• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南岭构造带基础地质特征与成矿地质背景

    徐先兵 梁承华 陈家驹 徐亚东

    徐先兵, 梁承华, 陈家驹, 徐亚东, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151
    引用本文: 徐先兵, 梁承华, 陈家驹, 徐亚东, 2021. 南岭构造带基础地质特征与成矿地质背景. 地球科学, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151
    Xu Xianbing, Liang Chenghua, Chen Jiaju, Xu Yadong, 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151
    Citation: Xu Xianbing, Liang Chenghua, Chen Jiaju, Xu Yadong, 2021. Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt. Earth Science, 46(4): 1133-1150. doi: 10.3799/dqkx.2020.151

    南岭构造带基础地质特征与成矿地质背景

    doi: 10.3799/dqkx.2020.151
    基金项目: 

    中国地质调查局项目 DD20190811

    详细信息
      作者简介:

      徐先兵(1983-), 男, 副教授, 博士, 主要从事构造地质学的教学与科研工作.ORCID: 0000-0002-5341-9492.E-mail: xbxu2011@cug.edu.cn

    • 中图分类号: P56

    Fundamental Geological Features and Metallogenic Geological Backgrounds of Nanling Tectonic Belt

    • 摘要: 南岭构造带横跨扬子地块、江南造山带以及华夏地块,是中国钨锡铅锌铀等有色金属和铌钽锂铯与稀土等关键金属成矿带.通过综述近十五年来的研究进展,总结了南岭构造带基础地质特征与成矿地质背景.扬子与华夏地块沿永州-桂林-柳州一线于新元古代拼合,但缺乏直接的地质证据,需对龙胜蛇绿混杂岩和鹰扬关混杂岩进行深入研究.新元古代至中生代花岗岩二阶段模式年龄TDM2值揭示2.0~1.2 Ga为南岭构造带的主要地壳增生期.相似的花岗岩特征和构造线方向指示广西期和印支期造山机制均为陆内造山作用,是华南大陆南侧不同板块之间拼贴远程应力场的产物.燕山早期花岗岩εHf(t)值沿南岭构造带自西向东显著减小,而TDM2值明显增加,指示湘南-桂北-粤北地区在晚侏罗世经历了古太平洋板块断离和软流圈上涌并发育强烈的壳幔相互作用,为南岭构造带东段华夏地块上钨锡等多金属成矿提供了成矿物质来源和有利的伸展构造背景.南岭构造带西段扬子地块构造相对稳定且显生宙岩浆活动较弱,新元古代大塘坡组和寒武系底部页岩是良好的页岩气勘探目标.综合沉积、岩浆以及构造变形,华南中生代特提斯构造域向古太平洋构造域转换开始于晚三叠世.

       

    • 图  1  南岭构造带地形-地貌数字高程模型

      Fig.  1.  Digital elevation map of the Nanling tectonic belt, South China

      图  2  南岭构造带大地构造位置示意图与地质简图

      F1.萍乡-江山-绍兴断裂; F2.茶陵-郴州-临武-鹰扬关-梧州断裂; F3.永州-桂林-柳州断裂; F4.安化-罗城断裂; F5.怀化-凯里断裂; F6.鹰潭-安远-韶关-清远断裂; F7.会昌-河源断裂; F8.梧州-四会隐伏断裂; F9.茶陵-广昌断裂

      Fig.  2.  Location of tectonic map and sketch geological map of the Nanling tectonic belt

      图  3  南岭构造带新元古代至早古生代地层柱状图

      Fig.  3.  Neoproterozoic to Early Paleozoic stratigraphic column of Nanling tectonic belt

      图  4  南岭构造带中酸性侵入岩锆石U-Pb年龄分布(a)与年龄-经度分布(b)

      Fig.  4.  Detrital zircon age patterns for granitoids (a) and diagram of age vs. longitude (b) for the Nanling tectonic belt, South China

      图  5  南岭构造带花岗岩εHf(t)、TDM2 vs. 年龄和经度分布

      Fig.  5.  Diagrams of εHf(t) vs. longitude (a), εHf(t) vs. age (b), TDM2 vs. longitude (c) and TDM2 vs. age (d) for the Nanling tectonic belt, South China

