproterozoic Crustal Evolution of the Yangtze Block. Precambrian Research, 255: 30-47. https://doi.org/10.1016/j.precamres.2014.09.009 [20] Li, Z.X., Li, X.H., Kinny, P.D., et al., 2003. Geochronology of Neoproterozoic Syn-Rift Magmatism in the Yangtze Craton, South China and Correlations with Other Continents: Evidence for a Mantle Superplume that Broke up Rodinia. Precambrian Research, 122(1): 85-109. https://doi.org/10.1016/s0301-9268(02)00208-5 [21] Ling, W.L., Gao, S., Zheng, H.F., et al., 1998. Sm-Nd Isotopic Dating of Kongling Terrain. Chinese Science Bulletin, 43(1): 86-89 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-DQWJ803.004.htm [22] Liu, X., Gao, S., Diwu, C., et al., 2008. Precambrian Crustal Growth of Yangtze Craton as Revealed by Detrital Zircon Studies. American Journal of Science, 308(4): 421-468. https://doi.org/10.2475/04.2008.02 [23] Lu, S.N., Hao, G.J., Wang, H.C., et al., 2014. Mesoproterozoic-Late Qingbaikou (~820 Ma) Tectonic Map in China (1∶10 000 000). Geological Publishing House, Beijing (in Chinese). [24] Ludwig, K.R., 2003. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center, Berkeley, California). BGC Special Publication, Berkeley. [25] Nie, H., Yao, J., Wan, X., et al., 2016. Precambrian Tectonothermal Evolution of South Qinling and Its Affinity to the Yangtze Block: Evidence from Zircon Ages and Hf-Nd Isotopic Compositions of Basement Rocks. Precambrian Research, 286: 167-179. https://doi.org/10.1016/j.precamres.2016.10.005 [26] Pan, G.T., Xiao, Q.H., Lu, S.N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36: 1-38 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI200901004.htm [27] Peng, M., Wu, Y., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication. Chinese Science Bulletin, 54(6): 1098-1104. [28] Peng, S.B., Kusky, T.M., Jiang, X.F., et al., 2012. Geology, Geochemistry, and Geochronology of the Miaowan Ophiolite, Yangtze Craton: Implications for South China's Amalgamation History with the Rodinian Supercontinent. Gondwana Research, 21(2-3): 577-594. https://doi.org/10.1016/j.gr.2011.07.010 [29] Qiu, X.F., Ling, W.L., Liu, X.M., et al., 2011. Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton. Precambrian Research, 191(3-4): 101-119. https://doi.org/10.1016/j.precamres.2011.09.011 [30] Qiu, X.F., Ling, W.L., Liu, X.M., et al., 2018. Evolution of the Archean Continental Crust in the Nucleus of the Yangtze Block: Evidence from Geochemistry of 3.0 Ga TTG Gneisses in the Kongling High-Grade Metamorphic Terrane, South China. Journal of Asian Earth Sciences, 154: 149-161. https://doi.org/10.1016/j.jseaes.2017.12.026 [31] Qiu, X.F., Yang, H.M., Lu, S.S., et al., 2015. Geochronology and Geochemistry of Grenville-Aged (1 063±16 Ma) Metabasalts in the Shennongjia District, Yangtze Block: Implications for Tectonic Evolution of the South China Craton. International Geology Review, 57(1): 76-96. https://doi.org/10.1080/00206814.2014.991949 [32] Qiu, X.F., Yang, H.M., Zhao, X.M., et al., 2019. Neoarchean Granitic