Current Situation and Development of Urban Underground Space Suitability Evaluation
-
摘要: 城市地下空间的开发利用是城市可持续发展的必然途径.科学合理的城市地下空间适宜性评价可为城市的立体规划提供决策依据.因此,对城市各区域开展地下空间的适宜性评价就显得尤为重要.从城市地质模型的可视化、地下空间适宜性评价指标、权重体系、评价模型、评价模式及评价系统这6个方面,系统梳理了城市地下空间适宜性评价的国内外研究现状;围绕城市地下空间适宜性评价指标的量化、城市地下空间适宜性评价可视化结果的可靠度以及城市地下空间适宜性立体化评价系统的普适性这3个关键问题,探讨了城市地下空间适宜性评价的主要内容和未来发展方向.旨在促进城市地下空间适宜性评价工作的深化,为城市地下空间的开发与利用提供一定的指导.Abstract: The development and utilization of urban underground space is an inevitable way of urban sustainable development. Scientific and reasonable evaluation of urban underground space suitability can provide decision-making basis for urban three-dimensional planning. Therefore, it is very important to evaluate the suitability of underground space in different areas of cities. The research status quo of urban underground space suitability evaluation is systematically reviewed from the aspects of urban underground space suitability evaluation visualization, evaluation index, weight system, evaluation model, evaluation mode and evaluation system. Then, the main content and future development direction of urban underground space suitability evaluation are discussed, which focuses on the key issues such as the quantification of urban underground space suitability evaluation index, the reliability of visualized results of urban underground space suitability evaluation and the universality of three-dimensional evaluation system of urban underground space suitability. In this paper, it may deepen the evaluation of the suitability of urban underground space and provide some guidances for the development and utilization of urban underground space.
-
表 1 主要城市地下空间分层埋深
Table 1. Underground space layered depth of main cities
城市 浅层埋深(m) 中层埋深(m) 次深层埋深(m) 深层埋深(m) 北京 0~10 10~30 30~50 50~100 上海 0~15 15~40 > 40 广州 0~15 15~30 天津 0~10 10~30 30~50 > 50 东京 0~15 15~30 30~100 > 100 成都 0~15 15~30 30~50 50~100 南京 0~15 15~40 > 40 -
[1] Admiraal, H., Cornaro, A., 2016. Why Underground Space should be Included in Urban Planning Policy-and How This will Enhance an Urban Underground Future. Tunnelling and Underground Space Technology, 55: 214-220. doi: 10.1016/j.tust.2015.11.013 [2] Anagnostopoulos, K. P., Mamanis, G., 2011. The Mean-Variance Cardinality Constrained Portfolio Optimization Problem: An Experimental Evaluation of Five Multiobjective Evolutionary Algorithms. Expert Systems with Applications, 38(11): 14208-14217. doi: 10.1016/j.eswa.2011.04.233 [3] Cao, W.G., Zhang, Y.J., 2006. Study on Two-Stage Fuzzy Synthetic Judgment Method with Changing Weight Value for Rock Quality Classification in Underground Structures. Chinese Journal of Rock Mechanics and Engineering, 25(8): 1612-1618 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2006.08.014 [4] Chen, J., 2015. Research on the Master Planning for Underground Space in Beijing (Dissertation). Tsinghua University, Beijing (in Chinese with English abstract). [5] Chen, W., Zhang, G.H., Wang, H., et al., 2019. Risk Assessment of Mountain Tunnel Collapse Based on Rough Set and Conditional Information Entropy. Rock and Soil Mechanics, 40(9): 3549-3558 (in Chinese with English abstract). [6] Chen, Z.L., Chen, J.Y., Liu, H., et al., 2018. Present Status and Development Trends of Underground Space in Chinese Cities: Evaluation and Analysis. Tunnelling and Underground Space Technology, 71: 253-270. doi: 10.1016/j.tust.2017.08.027 [7] Cheng, G.H., Su, J.W., Li, C., et al., 2019. Strategic Thinking of Urban Underground Space Exploration and Safe Utilization. Resources Survey & Environment, 40(3): 226-233 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HSDZ201903008.htm [8] Dong, M., Neukum, C., Hu, H., et al., 2015. Real 3D Geotechnical Modeling in Engineering