Sedimentary Environment and Lithofacies of Fine-Grained Hybrid Sedimentary in Dongying Sag: A Case of Fine-Grained Sedimentary System of the Es4
-
摘要: 为了进行陆相断陷湖盆泥页岩细粒混积岩有利岩相预测,以指导页岩油气有利目标优选,综合运用岩心、薄片、全岩衍射、元素、古生物等资料,系统进行了东营凹陷沙四上亚段泥页岩细粒混积岩沉积环境恢复、岩相精细表征,揭示了沉积环境对岩相及其组合、分布的控制作用.研究表明,东营凹陷沙四上亚段泥页岩细粒混积岩沉积期整体上表现为气候由半湿润向湿润转化,自下而上显示碎屑物源输入量在增加、水体水深加大、盐度降低、还原性减弱的过程;有序复杂多变的沉积环境一定程度上控制了泥页岩细粒混积岩沉积组构复杂性,进而控制了细粒混积岩相的多样性、组合和分布规律性.建立基于“岩石组分、沉积构造、灰质结构和有机质丰度”四端元划分方案,将东营凹陷沙四上亚段泥页岩细粒混积岩划分为20类,实现了复杂细粒混积岩岩相划分;半湿润少物源条件下,浅湖强还原盐水环境主要发育膏盐、含有机质层状膏质泥岩和含有机质层状泥质灰(云)岩相组合,半深湖强还原咸水环境主要发育富有机质纹层状微晶泥质灰岩和富有机质纹层状灰质泥岩频繁互层岩相组合,半深湖强还原半咸水环境主要发育富有机质水平泥晶纹层泥质灰岩和富有机质纹层灰质泥岩频繁互层岩相组合,深湖还原半咸水环境主要发育富有机质层状泥质灰岩夹富有机质层状灰质泥岩相组合;湿润多物源条件下,深湖强还原半咸水环境主要发育富有机质层状泥质灰岩和富有机质层状灰质泥岩频繁互层岩相组合,深湖还原半咸水环境主要发育富有机质层状灰质泥岩夹富有机质层状泥质灰岩相组合.Abstract: In order to predict the favorable lithofacies of shale fine-grained migmatite in the continental fault depressed lake basin and guide the optimization of shale oil and gas favorable targets, the sedimentary environment restoration and fine lithofacies characterization of shale fine-grained migmatite in the upper part of Es4 Formation in Dongying sag are systematically carried out by using the data of core, thin section, whole rock diffraction, element and paleontology, etc., revealing the sedimentary environment and its combination and division to the lithofacies. The results show that the depositional period of shale fine-grained migmatites in the upper part of Es4 Formation in Dongying depression is generally characterized by the transformation of climate from semi humid to humid, from bottom to top, it shows the process of increasing injection amount of clastic material source, increasing water depth, decreasing salinity and decreasing reducibility; the orderly and complex sedimentary environment controls the complexity of sedimentary fabric of shale fine-grained mixed rock to a certain extent, and then controls the diversity, combination and distribution regularity of fine-grained mixed rock facies. Based on the 4-terminal element division scheme of rock composition, sedimentary structure, calcareous structure and organic matter abundance, the shale fine-grained migmatites in the upper Es4 of Dongying depression are divided into 20 types, and the complex fine-grained migmatites are divided into different lithofacies. Under the condition of semi humid with less material source, the shallow lake strong reducing salt water environment mainly developed gypsum salt, organic laminated gypsum mudstone combined with organic laminated argillaceous limestone (dolomite) facies, while the semi deep lake strong reducing salt water environment mainly developed organic laminated microcrystalline argillaceous limestone combined with organic laminated lime mudstone frequent interbedded lithofacies. In the strong reducing and brackish water environment of the semi deep lake, there are frequent interbedded lithofacies combined with organic rich horizontal micrite and organic rich laminated limestone mudstone, while in the reducing and brackish water environment of the deep lake, there are mainly organic bedded argillaceous limestone with organic rich bedded calcareous mudstone lithofacies combination. Under the condition of moist and multi-source, the deep lake strong reducing brackish water environment mainly develops the frequent interbedded lithofacies combined with organic rich layered argillaceous limestone and organic rich layered calcareous mudstone, while the deep lake reducing brackish water environment mainly develops the organic rich layered calcareous mudstone mingled with organic rich layered argillaceous limestone lithofacies association.
