Genesis of High-Quality Mixed Rock Reservoir and Its Exploration Significance in Es1 around Southeast Margin of Qinnan Sag, Bohai Sea
-
摘要: 为了查明秦南凹陷东南缘沙一段混积岩优质储层的成因,利用常规物性、铸体薄片、扫描电镜、碳氧同位素等分析化验资料,对Q29、L25和Q30构造沙一段混积岩储层特征以及优质储层控制因素进行了研究.结果表明:(1)构造背景控制了沙一段混积岩储层的类型、厚度、成分和整体物性,是混积岩优质储层差异的主因.Q29构造沙一段主要发育陡坡带混积扇,由扇三角洲夹生屑滩组成的旋回为主,粒度粗,砾石含量高,陆源碎屑中中酸性火山岩岩屑和砾石含量最高,石英含量低,整体物性较差,但厚度大,以溶蚀孔为主,见大量生物体腔孔.L25构造沙一段主要发育缓坡带混积滩,由扇三角洲与生屑滩的交互、或生屑滩夹扇三角洲为主,粒度细,砾石含量低,陆源碎屑中长石和石英含量高,整体物性较好,厚度中等,溶蚀孔和原生孔发育,见大量生物体腔孔.Q30构造沙一段主要发育水下局部隆起带生屑滩,陆源碎屑含量低,整体物性相对稍差,厚度最薄,溶蚀孔和生物体腔孔为主.(2)受控于不同构造背景下沉积作用的差异,Q29、L25和Q30构造遭受的成岩作用既具有相似性,又具有差异性,咸化湖泊、强波浪淘洗、低泥质含量、早期白云石化、含大量的生物碎屑和泥晶包壳以及酸性溶蚀作用是形成沙一段混积岩优质储层的共同特点.但不同构造遭受的大气淡水淋滤、压实作用、胶结作用、溶解作用强度具有明显的差异性.(3)混积岩储层具有较大的埋深下限,在混积岩优质储层影响因素的约束下,寻找能够形成大中型油气藏的规模较大的陡坡带混积岩储层和物性较好的缓坡带混积岩储层,是目前渤海海域古近系中深层勘探的重要目标之一.Abstract: In order to ascertain the genesis of the high-quality reservoirs of the Es1 in the southeast margin of the Qinnan sag, using conventional physical properties, cast thin sections, scanning electron microscope, carbon and oxygen isotopes and other analytical laboratory data, the characteristics of the Es1 in Q29, L25 and Q30 structures and the control factors of high-quality reservoirs were studied. The results show follows. (1) The tectonic background controls the type, thickness, composition and overall physical properties of the first member of Shahejie mixed rock reservoir, which is the main reason for the difference of high-quality mixed rock reservoir. The Q29 structure mainly develops mixed fans in steep slopes. Longitudinally, it is composed of cycles of fan delta with bioclastic beaches. It has the characteristics of coarse particle size, high gravel content, the highest content of medium-acid volcanic rocks in terrestrial detritus, and low quartz content. Its overall physical properties are poor, the thickness is large, the dissolution pores are dominant, and a large number of biological cavity pores are developed. The L25 structure mainly develops mixed beaches in gentle slopes. Vertically, it is composed of the interaction between fan delta and bioclastic shoal, or bioclastic shoal with fan delta. Development of dissolution pores, primary pores and a large number of biological cavity pores. The Q30 structure mainly develops bioclastic shoals in the local uplift zone under water. It has the characteristics of low content of terrestrial debris, relatively poor overall physical properties, thinnest thickness, dissolution pores and biological cavity pores. (2) Controlled by differences in different tectonic backgrounds and sedimentation, the diagenesis suffered by the Q29, L25, and Q30 structures is both similar and different. Salty lakes, strong wave elutriation, low mud content, early dolomization, containing a large amount of biological debris, the development of mud crystal cladding, and strong acidic dissolution are the common characteristics of the formation of high-quality mixed-rock reservoirs. However, the strength of atmospheric freshwater leaching, compaction, cementation, and dissolution suffered by different structures show obvious differences. (3) The mixed rock reservoir has a large lower limit of burial depth. Constrained by the factors affecting the quality of high-quality mixed rock reservoirs, searching for large-scale and medium-sized oil and gas reservoirs in large-scale steep slope zone mixed rock reservoirs and good physical properties in gentle slope zone mixed rock reservoirs is currently one of the important targets of near-middle-deep exploration in the Paleogene Bohai Sea area.