Geology: A Case Study from the Inner City of Aachen, Germany. Bulletin of Engineering Geology and the Environment, 74(2): 281-300. https://doi.org/10.1007/s10064-014-0640-6 [9] Durmisevic, S., Sariyildiz, S., 2001. A Systematic Quality Assessment of Underground Spaces-Public Transport Stations. Cities, 18(1): 13-23. doi: 10.1016/S0264-2751(00)00050-0 [10] Guo, J., Wang, J.C., Liu, S.H., 2019. Application of an Improved Cloud Model and Distance Discrimination to Evaluate Slope Stability. Mathematical Problems in Engineering, (4): 1-17. [11] He, S.Y., Lei, K., Wu, P., et al., 2019. Evaluation on Resources Function of Groundwater during Urbanization in Karst Region of Guizhou Province. Earth Science, 44(9): 2839-2850 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909003.htm [12] Hong, W.E., Yan, H., Su, X.Q., 2019. Engineering Geological Evaluation and Space Development Suggestions for the Gaotie (High-Speed Rail) New District in Western Anqing City. Geology of Anhui, 29(2): 122-127 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-AHDZ201902011.htm [13] Hou, W.S., Yang, L., Deng, D.C., et al., 2016. Assessing Quality of Urban Underground Spaces by Coupling 3D Geological Models: The Case Study of Foshan City, South China. Computers and Geosciences, 89: 1-11. doi: 10.1016/j.cageo.2015.07.016 [14] Hu, X.X., Liu, G.B., Tao, H.B., 2016. Research on Evaluation Suitability for the Development of Underground Space in Ningbo City Based on ArcGIS. Chinese Journal of Underground Space and Engineering, 12(6): 1439-1444 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BASE201606002.htm [15] Huang, J.L., Wang, Q., 2015. Importance Evaluation of Rock and Soil Mass Attribute in Underground Space Based on the Theory of Rough Set. Chinese Journal of Underground Space and Engineering, 11(3): 547-550, 556 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BASE201503002.htm [16] Huang, X., Schweiger, H. F., Huang, H. W., 2013. Influence of Deep Excavations on Nearby Existing Tunnels. International Journal of Geomechanics, 13(2): 170-180. doi: 10.1061/(ASCE)GM.1943-5622.0000188 [17] Jiang, S.Y., Wang, Q.Y., Li, C.L., et al., 2019. Evaluation Suitability for the Underground Space Using Expert-Analytic Hierarchy Process. Chinese Journal of Underground Space and Engineering, 15(5): 1290-1299 (in Chinese with English abstract). [18] Jiang, X., Wang, T.T., Mu, J., 2018. Research on the Application of Suitability and Resources in Underground Space Development. Chinese Journal of Underground Space and Engineering, 14(5): 1145-1153 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=BASE201805001&dbcode=CJFD&year=2018&dflag=pdfdown [19] Jiang, Y., Wu, L.X., Che, D.F., 2009. Integrated Entropy Weight and Variable Fuzzy Sets Evaluation Approach for Underground Space Resource Quality Problem. Journal of China University of Mining & Technology, 38(6): 872-877 (in Chinese with English abstract). [20] Jørgensen, F., Høyer, A.S., Sandersen, P. B. E., et al., 2015. Combining 3D Geological Modelling Techniques to Address Variations in Geology, Data Type and Density—An Example from Southern Denmark. Computers and Geosciences, 81: 53-63. doi: 10.1016/j.cageo.2015.04.010 [21] Li, M. C., Han, Y. Q., Miao, Z. J., et al., 2014. Alternative 3D Modeling Approaches Based on Complex Multi-Source Geological Data Interpretation. Transactions of Tianjin University, 20(1): 7-14. https://doi.org/10.1007/s12209-014-2171-4 [22] Li, X.Z., Li, C., Parriaux, A., et al., 2016. Multiple Resources and Their Sustainable Development in Urban Underground Space. Tunnelling and Underground Space Technology, 55, 59-66. doi: 10.1016/j.tust.2016.02.003 [23] Li, Z.L., Pan, M., Han, D.K., et al., 2016. Three-Dimensional Structural Modeling Technique. Earth Science, 41(12): 2136-2146 (in Chinese with English abstract). [24] Liu, X.G., Chen, G.L., Hou, W.S., et al., 2006. 