-
表 1 东营凹陷细粒混积岩岩相类型划分方案
Table 1. Classification scheme of fine-grained mixed rock facies in Dongying depression
岩相类型 岩石组分 碳酸盐岩晶粒大小 沉积构造(纹层厚度) 有机质丰度(TOC) 富有机质纹层状泥岩 Vsh≥75% < 4 μm < 1mm ≥2% 富有机质纹层状灰质泥岩 Vsh≥50%,25≤Vca < 50% 有机质纹层状云质泥岩 Vsh≥50%,25≤Vdo < 50% 富有机质纹层状泥晶泥质灰岩 Vca≥50%,25≤Vsh < 50% 富有机质纹层状微晶泥质灰岩 Vca≥50%,25≤Vsh < 50% ≥4 μm, < 30 μm 富有机质纹层状微晶泥质云岩 Vdo≥50%,25≤Vsh < 50% 富有机质纹层状粗晶泥质灰岩 Vca≥50%,25≤Vsh < 50% ≥30 μm 富有机质层状灰质泥岩 Vsh≥50%,25≤Vca < 50% < 4 μm ≥1mm 富有机质层状泥质灰岩 Vca≥50%,25≤Vsh < 50% 富有机质块状泥岩 Vsh≥75% 纹层不发育 含有机质纹层状粉砂质泥岩 Vsh≥50%,25≤Vsa < 50% < 1mm < 2% 含有机质纹层状灰岩 Vca≥75% ≥4 μm, < 30 μm 含有机质层状砂质泥岩 Vsh≥50%,25≤Vsa < 50% < 4 μm ≥1mm 含有机质层状云质泥岩 Vsh≥50%,25≤Vdo < 50% 含有机质层状膏质泥岩 Vsh≥50%,25≤Vgy < 50% 含有机质层状砂质灰岩 Vca≥50%,25≤Vsa < 50% 含有机质层状泥质云岩 Vdo≥50%,25≤Vsh < 50% 含有机质块状泥岩 Vsh≥75% 纹层不发育 含有机质块状灰岩 Vca≥75% 含有机质块状云岩 Vdo≥75% 注:Vsh.泥质含量;Vca.灰质含量;Vdo.云质含量;Vsa.砂质含量. -
[1] Bond, D.P.G., Wignall, P.B., 2010. Pyrite Framboid Study of Marine Permian-Triassic Boundary Sections: A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction. Geological Society of America Bulletin, 122(7-8): 1265-1279. https://doi.org/10.1130/b30042.1 [2] Cheng, X., 2000. Electronic Scanning Research on the Crystals of Continental Calcium Carbonate. Carsologica Sinica, 19(3): 206-211, 290-292(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr200003002 [3] Deng, H.W., Qian, K., 1990.The Genetic Types and Association Evolution of Deep Lacustrine Facies Mudstones. Acta Sedimentologica Sinica, 8(30):1-20(in Chinese with English abstract). [4] Guan, Y.Z., 1992. The Element, Clay Mineral and Depositional Environment in Horqin Sand Land. Journal of Desert Research, 12(1): 9-15(in Chinese with English abstract). http://www.researchgate.net/publication/283969925_The_element_clay_mineral_and_depositional_environment_in_Horqin_Sand_Land [5] Hou, J.F., 2008.Metallogenetic Characteristics and Regularities of Au-V Mineralization in Lower Cambrian Black Rock Series, Southern Qinling Moutain(Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [6] Jiang, Z.X., Liang, C., Wu, J., et al., 2013. Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Acta Petrolei Sinica, 34(6): 1031-1039(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201306001 [7] Krumbein, W.C., 1932. The Mechanical Analysis of Fine-Grained Sediments. Journal of Sedimentary Research, 2(3): 140-149. https://doi.org/10.2110/jsr.2.140 [8] Li, G.S., Wang, Y.B., Lu, Z.S., et al., 2014. Geobiological Processes of the Formation of Lacustrine Source Rock in Paleogene. Science China Earth Sciences, 44(6): 1206-1217(in Chinese). doi: 10.1007/s11430-013-4753-8 [9] Li, S.J., Wang, M.Z., Zheng, D.S., et al., 2003. Recovery of Climate of Palaeogene in Jiyang Depression of Shandong. Journal of Shandong University of Science and Technology(Natural Science), 22(3): 6-9(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdkjdxxb200303003 [10] Mei, B.W., Liu, X.J., 1980.The Distribution of Isoprenoid