• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏斯弄多地区晚白垩世埃达克岩:岩石成因及成矿潜力指示

    杨昕 唐菊兴 杨宗耀 谢富伟 郝金月 吴鑫 宋壮壮

    杨昕, 唐菊兴, 杨宗耀, 谢富伟, 郝金月, 吴鑫, 宋壮壮, 2021. 西藏斯弄多地区晚白垩世埃达克岩:岩石成因及成矿潜力指示. 地球科学, 46(5): 1597-1612. doi: 10.3799/dqkx.2020.157
    引用本文: 杨昕, 唐菊兴, 杨宗耀, 谢富伟, 郝金月, 吴鑫, 宋壮壮, 2021. 西藏斯弄多地区晚白垩世埃达克岩:岩石成因及成矿潜力指示. 地球科学, 46(5): 1597-1612. doi: 10.3799/dqkx.2020.157
    Yang Xin, Tang Juxing, Yang Zongyao, Xie Fuwei, Hao Jinyue, Wu Xin, Song Zhuangzhuang, 2021. Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization. Earth Science, 46(5): 1597-1612. doi: 10.3799/dqkx.2020.157
    Citation: Yang Xin, Tang Juxing, Yang Zongyao, Xie Fuwei, Hao Jinyue, Wu Xin, Song Zhuangzhuang, 2021. Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization. Earth Science, 46(5): 1597-1612. doi: 10.3799/dqkx.2020.157

    西藏斯弄多地区晚白垩世埃达克岩:岩石成因及成矿潜力指示

    doi: 10.3799/dqkx.2020.157
    基金项目: 

    国家自然科学基金项目 41772075

    国家重点研发计划项目 2018YFC0604105

    详细信息
      作者简介:

      杨昕(1993-),男,硕士生,从事固体矿产勘查与评价.ORICD: 0000-0002-1656-7023.E-mail: yangxin931030@126.com

      通讯作者:

      唐菊兴, E-mail: tangjuxing@126.com

    • 中图分类号: P611

    Late Cretaceous Adakite in Sinongduo Area, Tibet: Implications for Petrogenesis and Mineralization

    • 摘要: 西藏冈底斯带广泛分布晚白垩世埃达克质岩,其岩石成因一直存在争论,并且对于成矿潜力的研究也十分有限.为此对谢通门县斯弄多-加多捕地区具铜矿化的黑云母二长花岗岩开展了锆石U-Pb定年、全岩地球化学以及锆石微量元素地球化学特征的研究,以探明岩石成因及成矿潜力.结果表明黑云母二长花岗岩侵位时间为晚白垩世(83.1±1.6 Ma).岩石具有相对高的SiO2含量(60.21%~62.54%)、MgO(2.19%~3.02%)、Mg#(41.25~50.73)值.较低含量的Y(15.9×10-6~17.8×10-6)、Yb(1.46×10-6~1.73×10-6)及较高的Sr/Y(35.0~47.6)、La/Yb(29.6~38.6)比值,表现出高硅型埃达克质岩亲和性.岩石属高钾钙碱性、准铝质系列(A/CNK值为0.84~0.92),富集LREE、大离子亲石元素(LILE)、亏损高场强元素(HFSE),如Nb、Ta等.锆石微量元素具较高的V/Sc、Ce/Ce*、10 000×(Eu/Eu*)和Eu/Eu*比值.通过对比冈底斯带晚白垩世典型的埃达克岩,认为斯弄多黑云母二长花岗岩是新特提斯洋俯冲洋壳部分熔融的产物,岩浆氧逸度较高,显示出斯弄多黑云母二长花岗岩具有良好的Cu-Au成矿潜力.

       

    • 图  1  冈底斯花岗类岩石分布简图

      Zhu et al.(2009)

      Fig.  1.  Distribution of granite in the Gangdese belt

      图  2  斯弄多黑云母二长花岗岩野外及镜下照片

      a. 斯弄多黑云母二长花岗岩野外露头;b. 黑云母二长花岗岩中发育的孔雀石化脉;c. 中‒粗粒黑云母二长花岗岩手标本;d.细粒黑云母二长花岗岩手标本;e. 黑云母二长花岗岩镜下照片(单偏光);f. 黑云母二长花岗岩镜下照片(正交偏光). Bt. 黑云母;Pl.斜长石;Kfs.钾长石;Qz.石英

      Fig.  2.  Field and petrographical photos of biotite monzogranite in the Sinongduo area

      图  3  斯弄多黑云母二长花岗岩锆石U-Pb年龄谐和图(a)和阴极发光图像(b)

      Fig.  3.  U-Pb concordia diagram of biotite monzogranite in the Sinongduo area (a) and cathodoluminescence images of zircons (b)

      图  4  斯弄多黑云母二长花岗岩锆石球粒陨石标准化稀土元素配分图

      标准化值据Sun and McDonough(1989)

      Fig.  4.  Chondrite-normalized REE patterns of zircons for biotite monzogranite in the Sinongduo area