Gneisses in the Kongling Complex, Yangtze Craton: Petrogenesis and Tectonic Implications. Earth Science, 44(2): 415-426(in Chinese with English abstract). http://www.researchgate.net/publication/332558219_Neoarchean_Granitic_Gneisses_in_the_Kongling_Complex_Yangtze_Craton_Petrogenesis_and_Tectonic_Implications [33] Qiu, X.F., Zhao, X.M., Yang, H.M., et al., 2017. Paleoproterozoic Metamorphic Event in the Nucleus of the Yangtze Craton: Evidence from U-Pb Geochronology of the Metamorphic Zircons from the Khondalite. Geological Bulletin of China, 36(5): 706-714(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD201705003.htm [34] Shi, Y.R., Liu, D.Y., Zhang, Z.Q., et al., 2007. SHRIMP Zircon U-Pb Dating of Gabbro and Granite from the Huashan Ophiolite, Qinling Orogenic Belt, China: Neoproterozoic Suture on the Northern Margin of the Yangtze Craton. Acta Geologica Sinica, 81(2): 239-243. https://doi.org/10.1111/j.1755-6724.2007.tb00947.x [35] Song, F., Niu, Z.J., He, Y.Y., et al., 2016. U-Pb Age of Detrital Zircon and Its Restriction of Provenance & Paleogeographic Characteristics of Early Nanhua Period in Middle Yangtze. Acta Geologica Sinica, 90(10): 2661-2680(in Chinese with English abstract). [36] Thirlwall, M.F., Anczkiewicz, R., 2004. Multidynamic Isotope Ratio Analysis Using MC-ICP-MS and the Causes of Secular Drift in Hf, Nd and Pb Isotope Ratios. International Journal of Mass Spectrometry, 235(1): 59-81. https://doi.org/10.1016/j.ijms.2004.04.002 [37] Wang, L.J., Griffin, W.L., Yu, J.H., et al., 2013. U-Pb and Lu-Hf Isotopes in Detrital Zircon from Neoproterozoic Sedimentary Rocks in the Northern Yangtze Block: Implications for Precambrian Crustal Evolution. Gondwana Research, 23(4): 1261-1272. https://doi.org/10.1016/j.gr.2012.04.013 [38] Yin, C.Q., Lin, S.F., Davis, D.W., et al., 2013. 2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China: Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia. Lithos, 182-183: 200-210. doi: 10.1016/j.lithos.2013.10.012 [39] Zhang, K.X., Pan, G.T., He, W.H., et al., 2015. New Division of Tectonic-Strata Super Region in China. Earth Science, 40(2): 206-233(in Chinese with English abstract). http://www.researchgate.net/publication/281911273_New_division_of_tectonic-strata_superregion_in_China [40] Zhang, K.X., Xu, Y.D., He, W.H., et al., 2018. Oceanic and Continental Blocks Distribution during Neoproterozoic Early Qingbaikou Period (1 000-820 Ma) in China. Earth Science, 43(11): 3837-3852 (in Chinese with English abstract). [41] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006. Zircon U-Pb Age and Hf Isotope Evidence for 3.8 Ga Crustal Remnant and Episodic Reworking of Archean Crust in South China. Earth and Planetary Science Letters, 252(1-2): 56-71. doi: 10.1016/j.epsl.2006.09.027 [42] Zhang, S.B., Zheng, Y.F., Zhao, Z.F., et al., 2008. Neoproterozoic Anatexis of Archean Lithosphere: Geochemical Evidence from Felsic to Mafic Intrusions at Xiaofeng in the Yangtze Gorge, South China. Precambrian Research, 163(3): 