Alkanes in China's Crude Oil and Its Relation with the Geologic Environment. Oil & Gas Geology, 2(1):99-115(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT198002002.htm [11] Shiah, F. K., Liu, K. K., Kao, S. J., et al., 2000. The Coupling of Bacterial Production and Hydrography in the Southern East China Sea: Spatial Patterns in Spring and Fall. Continental Shelf Research, 20(4-5): 459-477. https://doi.org/10.1016/s0278-4343(99)00081-3 [12] Su, X., Ding, X., Jiang, Z.X., et al., 2012. Using of Multi-microfossil Proxies for Reconstructing Quantitative Paleo-Water Depth during the Deposit Period of LST of Es4s in Dongying Depression. Earth Science Frontiers, 19(1): 188-199(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201201025 [13] Teng, X.H., Zhang, Z.G., Zheng, K., et al., 2019. Control of Tectonocs and Climate Coupling on the Paleogene Evaporites Deposition in the Jiangling Depression. Contributions to Geology and Mineral Resources Research, 34(4): 556-562(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201904008 [14] Tian, J.C., Zhang, X., 2016. Sedimentary Geochemistry. Geological Publishing House, Beijing(in Chinese). [15] Wang, G.P., Zhang, Y.X., Zhai, Z.L., et al., 2006. Ratios of Specific Elements and Their Implications for Original Source of Sediments and Redox Condition within Sedimentation Profile of the Marsh in Semi-Arid Areas. Journal of Jilin University(Earth Science Edition), 36(3): 449-454(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200603022 [16] Wang, X.J., Wang, Z.X., Liu, X.Y., et al., 2008. Restoring Palaeo-Depth of the Ordos Basin by Using Uranium Response from GR Logging. Natural Gas Industry, 28(7): 46-48(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG200807015.htm [17] Wang, Y., Liu, H.M., Song, G.Q., et al., 2017. Carbonate Genesis and Geological Significance of Shale Hydrocarbon in Lacustrine Facies Mud Shale: A Case Study of Source Rocks in the Upper Submember of Member 4 and Lower Submember of Member 3 of Shahejie Formation, Dongying Sag. Acta Petrolei Sinica, 38(12): 1390-1400(in Chinese with English abstract). [18] Wang, Y., Liu, H.M., Song, G.Q., et al., 2019. Lacustrine Shale Fine-Grained Sedimentary System in Jiyang Depression. Acta Petrolei Sinica, 40(4): 395-410(in Chinese with English abstract). [19] Xie, X.N., Ye, M.S., Xu, C.G., et al., 2018. High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43(10): 3526-3539(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015 [20] Zheng, R.C., Liu, M.Q., 1999. Study on Palaeosalinity of Chang 6 Oil Reservoir Set in Ordos Basin. Oil & Gas Geology, 20(1): 20-25(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900650466 [21] Zhou, L.H., Chen, C.W., Han, G.M., et al., 2019. Geological Characteristics and Shale Oil Exploration Potential of Lower First Member of Shahejie Formation in Qikou Sag, Bohai Bay Basin. Earth Science, 44(8): 