      图  6  斯弄多黑云母二长花岗岩SiO2-K2O图解(a), A/NC-A/CNK图解(b), Th-Th/Nd图解(c), La-La/Sm图解(d)

      图c, d据Schiano et al.(2010)

      Fig.  6.  Diagrams of SiO2-K2O (a), A/NC-A/CNK (b), Th-Th/Nd (c) and La-La/Sm (d) for biotite monzogranite in the Sinongduo area

      图  5  斯弄多黑云母二长花岗岩微量元素原始地幔标准化蛛网图(a)和稀土元素球粒陨石标准化配分模式图(b)

      Fig.  5.  Primitive mantle-normalized trace element spider diagram (a) and chondrite-normalized REE pattern (b) for biotite monzogranite in the Sinongduo area

      图  7  斯弄多黑云母二长花岗岩La/Yb-Yb(a)和Sr/Y-Y判别图(b)

      Martin et al.(2005)

      Fig.  7.  Discrimination diagrams of La/Yb versus Yb (a) and Sr/Y versus Y (b) for biotite monzogranite in the Sinongduo area

      图  8  高硅型埃达克岩和低硅型埃达克岩判别图

      a. Sr-(CaO+Na2O); b.Sr/Y-Y; c.Nb-SiO2; d.Cr/Ni-TiO2;图a~d据Martin et al.(2005)

      Fig.  8.  Discrimination diagrams of high-SiO2 (HAS) and low-SiO2 (LAS) adakites

      图  10  斯弄多黑云母二长花岗岩锆石Ce/Ce*-Eu/Eu*图解(a),10 000×(Eu/Eu*)/Y-(Ce/Nd)/Y图解(b),全岩Sr/Y-SiO2图解(c)和V/Sc-SiO2图解(d)

      图a, b据Lu et al.(2016);图c, d据Loucks(2014)

      Fig.  10.  Diagrams showing variations in zircon Ce/Ce*-Eu/Eu* (a) and 10 000×(Eu/Eu*)/Y-(Ce/Nd)/Y (b), Sr/Y-SiO2 (c) and V/Sc-SiO2 (d) for biotite monzogranite in the Sinongduo area

      图  9  斯弄多黑云母二长花岗岩埃达克岩哈克图解

      Wang et al.(2005);图a, b数据引自Wen et al. (2008); Zhu et al. (2009); 管琪等(2010)Zhang et al.(2010);代作文等(2018)

      Fig.  9.  Harker diagrams for biotite monzogranite in the Sinongduo area

      图  11  斯弄多黑云母二长花岗岩Ba-Nb/Y图解(a)和Th/Yb-Sr/Nd图解(b)

      图a, b据曲晓明等(2010);无矿化花岗岩类数据引自Zhang et al.(2010); Ma et al.(2013); 代作文等(2018)

      Fig.  11.  Diagrams of Ba-Nb/Y (a) and Th/Yb-Sr/Nd (b) for biotite monzogranite in the Sinongduo area

      表  1  斯弄多黑云母二长花岗岩LA-ICP-MS U-Pb定年结果

      Table  1.   Zircon LA-ICP-MS U-Pb dating results of biotite monzogranite in the Sinongduo area

      测点 Pb(10-6 Th(10-6 U(10-6 Th/U 同位素比值 年龄(Ma) 谐和度(%)
      207Pb/206Pb 207Pb/235U 206Pb/238U 208Pb/232Th 207Pb/235U 206Pb/238U
      YD02-1 32.74 674.81 646.01 1.04 0.049 5 0.013 3 0.082 8 0.013 4 0.013 1 0.001 2 0.003 7 0.000 4 80.8 12.6 84.0 7.3 96
      YD02-2 28.97 790.82 513.43 1.54 0.055 8 0.016 4 0.092 6 0.020 5 0.013 1 0.001 2 0.003 1 0.000 4 89.9 19.0 84.2 7.6 93
      YD02-3 46.13 936.43 568.56 1.65 0.051 1 0.011 1 0.096 6 0.022 1 0.013 9 0.000 8 0.004 5 0.000 6 93.6 20.5 89.1 5.3 95
      YD02-4 31.11 574.36 480.80 1.19 0.045 1 0.013 9 0.082 6 0.023 7 0.013 4 0.000 8 0.004 7 0.000 6 80.6 22.2 85.5 5.3 94
      YD02-5 35.02 774.12 526.08 1.47 0.049 6 0.007 5 0.084 8 0.012 5 0.013 0 0.000 5 0.003 9 0.000 3 82.6 11.7 83.2 3.1 99
      YD02-6 45.63 881.62 737.87 1.19 0.045 1 0.014 3 0.084 4 0.028 9 0.013 2 0.000 5 0.004 4 0.000 4 82.3 27.1 84.4 3.2 97
      YD02-7 27.77 570.56 401.39 1.42 0.049 7 0.025 9 0.096 0 0.045 1 0.014 5 0.001 0 0.004 1 0.000 7 93.1 41.8 93.0 6.5 99
      YD02-8 33.78 962.83 592.86 1.62 0.042 6 0.003 7 0.075 2 0.008 4 0.012 7 0.000 5 0.002 9 0.000 4 73.7 8.0 81.0 3.3 90
      YD02-9 51.76 1 266.61 835.92 1.52 0.047 7 0.025 9 0.083 9 0.044 7 0.012 8 0.000 2 0.003 5 0.000 3 81.8 41.9 82.1 1.3 99
      YD02-10 31.31 648.47 539.08 1.20 0.048 7 0.008 6 0.088 3 0.015 2 0.013 2 0.000 5 0.004 0 0.000 3 85.9 14.2 84.4 3.2 98
      YD02-11 31.95 637.88 753.62 0.85 0.053 4 0.006 3 0.096 4 0.010 5 0.013 5 0.000 4 0.003 6 0.000 2 93.4 9.7 86.7 2.6 92
      YD02-12 39.01 765.90 800.65 0.96 0.054 0 0.006 0 0.094 5 0.009 6 0.013 0 0.000 4 0.004 1 0.000 2 91.7 8.9 83.1 2.6 90
      下载: 导出CSV