-
Key words:
- mixed rock reservoir /
- tectonic background /
- sedimentary environment /
- diagenesis /
- Es1 /
- Qinnan sag /
- Bohai Sea /
- sedimentation
-
图 2 研究区混积岩岩性三角分类图
Ⅰ.陆源碎屑岩体系;Ⅱ.以陆源碎屑为主的混积岩;Ⅲ.以化学碳酸盐为主的混积岩;Ⅳ.组分均未超50%的混积岩;Ⅴ.以生物成因碳酸盐颗粒为主的混积岩;Ⅵ.碳酸盐岩体系; 据叶茂松等(2018)
Fig. 2. Triangle classification of lithology of mixed rock in the study area
图 4 秦南凹陷东南缘混积岩储层储集空间微观特征
a.白云质砂岩,粒间孔,岩屑溶蚀孔(粒内孔、铸模孔),胶结物溶蚀孔,Q-29-B井,3 370.05 m,单偏光;b.含砂生屑白云岩,生物体腔孔,胶结物溶蚀孔,岩屑溶蚀孔,Q-29-B井,3 350.00 m,单偏光;c.含砂生屑白云岩,生物体腔孔,胶结物溶蚀孔,Q-29-B井,3 375.76 m,单偏光;d.含生屑砾岩,生物体腔孔,裂缝,Q-29-A井,3 311.50 m,单偏光;e.白云质砂岩,粒间孔,铸模孔,长石溶蚀孔,L-25-A井,3 306.00 m,单偏光;f.白云质砂岩,铸模孔,长石溶蚀孔,胶结物溶蚀孔,L-25-A井,3 295.00 m,单偏光;g.含砂生屑白云岩,生物体腔孔,铸模孔,胶结物溶蚀孔,L-25-A井,3 287.50 m,单偏光;h.含砂生屑白云岩,生物体腔孔,白云石溶蚀孔,L-25-B井,3 352.82 m,单偏光;i.含砂生屑白云岩,生物体腔孔,长石、中酸性火山岩、白云石溶蚀孔,Q-30-A井,3 057.00 m,单偏光
Fig. 4. Microscopic characteristics of reservoir space of mixed rock reservoirs in the southeast margin of Qinnan sag
图 8 秦南凹陷沙一段混积岩储层大气淡水淋滤特征
a.垂直淋滤缝,Q-29-A井,3 375.40~3 375.45 m,岩心;b.淋滤缝中和砂砾岩周围充填的蚀变高岭石,Q-29-B井,3 374.71 m,扫描电镜;c.粒状白云石,粒间差异溶蚀,粒间孔发育,Q-29-B井,3 375.77 m;d.粒状白云石,粒间溶蚀孔、铸模孔发育,Q-29-A井,3 433.00 m,单偏光;e.粒间蚀变高岭石,高岭石边缘呈不规则状,L-25-B井,3 350.00 m;f.大量粒间溶蚀孔、粒内溶蚀孔、铸模孔,L-25-A井,3 306.00 m;g.钾长石遭受强烈淋滤,L-25-A井,3 311.50 m,扫描电镜;h.粒状白云石,漂浮在孔隙中,长石溶蚀较彻底,形成铸模孔,L-25-B井,3 374.00 m
Fig. 8. Atmospheric freshwater leaching characteristics of the mixed rock reservoirs in the Es1 in Qinnan sag
图 10 秦南凹陷东南缘沙一段混积岩储层典型成岩作用镜下特征
a.颗粒以点接触为主,颗粒之间被白云石包壳阻隔,泥晶白云石包壳发育(发棕色-棕黄色-暗红色光),粒间被白云石(发橘红色光)和少量方解石(发亮黄色光)充填,溶蚀孔内充填高岭石(发靛蓝色光),Q-29-B井,3 373.51 m,阴极发光;b.泥晶白云石、亮晶白云石、含铁方解石胶结,Q-29-A井,3 045.00 m,正交光;c.铁白云石充填于粒间,Q-29-B井,3 325.00 m,单偏光;d.粒间充填大量的白云石、高岭石和少量的次生石英、伊利石,Q-29-B井,3 342.70 m,扫描电镜;e.颗粒点接触为主,颗粒表面发育泥晶白云石包壳,发育粒间孔,见少量生物碎屑,L-25-B井,3 391.00 m,单偏光;f.生屑大量发育,生屑骨架成分主要为白云石,见大量白云石包壳,白云石包壳中可见少量方解石充填,L-25-C井,3 353.83 m,正交光;g.颗粒边缘被白云石包壳包裹,见少量含铁方解石,粒间充填大量的高岭石,长石强烈溶蚀形成大量的铸模孔,L-25-A井,3 295.00 m,单偏光;h.泥晶白云石包壳、高岭石、伊利石充填粒间,L-25-B井,3 370.00 m,扫描电镜;i.铸模孔内充填大量鳞片状高岭石,铸模孔被白云石包壳包裹,L-25-B井,3 352.22 m;j.生屑骨架主要为白云石,颗粒表面被白云石包壳包裹,Q-30-A井,3 057.10 m,单偏光;k.含白云石粉砂岩,粒间充填泥晶白云石,Q-30-A井,3 058.47 m,单偏光;l.泥云岩,发育大量泥晶白云石,Q-30-A井,3 054.49 m,单偏光
Fig. 10. Microscopic characteristics of typical diagenesis of mixed rock reservoir in the Es1 in southeast margin of Qinnan sag
图 12 研究区混积岩储层白云石成因判别图
a.白云石胶结物碳、氧同位素散点图,底图据吴仕玖等(2019);b.白云石碳、氧同位素组成分布,底图据曹家鑫等(2018)
Fig. 12. Discrimination of genesis of dolomite in mixed rock reservoir of the study area
-
[1] Cao, J.X., He, F.F., Zhu, R., et al., 2018. Features of Carbon-Oxygen Isotopes in Calcite Cement from Yingcheng Formation Sandstone in Sujiatun-Pijia Area of Lishu Fault Depression. Geological Science and Technology Information, 37(3): 75-80 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201803010 [2] Carvalho, M.D., Praça, U.M., Silva-Telles, Jr., et al., 2000. Bioclastic Carbonate Lacustrine Facies Models in the Campos Basin (Lower Cretaceous), Brazil. In: Gierlowski-Kordesch, E.H., Kelts, K.R., eds., Lake Basins through Space and Time. AAPG Studies in Geology, 46: 245-256. [3] Feng, J.L., Hu, K., Cao, J., et al., 2011. A Review on Mixed Rocks of Terrigenous Clastics and Carbonates and Their Petroleum-Gas Geological Significance. Geological Journal of China Universities, 17(2): 