210-238. http://www.sciencedirect.com/science/article/pii/S0301926808000028 [43] Zhao, J.H., Asimow, P.D., 2018. Formation and Evolution of a Magmatic System in a Rifting Continental Margin: Neoproterozoic Arc- and MORB-Like Dike Swarms in South China. Journal of Petrology, 59(9): 1811-1844. https://doi.org/10.1093/petrology/egy080 [44] Zhao, X.M., An, Z.H., Qiu, X.F., et al., 2018. A New Understanding of the "Macaoyuan Group" in North Kongling Area of Yangtze Craton. Earth Science, 43(9): 3324-3336(in Chinese with English abstract). http://www.researchgate.net/publication/329031118_A_New_Understanding_of_the_Macaoyuan_Group_in_North_Kongling_Area_of_Yangtze_Craton [45] Zhao, X.M., Liu, S.D., Zhang, Q.X., et al., 2011. Geochemical Characters of the Nanhua System in Changyang, Western Hubei Province and Its Implication for Climate and Sequence Correlation. Acta Geologica Sinica, 85(4): 576-585(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201104014.htm [46] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006. Widespread Archean Basement beneath the Yangtze Craton. Geology, 34(6): 417-420. https://doi.org/10.1130/g22282.1 [47] Zheng, Y.F., Zhang, S.B., Zhao, Z.F., et al., 2007. Contrasting Zircon Hf and O Isotopes in the Two Episodes of Neoproterozoic Granitoids in South China: Implications for Growth and Reworking of Continental Crust. Lithos, 96(1): 127-150. https://doi.org/10.1016/j.lithos.2006.10.003 [48] Zhou, M.F., Yan, D.P., Kennedy, A.K., et al., 2002. SHRIMP U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 196(1-2): 51-67. https://doi.org/10.1016/s0012-821x(01)00595-7 [49] 高维, 张传恒, 2009. 长江三峡黄陵花岗岩与莲沱组凝灰岩的锆石SHRIMP U-Pb年龄及其构造地层意义. 地质通报, 28(1): 45-50. doi: 10.3969/j.issn.1671-2552.2009.01.006 [50] 胡蓉, 李双庆, 王伟, 等, 2016. 扬子北部三峡地区南沱组冰碛岩的物源特征: 锆石年龄和地球化学证据. 地球科学, 41(10): 1630-1654. doi: 10.3799/dqkx.2016.121 [51] 凌文黎, 高山, 郑海飞, 等, 1998. 扬子克拉通黄陵地区崆岭杂岩Sm-Nd同位素地质年代学研究. 科学通报, 43(1): 86-89. doi: 10.3321/j.issn:0023-074X.1998.01.022 [52] 陆松年, 郝国杰, 王惠初, 等, 2014. 中国中元古代-青白口纪早期(~820 Ma)大地构造图(1∶10 000 000). 北京: 地质出版社. [53] 潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36: 1-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm [54] 邱啸飞, 杨红梅, 赵小明, 等, 2019. 扬子克拉通崆岭杂岩新太古代花岗片麻岩成因及其构造意义. 地球科学, 44(2): 415-426. doi: 10.3799/dqkx.2018.198 [55] 邱啸飞, 赵小明, 杨红梅, 等, 2017. 扬子陆核古元古代变质事件——来自孔兹岩系变质锆石U-Pb同位素年龄的证据. 地质通报, 36(5): 706-714. doi: 10.3969/j.issn.1671-2552.2017.05.003 [56] 宋芳, 牛志军, 何垚砚, 等, 2016. 中扬子地区南华纪早期碎屑锆石U-Pb年龄及其对物源特征和古地理格局的约束. 地质学报, 90(10): 2661-2680. doi: 10.3969/j.issn.0001-5717.2016.10.009 [57] 张克信, 潘桂棠, 何卫红, 等, 2015. 中国构造-地层大区划分新方案. 地球科学, 40(2): 206-233. doi: 10.3799/dqkx.2015.016 [58] 张克信, 徐亚东, 何卫红, 等, 2018. 中国新元古代青白口纪早期(1 000~820 Ma)洋陆分布. 地球科学, 43(11): 3837-3852. doi: 10.3799/dqkx.2018.339 [59] 赵小明, 安志辉, 邱啸飞, 等, 2018. 扬子陆核北崆岭地区"马槽园群"的新认识. 地球科学, 43(9): 3324-3336. doi: 10.3799/dqkx.2018.565 [60] 赵小明, 刘圣德, 张权绪, 等, 2011. 鄂西长阳南华系地球化学特征的气候指示意义及地层对比. 地质学报, 85(4): 576-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201104014.htm -
dqkxzx-46-4-1217-附表1-2.doc