      图  6  南岭构造带构造纲要

      Fig.  6.  Tectonic outline map of the Nanling tectonic belt, South China

      图  7  南岭构造带钨锡铌钽铀矿与稀土矿分布

      Fig.  7.  W-Sn-Nb-Ta-U and REE deposites in the Nanling tectonic belt

    • [1] Bai, D.Y., Chen, J.C., Meng, D.B., et al., 2006. Forming Mechanism of Indosinian Trough-Like Folds in Yanling Region, Hunan. Journal of Earth Sciences and Environment, 28(4): 10-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XAGX200604002.htm
      [2] Bai, D.Y., Jia, B.H., Zhong, X., et al., 2012a. Study on the Deformation of Indosinian Movement in Southeastern Hunan. Geological Review, 58(1): 19-29(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201201002.htm
      [3] Bai, D.Y., Jia, B.H., Zhong, X., et al., 2012b. Potential Genesis of the Trending Changes of Jinning Period and Caledonian Structural Lineaments in Middle-Southern Hunan. Journal of Geomechanics, 18(2): 165-177(in Chinese with English abstract).
      [4] Bao, X. J., Zhang, S. H., Jiang, G. Q., et al., 2018. Cyclostratigraphic Constraints on the Duration of the Datangpo Formation and the Onset Age of the Nantuo (Marinoan) Glaciation in South China. Earth and Planetary Science Letters, 483: 52-63. https://doi.org/10.1016/j.epsl.2017.12.001
      [5] Cai, J. X., Zhang, K. J., 2009. A New Model for the Indochina and South China Collision during the Late Permian to the Middle Triassic. Tectonophysics, 467(1-4): 35-43. https://doi.org/10.1016/j.tecto.2008.12.003
      [6] Charvet, J., Shu, L.S., Faure, M., et al., 2010. Structural Development of the Lower Paleozoic Belt of South China: Genesis of an Intracontinental Orogen. Journal of Asian Earth Sciences, 39(4): 309-330. https://doi.org/10.1016/j.jseaes.2010.03.006
      [7] Che, X. D., Wang, R. C., Wu, F. Y., et al., 2019. Episodic Nb-Ta Mineralisation in South China: Constraints from In Situ LA-ICP-MS Columbite-Tantalite U-Pb Dating. Ore Geology Reviews, 105: 71-85. https://doi.org/10.1016/j.oregeorev.2018.11.023
      [8] Chen, J., Lu, J.J., Chen, W.F., et al., 2008. W-Sn-Nb-Ta-Bearing Granites in the Nanling Range and Their Relationship to Metallogengesis. Geological Journal of China Universities, 14(4): 459-473(in Chinese with English abstract). http://www.researchgate.net/publication/285714260_W-Sn-Nb-Ta-bearing_granites_in_the_Nanling_Range_and_their_relationship_to_metallogengesis
      [9] Chen, J., Wang, R. C., Zhu, J. C., et al., 2013. Multiple-Aged Granitoids and Related Tungsten-Tin Mineralization in the Nanling Range, South China. Science China Earth Sciences, 56(12): 2045-2055. https://doi.org/10.1007/s11430-013-4736-9
      [10] Chen, L.S., Chen, H.L., Gong, J.F., et al., 2019. Metamorphic Episodes, Geochemical Characteristics of Chencai Amphibolite and Its Tectonic Implications in Jiangshan-Shaoxing Fault Zone. Earth Science, 44(4): 1216-1236 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201904012.htm
      [11] Chen, T., Zhang, H.D., 1994. The Floristic Geography of Nanling Mountain Range, China: Ⅰ. Floristic Composition and Characteristics. Journal of Tropical and Subtropical Bolaxy, 2(1): 10-23 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RYZB401.001.htm
      [12] Chen, Z.Y., Huang, G.L., Zhu, B., et al., 2014. The Characteristics and Metallogenic Specialization of Granite-Hosted Uranium Deposits in the Nanling Region. Geotectonica et Metallogenia, 38(2): 264-275(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/ddgzyckx201402006