      表  2  斯弄多黑云母二长花岗岩锆石微量元素分析结果(10-6)

      Table  2.   Zircon trace elements (10-6) results of biotite monzogranite in the Sinongduo area

      测点号 YD2-1 YD2-2 YD2-3 YD2-4 YD2-5 YD2-6 YD2-7 YD2-8 YD2-9 YD2-10
      La 49.04 5.71 4.15 2.88 3.17 3.62 7.19 3.62 4.80 4.46
      Ce 145.29 81.82 93.43 84.05 74.67 83.48 87.69 74.24 101.30 83.44
      Pr 12.92 0.33 1.90 2.22 1.10 1.10 0.73 1.12 1.52 1.42
      Nd 43.97 7.24 4.24 4.64 8.03 4.56 2.13 6.06 5.83 4.28
      Sm 24.58 9.54 8.39 13.73 1.99 5.44 10.30 9.01 12.76 11.06
      Eu 6.43 1.75 3.39 4.51 1.81 1.51 4.47 3.24 4.55 5.70
      Gd 95.23 29.46 53.92 72.60 35.28 39.78 56.98 50.39 76.12 53.13
      Tb 33.36 11.14 20.04 24.17 8.64 12.73 16.20 17.92 22.12 24.14
      Dy 334.75 128.70 211.05 224.05 99.38 140.93 199.99 188.08 236.66 217.32
      Ho 156.48 64.53 109.63 108.49 60.54 68.60 104.12 94.20 116.18 104.23
      Er 551.64 264.25 382.98 382.03 227.22 246.18 378.77 353.30 410.45 376.68
      Tm 141.44 77.86 107.65 109.39 54.02 65.09 108.44 93.17 108.39 100.32
      Yb 1 146.93 673.50 815.36 894.26 564.05 599.81 898.02 783.35 869.75 853.38
      Lu 572.18 463.75 461.56 510.47 427.33 438.03 512.06 494.34 509.41 513.48
      Y 3 078.64 1 683.23 2 083.17 2 355.03 1 279.18 1 514.73 1 987.39 2 011.25 2 461.12 2 245.11
      REE 3 314.22 1 819.57 2 277.68 2 437.49 1 567.22 1 710.86 2 387.09 2 172.05 2 479.85 2 353.04
      Ti 41.56 11.01 22.81 6.75 12.22 16.91 0.00 8.29 26.71 26.98
      Hf 26 562.75 23 555.72 23 083.69 25 145.26 22 036.95 24 566.78 24 101.39 25 337.79 24 839.94 24 813.71
      Th 611.36 674.81 790.82 936.43 574.36 774.12 881.62 715.17 1 106.41 962.83
      U 892.62 646.01 513.43 568.56 480.80 526.08 737.87 615.10 660.60 592.86
      Eu/Eu* 0.36 0.29 0.37 0.35 0.34 0.23 0.45 0.37 0.35 0.59
      Ce/Ce* 7.63 61.52 180.20 221.64 9.50 89.94 821.52 75.09 157.14 208.43
      测点号 YD2-11 YD2-12 YD2-13 YD2-14 YD2-15 YD2-16 YD2-17 YD2-18 YD2-19 YD2-20
      La 2.90 4.83 5.61 2.58 7.92 170.52 16.43 3.90 3.88 4.77
      Ce 104.72 79.85 66.33 73.81 156.43 707.32 104.96 75.19 86.93 103.56
      Pr 1.18 0.88 1.47 1.12 2.46 66.86 4.85 1.60 0.78 1.31
      Nd 8.53 5.43 5.03 9.66 11.52 238.51 18.43 12.05 2.74 8.18
      Sm 25.51 11.19 3.53 14.61 22.74 69.19 11.88 15.83 4.08 11.42
      Eu 5.18 3.18 1.79 3.45 9.19 17.62 5.23 5.43 3.14 4.32