297-307(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201102015 [4] Liu, Z.G., Zhou, X.H., Li, J.P., et al., 2011. Reservoir Characteristics and Controlling Factors of the Paleogene Sha-2 Member in 36-3 Structure, Eastern Shijiutuo Uplift, Bohai Sea. Oil & Gas Geology, 32(6): 832-838 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201106004 [5] Lü, Z.X., Song, X.Z., Zhang, J., et al., 2016. Characteristics and Genesis of Paleogene Deeply-Buried High-Porosity Lacustrine Dolomite Reservoirs in the Central Bohai Sea Area. Natural Gas Industry, 36(12): 10-17 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201612002 [6] Ma, Y.P., Liu, L., 2003. Sedimentary and Diagenetic Characteristics of Paleogene Lacustrine 'Hunji' Rock in Beach District, Dagang. Acta Sedimentologica Sinica, 21(4): 607-613 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200304010.htm [7] Madden, R.H.C., Wilson, M.E.J., 2012. Diagenesis of Neogene Delta-Front Patch Reefs: Alteration of Coastal, Siliciclastic-Influenced Carbonates from Humid Equatorial Regions. Journal of Sedimentary Research, 82(11): 871-888. https://doi.org/10.2110/jsr.2012.26 [8] Song, T.S., Ma, F., Liu, L., et al., 2015. Features and Genesis of Carbon-Oxygen Isotopes in Calcite Cement from Sandstone in Oil-Bearing Fuyu Layer of Daqing Placanticline. Oil & Gas Geology, 36(2): 255-261 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201502010 [9] Thompson, D.L., Stilwell, J.D., Hall, M., 2015. Lacustrine Carbonate Reservoirs from Early Cretaceous Rift Lakes of Western Gondwana: Pre-Salt Coquinas of Brazil and West Africa. Gondwana Research, 28(1): 26-51. https://doi.org/10.1016/j.gr.2014.12.005 [10] Wang, G.M., Zhang, J., Wang, Q.B., et al., 2018. Factors Controlling Medium-to-Deep Coarse Siliciclastic Reservoirs of High Quality at the Southeastern Margin of Qinnan Sag, Bohai Bay Basin, China. Oil & Gas Geology, 39(2): 330-339 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201802012 [11] Wang, Q.B., Liu, L., Niu, C.M., et al., 2018. Impacts of the Freshwater Diagenetic Environment to the Mix-Deposition of Lacustrine Carbonate and Clastic at the Steep Slope of Shijiutuo Uplift, Bohai Bay Basin. Earth Science, 43(Suppl.2): 234-242 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S2019.htm [12] Wang, Q.B., Liu, L., Niu, C.M., et al., 2019. The Geological Evidences and Impacts of Deep Thermal Fluid on Lacustrine Carbonate Reservoir in the Actic Area of the North Part of Bozhong Depression, Bohai Bay Basin. Earth Science, 44(8):2751-2760(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201908019 [13] Wang, Y., Wu, H.J., Liu, H.Z., et al., 2018. Bioclastic Dolomite Reservoir Characteristics and Controlling Factors in S1 Formation of BZ 13-1 Oilfield in Bohai Bay. Journal of Chongqing University of Science and Technology (Natural Science Edition), 20(5): 11-16 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqsygdzkxxxb201805004 [14] Warren, J., 2000.Dolomite:Occurrence, Evolution and Economically Important Associations. Earth-Science Reviews, 52(1-3): 1-81. https://doi.org/10.1016/s0012-8252(00)00022-2 [15] Wu, S.J., Fan, C.W., Zhao, Z.J., et al., 2019. Origin of Carbonate Cement in