      [13] Chu, Y., Faure, M., Lin, W., et al., 2012. Early Mesozoic Tectonics of the South China Block: Insights from the Xuefengshan Intracontinental Orogen. Journal of Asian Earth Sciences, 61: 199-220. https://doi.org/10.1016/j.jseaes.2012.09.029
      [14] Dong, Y.P., Zhu, B.Q., Chang, X.Y., et al., 2002. Geochemistry of the Basalts from North of the Shizong-Mile Belt, Eastern Yunnan Province: Constrains on the Tectonic Framework of the South China Continent. Acta Petrologica Sinica, 18(1): 37-46 (in Chinese with English abstract). http://www.researchgate.net/publication/279550249_Geochemistry_of_the_basalts_from_north_of_the_Shizong-Mile_belt_eastern_Yunnan_province_Constraints_on_the_tectonic_framework_of_the_south_China_continent
      [15] Fu, W., Li, X. T., Feng, Y. Y., et al., 2019. Chemical Weathering of S-Type Granite and Formation of Rare Earth Element (REE)-Rich Regolith in South China: Critical Control of Lithology. Chemical Geology, 520: 33-51. https://doi.org/10.1016/j.chemgeo.2019.05.006
      [16] Guo, L.H., Gao, R., Shi, L., et al., 2019. Crustal Thickness and Poisson's Ratios of South China Revealed from Joint Inversion of Receiver Function and Gravity Data. Earth and Planetary Science Letters, 510: 142-152. https://doi.org/10.1016/j.epsl.2018.12.039
      [17] He, C., Xu, C., Zhao, Z., et al., 2017. Petrogenesis and Mineralization of REE-Rich Granites in Qingxi and Guanxi, Nanling Region, South China. Ore Geology Reviews, 81: 309-325. https://doi.org/10.1016/j.oregeorev.2016.10.021
      [18] Hu, R. Z., Bi, X. W., Jiang, G. H., et al., 2012. Mantle-derived Noble Gases in Ore-Forming Fluids of the Granite-Related Yaogangxian Tungsten Deposit, Southeastern China. Mineralium Deposita, 47(6): 623-632. https://doi.org/10.1007/s00126-011-0396-x
      [19] Hu, R. Z., Bi, X. W., Zhou, M. F., et al., 2008. Uranium Metallogenesis in South China and Its Relationship to Crustal Extension during the Cretaceous to Tertiary. Economic Geology, 103(3): 583-598. https://doi.org/10.2113/gsecongeo.103.3.583
      [20] Hu, R.Z., Luo, J.C., Chen, Y.W., et al., 2019. Several Progresses in the Study of Uranium Deposits in South China. Acta Petrologica Sinica, 35(9): 2625-2636(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.09.01
      [21] Hua, R.M., Chen, P.R., Zhang, W.L., et al., 2005. Metallogeneses and Their Geodynamic Settings Related to Mesozoic Granitoids in the Nanling Range. Geological Journal of China Universities, 11(3): 291-304 (in Chinese with English abstract). http://www.researchgate.net/publication/284338234_Metallogeneses_and_their_geodynamic_settings_related_to_Mesozoic_granitoids_in_the_Nanling_range
      [22] Huang, J., Chu, X.L., Zhang, Q.R., et al., 2007. Constraints on the Age of Neoproterozoic Global Glaciations. Earth Science Frontiers, 14(2): 249-256 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200702021.htm
      [23] Jiang, S.Y., Wen, H.J., Xu, C., et al., 2019. Earth Sphere Cycling and Enrichment Mechanism of Critical Metals: Major Scientific Issues for Future Research. Bulletin of National Natural Science Foundation of China, 33(2): 112-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZKJJ201902003.htm
      [24] Li, C., Love, G. D., Lyons, T. W., et al., 2012. Evidence for a Redox Stratified Cryogenian Marine Basin, Datangpo Formation, South China. Earth and Planetary Science Letters, 331/332: 246-256. https://doi.org/10.1016/j.epsl.2012.03.018