      Gd 67.33 43.88 23.22 41.39 87.39 209.80 50.13 59.18 35.53 50.13
      Tb 30.84 15.57 9.06 11.77 29.06 69.88 18.43 19.96 15.03 19.29
      Dy 256.36 162.71 98.47 133.91 290.65 611.77 185.18 199.80 157.13 206.50
      Ho 108.09 80.92 57.37 73.25 149.70 296.34 93.08 102.68 95.39 107.48
      Er 523.15 293.51 213.78 280.66 520.04 962.50 341.81 371.53 373.03 390.50
      Tm 124.66 81.19 63.30 74.79 135.75 232.88 94.48 91.41 106.17 104.81
      Yb 1 052.58 703.14 593.48 728.61 1 115.06 1 708.04 803.94 761.56 994.26 949.79
      Lu 606.84 459.72 451.71 486.43 553.46 687.66 490.66 449.87 569.42 545.79
      Y 2 669.90 1 846.50 1 252.86 1 730.17 2 977.68 5 271.44 2 047.29 1 988.65 2 198.37 2 153.55
      REE 2 917.86 1 946.00 1 594.15 1 936.05 3 091.37 6 048.88 2 239.50 2 169.98 2 447.51 2 507.86
      Ti 24.23 75.42 237.53 0.00 38.58 0.00 67.27 21.73 8.32 7.68
      Hf 25 753.81 23 892.19 24 032.61 24 512.05 23 096.54 21 893.58 23 200.09 21 853.69 25 890.10 24 803.75
      Th 1 266.61 648.47 687.61 697.80 1 716.09 6 693.03 883.38 832.93 637.88 1 101.26
      U 835.92 539.08 552.52 518.04 928.79 2 147.81 611.96 524.52 753.62 819.97
      Eu/Eu* 0.36 0.38 0.45 0.40 0.55 0.41 0.56 0.48 0.54 0.47
      Ce/Ce* 151.50 125.26 38.28 47.69 110.64 3.55 15.15 33.83 195.74 72.98
      测点号 YD2-21 YD2-21 YD2-21 YD2-21 YD2-21
      La 3.65 23.74 43.54 75.68 9.83
      Ce 90.83 125.59 153.26 238.43 119.21
      Pr 1.18 5.37 11.77 19.29 2.23
      Nd 4.46 18.72 47.65 70.46 9.11
      Sm 9.10 11.57 21.06 21.18 16.92
      Eu 2.97 4.54 5.62 5.05 6.19
      Gd 46.48 49.11 64.54 47.34 72.82
      Tb 19.48 18.32 21.77 17.28 24.08
      Dy 211.01 190.42 217.12 174.48 229.94
      Ho 113.28 96.05 101.17 85.71 118.73
      Er 411.77 346.98 358.62 315.68 445.06
      Tm 115.41 95.04 95.82 85.00 116.32
      Yb 983.41 799.41 787.65 755.39 1 056.54
      Lu 561.60 504.06 500.37 467.12 540.34
      Y 2 310.57 2 052.72 2 117.75 1 866.26 2 641.04
      REE 2 574.60 2 288.90 2 429.96 2 378.09 2 767.32
      Ti 13.18 13.69 29.75 19.75 29.85
      Hf 24 936.50 25 193.20 24 855.76 22 498.93 22 515.12
      Th 765.90 977.56 887.70 1 220.70 1 535.36
      U 800.65 617.49 498.63 829.01 923.79
      Eu/Eu* 0.36 0.50 0.43 0.47 0.46
      Ce/Ce* 171.73 17.11 5.87 4.20 100.40
      注:Ce*=(NdN)2/SmN(Loadera et al., 2017).
      下载: 导出CSV