3D Complex Geological Entity Modeling Method Based on Line-Frame Model. Earth Science, 31(5): 668-672 (in Chinese with English abstract). doi: 10.1007/s11442-006-0415-5 [25] Liu, Y.L., Wu, J.P., Peng, P.Y., et al., 2017. Suitability Evaluation for the Utilization of Underground Space in Consideration of Geo-environmental Factors. Journal of Yangtze River Scientific Research Institute, 34(5): 58-62, 67 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-yangtze-river-scientific-research-institute_thesis/0201214381262.html [26] Lu, Z.L., Wu, L., Zhuang, X.Y., et al., 2016. Quantitative Assessment of Engineering Geological Suitability for Multilayer Urban Underground Space. Tunnelling and Underground Space Technology, 59: 65-76. doi: 10.1016/j.tust.2016.06.003 [27] Peng, J., Liu, K., Zheng, F.T., et al., 2010. Evaluation for the Suitability of Underground Space Exploitation and Utilization Base on AHP. Chinese Journal of Underground Space and Engineering, 6(4): 688-694 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dxkj201004006 [28] Poisel, R., Angerer, H., Pollinger, M., et al., 2009. Mechanics and Velocity of the Larchberg-Galgenwald Landslide (Austria). Engineering Geology, 109: 57-66. doi: 10.1016/j.enggeo.2009.01.002 [29] Shen, J.H., Gai, L.T., Wan, S.N., et al., 2019. Risk Assessment of Deep Excavation Construction Based on Fuzzy Set and Improved Evidence Theory. Journal of Civil Engineering and Management, 36(2): 28-34, 41(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-civil-engineering-management_thesis/0201270757769.html [30] Sterling, R.L., Nelson, S., 1982. Planning the Development of Underground Space. Underground Space, 7: 86-103. [31] Sun, J.M., Yang, D., 2019. Improvement and Application of Micro-Grid Comprehensive Evaluation Method. Science Technology and Engineering, 19(27): 186-191(in Chinese with English abstract). [32] Thierry, P., Prunier-Leparmentier, A., Lembezat, C., et al., 2009. 3D Geological Modeling at Urban Scale and Mapping of Ground Movement Susceptibility from Gypsum Dissolution: The Paris Example (France). Engineering Geology, 105: 51-64. doi: 10.1016/j.enggeo.2008.12.010 [33] Wang, F., Zhang, Y.Q., Wang, J.H., et al., 2012. Suitability Evaluation Method for Engineering Geology of Excavation Engineering in Beijing. Chinese Journal of Geotechnical Engineering, 34: 739-743 (in Chinese with English abstract). [34] Wang, L., Li, P., Lü, C.X., 2010. Application of Vertex Incidence Matrix Algorithm to Independent Baselines Search and Independent Double-Difference Ambiguity Selection. Geomatics and Information Science of Wuhan University, 35(6): 715-718 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHCH201006025.htm [35] Wang, X., Zhen, F., Huang, X.J., et al., 2013. Factors Influencing the Development Potential of Urban Underground Space: Structural Equation Model Approach. Tunnelling and Underground Space Technology, 38: 235-243. doi: 10.1016/j.tust.2013.06.005 [36] Wang, Y., Luo, Z.H., Wu, Y., et al., 2019. Urbanization Factors of Groundwater Vulnerability Assessment in Karst Area: A Case Study of Shuicheng Basin. Earth Science, 44(9): 2909-2919 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909009.htm [37] Wang, Y.L., Yang, F.Q., 2019. Evaluation of Fire Safety of Underground Space Based on Entropy Weighted Matter-Element Extension Model. Safety & Security, 40(1): 54-57, 61 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ANQU201901016.htm [38] Wu, B.H., Zhang, S.J., Xu, P.L., et al., 2017. Geological Environment Suitability Assessment of