Reservoirs of Ledong Area, Yinggehai Basin and Its Geological Significance. Earth Science, 44(8): 2686-2694(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201908013 [16] Xie, X.N., Ye, M.S., Xu, C.G., et al., 2018. High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43(10):196-209(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015 [17] Yang, C.Q., Sha, Q.A., 1990. Sedimentary Environment of the Middle Devonian Qujing Formation, Qujing, Yunnan Province: A Kind of Mixing Sedimentation of Terrigenous Clastics and Carbonate. Acta Sedimentologica Sinica, 8(2): 59-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199002008.htm [18] Ye, M.S., Xie, X.N., Xu, C.G., et al., 2018. Discussion for Classification: Designation System of Mixed Siliciclastic: Carbonate Sediments and the Implication for Their Reservoir Prediction: A Case Study of Mixed Sediments from Bohai Sea Area. Geological Review, 64(5): 1118-1131 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZLP201805007.htm [19] Zhang, L., Wang, D.Y., Zhang, X.T., et al., 2019. The Controlling Factors of the High-Quality Mixed Reservoirs in QHD29-2E Structure, Bohai Sea. Acta Sedimentologica Sinica, 37(1): 200-211 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201901019 [20] 曹家鑫, 何方方, 朱蓉, 等, 2018.梨树断陷营城组砂岩方解石胶结物碳、氧同位素特征.地质科技情报, 37(3): 75-80. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb201803010 [21] 冯进来, 胡凯, 曹剑, 等, 2011.陆源碎屑与碳酸盐混积岩及其油气地质意义.高校地质学报, 17(2): 297-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201102015 [22] 刘志刚, 周心怀, 李建平, 等, 2011.渤海海域石臼坨凸起东段36-3构造古近系沙二段储集层特征及控制因素.石油与天然气地质, 32(6): 832-838. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201106004 [23] 吕正祥, 宋修章, 张健, 等, 2016.渤海海域中部古近系深埋藏湖相高孔隙度白云岩储层特征及其成因.天然气工业, 36(12): 10-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201612002 [24] 马艳萍, 刘立, 2003.大港滩海区第三系湖相混积岩的成因与成岩作用特征.沉积学报, 21(4): 607-613. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200304011 [25] 宋土顺, 马锋, 刘立, 等, 2015.大庆长垣扶余油层砂岩中方解石胶结物的碳、氧同位素特征及其成因.石油与天然气地质, 36(2): 255-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201502010 [26] 王冠民, 张婕, 王清斌, 等, 2018.渤海湾盆地秦南凹陷东南缘中深层砂砾岩优质储层发育的控制因素.石油与天然气地质, 39(2): 330-339. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz201802012 [27] 王清斌, 刘立, 牛成民, 等, 2018.石臼坨凸起陡坡带大气淡水成岩环境对湖相混积岩储层的影响.地球科学, 43(增刊2): 234-242. doi: 10.3799/dqkx.2018.138 [28] 王清斌, 刘立, 牛成民, 等, 2019.渤中凹陷北部陡坡带热液活动及其对湖相碳酸盐岩储层的影响.地球科学, 44(8): 2751-2760. doi: 10.3799/dqkx.2018.347 [29] 汪跃, 吴浩君, 刘洪洲, 等, 2018.渤中13-1油田沙一段生屑云岩储层特征及控制因素.重庆科技学院学报(自然科学版), 20(5): 11-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cqsygdzkxxxb201805004 [30] 吴仕玖, 范彩伟, 招湛杰, 等, 2019.莺歌海盆地乐东区碳酸盐胶结物成因及地质意义.地球科学, 44(8): 2686-2694. doi: 10.3799/dqkx.2019.154 [31] 解习农, 叶茂松, 徐长贵, 等, 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43(10):196-209. doi: 10.3799/dqkx.2018.277 [32] 杨朝青, 沙庆安, 1990.云南曲靖中泥盆统曲靖组的沉积环境一种陆源碎屑..沉积学报, 8(2): 59-66. http://www.cqvip.com/QK/95994X/19902/221837.html [33] 叶茂松, 解习农, 徐长贵, 等, 2018.混积岩分类命名体系探讨及对混积岩储层评价的启示:以渤海海域混积岩研究为例.地质论评, 64(5): 1118-1131. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201805007.htm [34] 张藜, 王德英, 张新涛, 等, 2019.渤海海域秦皇岛29-2东构造优质混积储层主控因素.沉积学报, 37(1): 200-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201901019