      表  3  斯弄多黑云母二长花岗岩主量元素(%)和微量元素(10-6)分析结果

      Table  3.   Major elements (%) and trace elements (10-6) results of biotite monzogranite in the Sinongduo area

      原样编号 YD02-1 YD02-2 YD02-3 YD02-4 YD02-5 YD02-6 YD02-7 YD02-8 YD02-9
      SiO2 60.39 62.65 60.48 61.79 62.21 61.99 62.53 60.95 62.54
      Al2O3 15.02 15.12 15.18 15.12 14.70 14.99 15.02 15.14 14.87
      Fe2O3 1.88 1.88 1.99 2.53 2.24 2.06 1.97 1.88 2.20
      FeO 3.86 3.28 3.86 2.87 3.64 3.25 3.25 3.54 3.06
      MgO 2.98 2.52 3.02 2.79 2.23 2.87 2.39 3.02 2.19
      CaO 4.12 4.16 4.22 4.07 3.85 3.76 3.99 4.30 4.24
      Na2O 3.48 3.34 3.40 3.72 3.68 3.79 3.71 3.69 3.75
      K2O 3.00 3.34 3.07 3.32 3.62 3.40 3.54 3.22 3.61
      TiO2 0.78 0.75 0.79 0.74 0.69 0.74 0.70 0.76 0.70
      MnO 0.13 0.12 0.14 0.11 0.10 0.11 0.10 0.12 0.10
      P2O5 0.25 0.23 0.25 0.27 0.24 0.27 0.24 0.27 0.23
      LOI 3.51 2.08 2.95 1.99 2.15 2.06 1.86 2.52 1.94
      Total 99.40 99.47 99.35 99.32 99.33 99.31 99.30 99.41 99.42
      Na2O+K2O 6.48 6.67 6.48 7.03 7.30 7.20 7.25 6.91 7.36
      FeOT 5.55 4.97 5.65 5.15 5.65 5.10 5.02 5.23 5.03
      Mg# 48.91 47.44 48.77 49.12 41.25 50.10 45.89 50.73 43.75
      A/CNK 0.91 0.91 0.92 0.88 0.87 0.90 0.87 0.87 0.84
      A/NK 1.68 1.67 1.71 1.56 1.48 1.52 1.52 1.59 1.48
      La 48.6 47.5 48.4 57.0 63.4 59.8 62.6 63.9 61.0
      Ce 88.3 88.0 87.8 97.3 108 98.5 106 106 104
      Pr 11.6 11.6 11.8 11.5 12.7 11.6 12.5 12.6 12.4
      Nd 39.1 39.2 39.5 40.0 42.6 39.5 43.8 43.4 42.7
      Sm 6.19 6.17 6.10 6.86 7.21 6.56 7.41 7.24 7.27
      Eu 1.64 1.47 1.59 1.75 1.74 1.61 1.83 1.88 1.74
      Gd 4.66 4.64 4.68 5.16 5.37 4.95 5.51 5.55 5.41
      Tb 0.692 0.730 0.711 0.686 0.702 0.654 0.731 0.737 0.728
      Dy 3.00 3.06 2.98 3.40 3.44 3.20 3.60 3.64 3.64
      Ho 0.614 0.642 0.635 0.640 0.653 0.589 0.675 0.675 0.671
      Er 1.63 1.68 1.64 1.74 1.83 1.67 1.94 1.87 1.87
      Tm 0.262 0.268 0.258 0.241 0.266 0.236 0.269 0.265 0.275
      Yb 1.58 1.61 1.54 1.53 1.68 1.55 1.78 1.67 1.73
      Lu 0.240 0.265 0.236 0.234 0.260 0.234 0.265 0.260 0.260
      Y 15.9 16.6 16.1 16.7 17.5 16.0 18.4 17.8 17.7
      Ba 609 613 676 682 576 607 601 649 603
      Th 14.5 20.6 15.6 20.4 24.0 19.8 24.1 20.6 25.5
      U 2.85 3.46 3.18 3.74 4.40 3.83 4.02 3.80 4.61
      Nb 10.8 15.0 11.1 8.05 8.41 8.94 8.22 8.44 8.34
      Ta 1.82 2.43 1.43 1.25 1.38 1.16 1.27 1.34 1.45
      Pb 47.2 47.6 43.3 46.2 60.0 48.4 37.4 45.2 42.0
      Sr 7 544 686 758 764 611 699 698 758 640
      Zr 176 182 179 181 182 174 178 182 194
      Hf 4.42 4.85 4.48 5.05 5.46 4.89 5.05 5.03 5.64
      Be 1.79 1.94 1.80 1.85 2.01 1.65 1.91 1.72 2.07
      Bi 0.310 0.581 0.307 0.494 0.768 1.09 1.03 0.490 0.558
      Co 18.3 14.3 18.7 17.7 16.7 17.2 20.6 17.3 14.8
      Cr 55.4 56.8 55.3 62.0 49.1 56.0 60.1 58.6 54.7
      Cs 12.0 7.05 9.46 11.8 7.44 13.6 11.8 11.5 6.63
      Cu 31.8 37.0 23.2 34.6 156.4 87.3 71.5 37.7 87.9
      Ga 18.9 19.7 19.7 23.9 22.7 22.5 24.8 22.7 23.8
      Hf 4.42 4.85 4.48 5.05 5.46 4.89 5.03 5.05 5.64
      Li 33.0 29.8 29.0 22.8 17.7 29.1 27.5 28.3 15.9
      Ni 32.9 26.2 32.7 34.4 29.7 32.6 38.0 34.3 30.5
      Rb 128 134 120 121 140 137 120 127 140
      Sc 9.58 9.59 10.0 10.8 9.83 10.6 11.8 10.5 10.0
      Sr 754 686 758 764 611 699 758 724 640
      V 99.8 89.2 98.0 95.0 96.2 95.7 105.7 98.1 91.6
      Zn 86.3 77.3 88.1 66.9 90.0 69.1 74.1 70.9 72.0
      K 24 894 27 687 25 516 27 525 30 021 28 254 29 369 26 717 29 970
      Ti 4 649 4 512 4 761 4 461 4 137 4 460 4 203 4 540 4 177
      P 1 086 1 003 1 095 1 189 1 042 1 175 1 052 1 187 1 024
      ΣREE 208.10 206.74 207.88 228.05 249.96 230.69 248.60 250.61 243.44
      LREE 195.43 193.84 195.19 214.42 235.76 217.61 233.82 235.93 228.85
      HREE 12.67 12.90 12.69 13.63 14.20 13.08 14.78 14.68 14.59
      LREE/HREE 15.42 15.03 15.38 15.73 16.60 16.64 15.82 16.07 15.69
      LaN/YbN 22.06 21.16 22.54 26.72 27.09 27.69 25.23 27.44 25.31