Underground Space Development in Ningbo City. Chinese Journal of Underground Space and Engineering, 13(z1): 16-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-BASE2017S1003.htm [39] Wu, L.X., Jiang, Y., Che, D.F., et al., 2007. Fuzzy Synthesis Evaluation and 3D Visualization for Resource Quality of Urban Underground Space. Journal of China University of Mining & Technology, 36(1): 97-102 (in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=23617041 [40] Yan, H.Q., Niu, W.H., Han, H.L., 2017. Objective Weight Method Based on Principal Component Analysis to Establish Index Weight. Journal of University of Jinan (Science and Technology), 31(6): 519-523(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SDJC201706009.htm [41] Ye, J., Hou, W.S., Deng, D.C., et al., 2016. 3D Quality Assessment for Urban Underground Space Resources Based on Variable Fuzzy Set. Resources Science, 38(11): 2147-2156 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZRZY201611013.htm [42] Youssef, A. M., Pradhan, B., Tarabees, E., 2011. Integrated Evaluation of Urban Development Suitability Based on Remote Sensing and GIS Techniques: Contribution from the Analytic Hierarchy Process. Arabian Journal of Geosciences, 4(3-4): 463-473. https://doi.org/10.1007/s12517-009-0118-1 [43] Yu, X.Y., Xu, Y.X., 2015. A 3D Geological Modeling Based on Geophysical Data. Earth Science, 40(3): 419-424 (in Chinese with English abstract). [44] Zhao, J., Lee, K.W., 1996. Construction and Utilization of Rock Caverns in Singapore Part C: Planning and Location Selection. Tunnelling and Underground Space Technology, 11(1): 81-84. doi: 10.1016/0886-7798(96)00056-9 [45] Zhang, C., 2007. Research of Urban Underground Space Development and Plan in Chengdu (Dissertation). Southwest Jiaotong University, Chengdu (in Chinese with English abstract). [46] Zhang, X.L., Wu, C.L., Zhou, Q., et al., 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou, China. Earth Science, 45(2): 634-644 (in Chinese with English abstract). [47] Zhang, Y.M., 2012. Study on Three-Dimensional Engineering Geological Structure and Suitability of the Underground Space in Harbin's Key Region (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [48] Zhang, Y.S., Zeng, D.F., Liu, Y.Q., 2019. Comprehensive Evaluation of Green Governance Capacity of Yangtze River Economic Belt Based on Variation of Coefficient Method. Journal of Shanxi Normal University (Natural Science Edition), 33(4): 56-60 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SFDX201904011.htm [49] Zheng, G., Wei, S. W, 2008. Numerical Analyses of Influence of Overlying Pit Excavation on Existing Tunnels. Journal of Central South University of Technology, 15(2): 69-75. https://doi.org/10.1007/s11771-008-0438-4 [50] Zhou, D.K., Li, X.Z., Wang, Q., et al., 2019. GIS-Based Urban Underground Space Resources Evaluation toward Three-Dimensional Land Planning: A Case Study in Nantong, China. Tunnelling and Underground Space Technology, 84: 1-10. doi: 10.1016/j.tust.2018.10.017 [51] Zhu, D., Mei, Y.D., Wu, Z.H., et al., 2019. Calculation of Overall Hydrologic Alteration in Middle and Lower Reaches of Ganjiang River Based on Grouping Weighting and Improved Nemerow Index. Engineering Journal of Wuhan University, 52(12): 1048-1055 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-WSDD201912003.htm [52] Zhu, L.F., Wu, X.C., Liu, X.G., 2004. Study of Information System of Urban 3D Geological Data Supported by 3D GIS. Rock and Soil Mechanics, 25(6): 882-886 (in Chinese with English abstract). [53] 曹文贵, 张永杰, 2006. 地下结构岩体质量分类的变权重二级模糊综合评判方法研究. 岩石力学与工程学报, 25(8): 1612-1618. doi: 10.3321/j.issn:1000-6915.2006.08.014 [54] 陈珺, 2015. 北京城市地下空间总体规划编制研究(硕士学位论文). 北京: 清华大学. [55] 陈舞, 张国华, 王浩, 等, 2019. 