2736-2750(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201908018 [22] Zhou, L.H., Pu, X.G., Chen, C.W., et al., 2018. Concept, Characteristics and Prospecting Significance of Fine-Grained Sedimentary Oil Gas in Terrestrial Lake Basin: A Case from the Second Member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin. Earth Science, 43(10): 3625-3639(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201810023.htm [23] Zhou, L.H., Pu, X.G., Deng, Y., et al., 2016. Several Issues in Studies on Fine-Grained Sedimentary Rocks. Lithologic Reservoirs, 28(1): 6-15(in Chinese with English abstract). [24] 程星, 2000.陆相碳酸钙沉积试验的晶体扫描电镜研究.中国岩溶, 19(3): 206-211, 290-292. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyr200003002 [25] 邓宏文, 钱凯, 1990.深湖相泥岩的成因类型和组合演化.沉积学报, 8(3): 1-20. http://www.cnki.com.cn/Article/CJFD1990-CJXB199003000.htm [26] 关有志, 1992.科尔沁沙地的元素, 粘土矿物与沉积环境.中国沙漠, 12(1): 9-15. http://www.cnki.com.cn/Article/CJFDTotal-ZGSS199201001.htm [27] 侯俊富, 2008.南秦岭下寒武统黑色岩系中金-钒成矿特征及成矿规律(硕士学位论文).西安: 西北大学. http://cdmd.cnki.com.cn/Article/CDMD-10697-2008077084.htm [28] 姜在兴, 梁超, 吴靖, 等, 2013.含油气细粒沉积岩研究的几个问题.石油学报, 34(6): 1031-1039. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201306001 [29] 李国山, 王永标, 卢宗盛, 等, 2014.古近纪湖相烃源岩形成的地球生物学过程.中国科学:地球科学, 44(6): 1206-1217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201406012 [30] 李守军, 王明镇, 郑德顺, 等, 2003.山东济阳坳陷古近纪的气候恢复.山东科技大学学报(自然科学版), 22(3): 6-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sdkjdxxb200303003 [31] 梅博文, 刘希江, 1980.我国原油中异戊间二烯烷烃的分布及其与地质环境的关系.石油与天然气地质, 2(1): 99-115. [32] 苏新, 丁旋, 姜在兴, 等, 2012.用微体古生物定量水深法对东营凹陷沙四上亚段沉积早期湖泊水深再造.地学前缘, 19(1): 188-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201201025 [33] 滕晓华, 张志高, 郑珂, 等, 2019.构造与气候对江陵凹陷古近系蒸发盐沉积的耦合作用.地质找矿论丛, 34(4): 556-562. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzzklc201904008 [34] 田景春, 张翔, 2016.沉积地球化学.北京:地质出版社. [35] 王国平, 张玉霞, 翟正丽, 等, 2006.半干旱区沼泽沉积剖面特征元素比值及其物源、氧化还原变化信息.吉林大学学报(地球科学版), 36(3): 449-454. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb200603022 [36] 王学军, 王志欣, 刘显阳, 等, 2008.利用铀的测井响应恢复鄂尔多斯盆地古水深.天然气工业, 28(7): 46-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200807013 [37] 王勇, 刘惠民, 宋国奇, 等, 2017.湖相泥页岩中碳酸盐成因及页岩油气地质意义:以东营凹陷沙河街组四段上亚段-沙河街组三段下亚段烃源岩为例.石油学报, 38(12): 1390-1400. [38] 王勇, 刘惠民, 宋国奇, 等, 2019.济阳坳陷泥页岩细粒沉积体系.石油学报, 40(4): 395-410. http://www.cqvip.com/QK/95667X/201904/83898866504849574852484850.html [39] 解习农, 叶茂松, 徐长贵, 等, 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43(10): 3526-3539. doi: 10.3799/dqkx.2018.277 [40] 郑荣才, 柳梅青, 1999.鄂尔多斯盆地长6油层组古盐度研究.石油与天然气地质, 20(1): 20-25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900650466 [41] 周立宏, 陈长伟, 韩国猛, 等, 2019.渤海湾盆地歧口凹陷沙一下亚段地质特征与页岩油勘探潜力.地球科学, 44(8): 2736-2750. doi: 10.3799/dqkx.2019.112 [42] 周立宏, 蒲秀刚, 陈长伟, 等, 2018.陆相湖盆细粒岩油气的概念、特征及勘探意义:以渤海湾盆地沧东凹陷孔二段为例.地球科学, 43(10): 3625-3639. doi: 10.3799/dqkx.2018.990 [43] 周立宏, 蒲秀刚, 邓远, 等, 2016.细粒沉积岩研究中几个值得关注的问题.岩性油气藏, 28(1): 6-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc201601002