      δEu 0.90 0.81 0.88 0.86 0.82 0.83 0.84 0.87 0.81
      δCe 0.88 0.89 0.87 0.88 0.88 0.86 0.87 0.87 0.87
      注:LOI为烧失量;A/NK=Al2O3/(Na2O+K2O), A/CNK=Al2O3/(CaO+Na2O+K2O); Mg#=100×Mg(Mg+Fe); δEu=2EuN/(SmN+GdN); FeOT=FeO+0.899 8×Fe2O3.
      下载: 导出CSV
    • [1] Castillo, P.R., Janney, P.E., Solidum, R.U., 1999. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy & Petrology, 134(1): 33-51. https://doi.org/10.1007/s004100050467
      [2] Chen, L., Zheng, Y.F., 2019. Neoproterozoic Oceanic Slab-Mantle Interaction: Geochemical Evidence from Mesozoic Andesitic Rocks in the Middle and Lower Yangtze Valley. Earth Science, 44(12): 4144-4151 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912024.htm
      [3] Copeland, P., Harrison, T. M., Pan, Y., et al., 1995. Thermal Evolution of the Gangdese Batholith, Southern Tibet: A History of Episodic Unroofing. Tectonics, 14: 223-236. https://doi.org/10.1029/94tc01676
      [4] Dai, Z.W., Li, G.M., Ding, J., et al., 2018. Late Cretaceous Adakite in Nuri Area, Tibet: Products of Ridge Subduction. Earth Science, 43(8): 2727-2741(in Chinese with English abstract) http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808015.htm
      [5] Davidson, J., MacPherson, C., Turner, S., 2007. Amphibole Control in the Differentiation of Arc Magmas. Geochimica et Cosmochimica Acta, 71: A204-A204.
      [6] Guan, Q., Zhu, D.C., Zhao, Z.D., et al., 2010. Late Cretaceous Adakites in the Eastern Segment of the Gangdese Belt, Southern Tibet: Products of Neo-Tethyan Ridge Subduction?. Acta Petrologica Sinica, 26(7): 2165-2179 (in Chinese with English abstract).
      [7] Guo, F., Nakamuru, E., Fan, W. M., et al., 2007. Generation of Palaeocene Adakitic Andesites by Magma Mixing, Yanji Area, NE China. Journal of Petrology, 48(4): 661-692. https://doi.org/10.1093/petrology/egl077
      [8] Hou, Z.Q., Gao, Y.F., Meng, X.J., et al., 2004. Genesis of Adakitic Porphyry and Tectonic Controls on the Gangdese Miocene Porphyry Copper Belt in the Tibetan Orogen. Acta Petrologica Sinica, 20(2): 239-248 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200402005.htm
      [9] Huang, W.T., Liang, H. Y., Zhang, J., et al., 2020. Formation of the Cretaceous Skarn Cu-Au Deposits of the Southern Gangdese Belt, Tibet: Case Studies of the Kelu and Sangbujiala Deposits. Ore Geology Reviews, 122: 103481. https://doi.org/10.1016/j.oregeorev.2020.103481
      [10] Jiang, Z.Q., Wang, Q., Wyman, D. A., et al., 2011. Origin of about 30 Ma Chongmuda Adakitic Intrusive Rocks in the Southern Gangdese Region, Southern Tibet: Partial Melting of the Northward Subducted Indian Continent Crust?. Geochimica, 40(2): 126-146 (in Chinese with English abstract).
      [11] Kay, R.W., Kay, S.M., 1993. Delamination and Delamination Magmatism. Tectonophysics, 219(219): 177-189. https://doi.org/10.1016/0040-1951(93)90295-U
      [12] Lang, X.H., Tang, J.X., Li, Z.J., et al., 2014. U-Pb and Re-Os Geochronological Evidence for the Jurassic Porphyry Metallogenic Event of the Xiongcun District in the Gangdese Porphyry Copper Belt, Southern Tibet, PRC. Journal of Asian Earth Sciences, 79: 608-622. https://doi.org/10.1016/j.jseaes.2013.08.009
      [13] Loadera, A.M., Wilkinsonb, J.J., Armstrongb, R.N., 2017. The Effect of Titanite Crystallisation on Eu and Ce Anomalies in Zircon and Its Implications for the Assessment of Porphyry Cu Deposit Fertility. Earth and Planetary Science Letters, 472: 107-119. https://doi.org/10.1016/j.epsl.2017.05.010
      [14] Loucks, R.R., 2014. Distinctive Composition of Copper-Ore-Forming Arcmagmas. Australian Journal of Earth Sciences, 61(1): 5-16. https://doi.org/10.1080/08120099.2013.865676
      [15] Lu, Y.J., Loucks, R.R., Fiorentini, M., et al., 2016. Zircon Compositions as a Pathfinder for Porphyry Cu±Mo±Au Deposits. In: Richards, J., ed., Society of Economic Geologists Special Publication No. 19 on Tethyan Tectonics and Metallogeny. Society of Economic Geologists, Littleton, 329-347.