基于粗糙集条件信息熵的山岭隧道坍塌风险评价. 岩土力学, 40(9): 3549-3558. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201909028.htm [56] 程光华, 苏晶文, 李采, 等, 2019. 城市地下空间探测与安全利用战略构想. 华东地质, 40(3): 226-233. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ201903008.htm [57] 何守阳, 雷琨, 吴攀, 等, 2019. 贵州岩溶山区城镇化进程中地下水的资源功能评价. 地球科学, 44(9): 2839-2850. doi: 10.3799/dqkx.2019.981 [58] 洪文二, 严惠, 苏学权, 2019. 安庆西高铁新区工程地质评价及空间开发建议. 安徽地质, 29(2): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-AHDZ201902011.htm [59] 胡学祥, 刘干斌, 陶海冰, 2016. 基于ArcGIS宁波市地下空间开发适宜性评价研究. 地下空间与工程学报, 12(6): 1439-1444. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201606002.htm [60] 黄静莉, 王清, 2015. 基于粗糙集的地下空间岩土体属性重要性评估. 地下空间与工程学报, 11(3): 547-550, 556. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201503002.htm [61] 江思义, 王启耀, 李春玲, 等, 2019. 基于专家-层次分析法的地下空间适宜性评价. 地下空间与工程学报, 15(5): 1290-1299. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201905003.htm [62] 蒋旭, 王婷婷, 穆静, 2018. 地下空间开发利用适宜性与资源量的应用研究. 地下空间与工程学报, 14(5): 1145-1153. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201805001.htm [63] 姜云, 吴立新, 车德福, 2009. 地下空间资源质量熵权与可变模糊集组合评估. 中国矿业大学学报, 38(6): 872-877, 896. doi: 10.3321/j.issn:1000-1964.2009.06.022 [64] 李兆亮, 潘懋, 韩大匡, 等, 2016. 三维构造建模技术. 地球科学, 41(12): 2136-2146. doi: 10.3799/dqkx.2016.149 [65] 刘修国, 陈国良, 候卫生, 等, 2006. 基于线框架模型的三维复杂地质体建模方法. 地球科学, 31(5): 668-672. http://www.earth-science.net/article/id/1623 [66] 刘运来, 吴江鹏, 彭培宇, 等, 2017. 基于地质环境要素的地下空间利用适宜性评价. 长江科学院院报, 34(5): 58-62, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201705014.htm [67] 彭建, 柳昆, 郑付涛, 等, 2010. 基于AHP的地下空间开发利用适宜性评价. 地下空间与工程学报, 6(4): 688-694. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201004007.htm [68] 申建红, 盖立庭, 万索妮, 等, 2019. 基于模糊集与改进证据理论的深基坑施工风险评价. 土木工程与管理学报, 36(2): 28-34, 41. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCJ201902006.htm [69] 孙建梅, 杨迪, 2019. 微电网综合评价赋权方法的改进与应用. 科学技术与工程, 19(27): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201927029.htm [70] 王法, 张亚芹, 王军辉, 等, 2012. 北京市中心城基坑工程地质条件适宜性评价方法研究. 岩土工程学报, 34: 739-743. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2012S1144.htm [71] 王磊, 李盼, 吕翠仙, 2010. 关联矩阵法在独立基线及独立双差模糊度选择中的应用. 武汉大学学报(信息科学版), 35(6): 715-718. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH201006025.htm [72] 汪莹, 罗朝晖, 吴亚, 等, 2019. 岩溶地下水脆弱性评价的城镇化因子: 以水城盆地为例. 地球科学, 44(9): 2909-2919. doi: 10.3799/dqkx.2019.135 [73] 王寓霖, 阳富强, 2019. 基于熵权物元可拓模型的地下空间火灾安全评价. 安全, 40(1): 54-57, 61. https://www.cnki.com.cn/Article/CJFDTOTAL-ANQU201901016.htm [74] 吴炳华, 张水军, 徐鹏雷, 等, 2017. 宁波市地下空间开发地质环境适宜性评价. 地下空间与工程学报, 13(z1): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2017S1003.htm [75] 吴立新, 姜云, 车德福, 等, 2007. 城市地下空间资源质量模糊综合评估与3D可视化. 中国矿业大学学报, 36(1): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200701019.htm [76] 颜惠琴, 牛万红, 韩惠丽, 2017. 基于主成分分析构建指标权重的客观赋权法. 济南大学学报(自然科学版), 31(6): 519-523. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJC201706009.htm [77] 叶菁, 侯卫生, 邓东成, 等, 2016. 基于可变模糊集的城市地下空间资源三维质量评价. 资源科学, 38(11): 2147-2156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201611013.htm [78] 余翔宇, 徐义贤, 2015. 一种基于物性数据的深部三维地质建模方法. 地球科学, 40(3): 419-424. doi: 10.3799/dqkx.2015.033 [79] 张弛, 2007. 成都市地下空间开发与规划研究(硕士学位论文). 成都: 西南交通大学. [80] 张夏林, 吴冲龙, 周琦, 等, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384 [81] 张玉敏, 2012. 哈尔滨市核心城区三维工程地质结构及地下空间适宜性研究(硕士学位论文). 长春: 吉林大学. [82] 张运书, 曾德凤, 刘雅庆, 2019. 基于变异系数法的长江经济带绿色治理能力综合评价. 山西师范大学(自然科学报), 33(4): 56-60. https://www.cnki.com.cn/Article/CJFDTOTAL-SFDX201904011.htm [83] 朱迪, 梅亚东, 吴贞晖, 等, 2019. 基于分组赋权和改进内梅罗指数的赣江中下游整体水文改变度计算. 武汉大学学报(工学版), 52(12): 1048-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD201912003.htm [84] 朱良峰, 吴信才, 刘修国, 2004. 3D GIS支持下的城市三维地质信息系统研究. 岩土力学, 25(6): 882-886. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200406010.htm