      [16] Ma, L., Wang, Q., Wyman, D.A., et al., 2013. Late Cretaceous (100-89 Ma) Magnesian Charnockites with Adakitic Affinities in the Milin Area, Eastern Gangdese: Partial Melting of Subducted Oceanic Crust and Implications for Crustal Growth in Southern Tibet. Lithos, 175-176: 315-332. https://doi.org/10.1016/j.lithos.04.006
      [17] Martin, H., Smithies, R., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite(TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 79: 1-24. https://doi.org/10.1016/j.lithos.2004.04.048
      [18] Mo, X.X., Zhao, Z.D., Deng, J.F., et al., 2003. Response of Volcanism to the India-Asia Collision. Earth Science Frontiers, 10(3): 135-148 (in Chinese with English abstract).
      [19] Mungall, J.E., 2002. Roasting the Mantle: Slab Melting and the Genesis of Major Au and Au-Rich Cu Deposits. Geology, 30(10): 915-918. https://doi.org/10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2 doi: 10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2
      [20] Qu, X.M., Jiang, J.H., Xin, H.B., et al., 2010. A Study of Two Groups of Adakite almost Simulteneously Formed in Gangdese Collisional Orogen, Tibet: Why does One Group Contain Copper Mineralization and the Other Not?. Mineral Deposits, 29(3): 381-394 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201003000.htm
      [21] Rapp, R.P., Shimizu, N., Norman, M.D., et al., 1999. Reaction between Slab Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 160: 335-356. https://doi.org/10.1016/s0009-2541(99)00106-0
      [22] Reich, M., Parada, M. A., Palacios, C., et al., 2003. Adakite-Like Signature of Late Miocene Intrusions at the Los Pelambres Giant Porphyry Copper Deposit in the Andes of Central Chile: Metallogenic Implications. Mineralium Deposita, 38(7): 876-885. https://doi.org/10.1007/s00126-003-0369-9
      [23] Richards, J.P., 2011. Magmatic to Hydrothermal Metal Fluxes in Convergent and Collided Margins. Ore Geology Reviews, 40(1): 1-26. https://doi.org/10.1016/j.oregeorev.2011.05.006
      [24] Schiano, P., Monzier, M., Eissen, J.P., et al., 2010. Simple Mixing as the Major Control of the Evolution of Volcanic Suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology, 160: 297-312. https://doi.org/10.1007/s00410-009-0478-2
      [25] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, Londou, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19.
      [26] Tang, J.X., Ding, S., Meng, Z., et al., 2016. The First Discovery of the Low Sulfidation Epithermal Deposit in Linzizong Volcanics, Tibet: A Case Study of the Sinongduo Ag Polymetallic Deposit. Acta Geoscientia Sinica, 37(4): 461-470 (in Chinese with English abstract).
      [27] Tang, J.X., Wang, D.H., Wang, X.W., et al., 2010. Geological Features and Metallogenic Model of the Jiama Copper-Polymetallic Deposit in Tibet. Acta Geoscientica Sinica, 31(4): 495-506(in Chinese with English abstract).
      [28] Tang, J.X., Wang, Q., Yang, H.H., et al., 2017. Mineralization, Exploration and Resource Potential of Porphyry-Skarn-Epithermal Copper Polymetallic Deposits in Tibet. Acta Geoscientia Sinica, 38(5): 571-613 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201705002.htm
      [29] Wang, Q., McDermott, F., Xu, J.F., et al., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology, 33(6): 465-468. https://doi.org/10.1130/G21522.1
      [30] Wang, T., 2000. Origin of Hybrid Granitoids and the Implications for Continental Dynamics. Acta Petrologica Sinica, 16(2): 161-168(in Chinese with English abstract). http://qikan.cqvip.com/Qikan/Article/Detail?id=4156161
      [31] Wen, D.R., Chung, S.L., Song, B., et al., 2008. Late Cretaceous Gangdese Intrusions of Adakitic Geochemical Characteristics, SE Tibet: Petrogenesis and Tectonic Implications. Lithos, 105(1-2): 1-11. https://doi.org/10.1016/j.lithos.02.005
      [32] Xie, F.W., Tang, J.X., Chen, Y.C., et al., 2018. Apatite and Zircon Geochemistry of Jurassic Porphyries in the Xiongcun District, Southern Gangdese Porphyry Copper Belt: Implications for Petrogenesis and Mineralization. Ore Geology Reviews, 96: 98-114. https://doi.org/10.1016/j.oregeorev.2018.04.013
      [33] Xu, J.F., Shinjo, R., Defant, M.J., et al., 2002. Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 30(12): 1111-1114. https://doi.org/10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2 doi: 10.1130/0091-7613(2002)030<1111:OOMAIR>2.0.CO;2
      [34] Yang, Z.M., Hou, Z.Q., Song, Y.C., et al., 2008. Qulong Superlarge Porphyry Cu Deposit in Tibet: Geology, Alteration and Mineralization. Mineral Deposits, 27(3): 279-318 (in Chinese with English abstract).
      [35] Yang, Z.Y., Tang, J.X., Zhang, L.J., et al., 2020. Geological and Geochemical Characteristics of Lithocaps in Sinongduo Area, Tibet: Implications for the Mineralization in Linzizong Group Volcanic Rocks. Earth Science, 45(3): 789-803 (in Chinese with English abstract).
      [36] Yin, A., Harrison, T.M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211
      [37] Zhang, Z.M., Zhao, G.C., Santosh, M., et al., 2010. Late Cretaceous Charnockite with Adakitic Affinities from the Gangdese Batholith, Southeastern Tibet: Evidence for Neo-Tethyan Mid-Ocean Ridge Subduction?. Gondwana Research, 17: 615-631. https://doi.org/10.1016/j.gr.2009.10.007
      [38] Zheng, Y.F., Chen, Y.X., 2016. Continental versus Oceanic Subduction Zone. National Science Review, 3(4): 495-519. https://doi.org/10.1093/nsr/nww049
      [39] Zhu, D. C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23: 1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      [40] Zhu, D. C., Zhao, Z. D., Pan, G. T., et al., 2009. Early Cretaceous Subduction-Related Adakite-Like Rocks of the Gangdese Belt, Southern Tibet: Products of Slab Melting and Subsequent Melt-Peridotite Interaction?. Journal of Asian Earth Sciences, 34(3): 298-309. doi: 10.1016/j.jseaes.2008.05.003
      [41] 陈龙, 郑永飞, 2019. 长江中下游中生代安山质火山岩记录的新元古代大洋板片-地幔相互作用. 地球科学, 44(12): 4144-4151. doi: 10.3799/dqkx.2019.243
      [42] 代作文, 李光明, 丁俊, 等, 2018. 西藏努日晚白垩世埃达克岩: 洋脊俯冲的产物. 地球科学, 43(8): 2727-2741. doi: 10.3799/dqkx.2018.230
      [43] 管琪, 朱弟成, 赵志丹, 等, 2010. 西藏南部冈底斯带东段晚白垩世埃克岩: 新特提斯洋脊俯冲的产物?. 岩石学报, 26(7): 2165-2179. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201007019.htm
      [44] 侯增谦, 高永丰, 孟祥金, 等, 2004. 西藏冈底斯中新世斑岩铜矿带: 埃达克质斑岩成因与构造控制. 岩石学报, 20(2): 239-248. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200402005.htm
      [45] 姜子琦, 王强, Wyman, D.A., 等, 2011. 西藏冈底斯南缘冲木达约30 Ma埃达克质侵入岩的成因: 向北俯冲的印度陆壳的熔融?. 地球化学, 40(2): 126-146. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201102002.htm
      [46] 莫宣学, 赵志丹, 邓晋福, 等, 2003. 印度-亚洲大陆主碰撞过程的火山作用响应. 地学前缘, 10(3): 135-148. doi: 10.3321/j.issn:1005-2321.2003.03.013
      [47] 曲晓明, 江军华, 辛洪波, 等, 2010. 西藏冈底斯造山带几乎同时形成的两套埃达克岩为什么一套含矿一套不含矿?. 矿床地质, 29(3): 381-394. doi: 10.3969/j.issn.0258-7106.2010.03.001
      [48] 唐菊兴, 丁帅, 孟展, 等, 2016. 西藏林子宗群火山岩中首次发现低硫化型浅成低温热液型矿床: 以斯弄多银多金属矿为例. 地球学报, 37(4): 461-470. doi: 10.3975/cagsb.2016.04.08
      [49] 唐菊兴, 王登红, 汪雄武, 等, 2010. 西藏甲玛铜多金属矿矿床地质特征及其矿床模型. 地球学报, 31(4): 495-506. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201004002.htm
      [50] 唐菊兴, 王勤, 杨欢欢, 等, 2017. 西藏斑岩-矽卡岩-浅成低温热液铜多金属矿成矿作用、勘查方向与资源潜力. 地球学报, 38(5): 571-613. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705002.htm
      [51] 王涛, 2000. 花岗岩混合成因研究及大陆动力学意义. 岩石学报, 16(2): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002002.htm
      [52] 杨志明, 侯增谦, 宋玉财, 等, 2008. 西藏驱龙超大型斑岩铜矿床: 地质、蚀变与成矿. 矿床地质, 27(3): 279-318. doi: 10.3969/j.issn.0258-7106.2008.03.002
      [53] 杨宗耀, 唐菊兴, 张乐骏, 等, 2020. 西藏斯弄多地区岩帽地质地球化学特征: 林子宗群火山岩中成矿的指示. 地球科学, 45(3): 789-803. doi: 10.3799/dqkx.2019.044
    • 加载中
    图(11) / 表(3)
    计量
    • 文章访问数:  1037
    • HTML全文浏览量:  198
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-09-02
    • 刊出日期:  2021-05-15

    目录

      /

      返回文章
      返回