      [25] Li, G.L., Hua, R.M., Hu, D.Q., et al., 2010. Petrogenesis of Shilei Quartz Diorite in Southern Jiangxi: Constraints from Petrochemistry, Trace Elements of Accessory Minerals, Zircon U-Pb Dating, and Sr-Nd-Hf Isotopes. Acta Petrologica Sinica, 26(3): 903-918 (in Chinese with English abstract). http://www.cnki.com.cn/article/cjfdtotal-ysxb201003021.htm
      [26] Li, H., Zhou, Z.K., Algeo, T.J., et al., 2019a. Geochronology and Geochemistry of Tuffaceous Rocks from the Banxi Group: Implications for Neoproterozoic Tectonic Evolution of the Southeastern Yangtze Block, South China. Journal of Asian Earth Sciences, 177: 152-176. https://doi.org/10.1016/j.jseaes.2019.03.022
      [27] Li, J. K., Li, P., Wang, D. H., et al., 2019b. A Review of Niobium and Tantalum Metallogenic Regularity in China. Chinese Science Bulletin, 64(15): 1545-1566. https://doi.org/10.1360/n972018-00933
      [28] Li, J. H., Zhang, Y. Q., Zhao, G. C., et al., 2017a. New Insights into Phanerozoic Tectonics of South China: Early Paleozoic Sinistral and Triassic Dextral Transpression in the East Wuyishan and Chencai Domains, NE Cathaysia. Tectonics, 36(5): 819-853. https://doi.org/10.1002/2016tc004461
      [29] Li, J. H., Zhao, G. C., Johnston, S. T., et al., 2017b. Permo-Triassic Structural Evolution of the Shiwandashan and Youjiang Structural Belts, South China. Journal of Structural Geology, 100: 24-44. https://doi.org/10.1016/j.jsg.2017.05.004
      [30] Li, M.Y.H., Zhou, M.F., Williams-Jones, A. E., 2019c. The Genesis of Regolith-Hosted Heavy Rare Earth Element Deposits: Insights from the World-Class Zudong Deposit in Jiangxi Province, South China. Economic Geology, 114(3): 541-568. https://doi.org/10.5382/econgeo.4642
      [31] Li, J.M., Sun, X.L., Wang, S., et al., 2020. Crustal Shear Wave Velocity Structure near the Jiuyishan Area from Seismic Ambient Noise Tomography: Implications for Tectonic Evolution in South China. Chinese Journal of Geophysics, 63(1): 184-195 (in Chinese with English abstract).
      [32] Li, S.G., 1942. Where is Nanling Range? Geological Review, 7(6): 253-266 (in Chinese with English abstract).
      [33] Li, S.Z., Li, X.Y., Zhao, S.J., et al., 2016. Global Early Paleozoic Orogens(Ⅲ): Intracontinental Orogen in South China. Journal of Jilin University (Earth Science Edition), 46(4): 1005-1025 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201604003.htm
      [34] Li, S.Z., Zang, Y.B., Wang, P.C., et al., 2017. Mesozoic Tectonic Transition in South China and Initiation of Palaeo-Pacific Subduction. Earth Science Frontiers, 24(4): 213-225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201704028.htm
      [35] Li, X. H., Li, W. X., Li, Z. X., 2007a. On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14): 1873-1885. https://doi.org/10.1007/s11434-007-0259-0
      [36] Li, X. H., Li, Z. X., Li, W. X., et al., 2007b. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I- and A-Type Granites from Central Guangdong, SE China: A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab? Lithos, 96(1/2): 186-204. https://doi.org/10.1016/j.lithos.2006.09.018
      [37] Li, X. H., Li, W. X., Li, Z. X., et al., 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb Zircon Ages, Geochemistry and Nd-Hf Isotopes of the Shuangxiwu Volcanic Rocks. Precambrian Research, 174(1-2): 117-128. doi: 10.1016/j.precamres.2009.07.004
      [38] Li, X.H., Li, Z.X., Ge, W.C., et al., 2003. Neoproterozoic Granitoids in South China: Crustal Melting above a Mantle Plume at ca. 825 Ma?. Precambrian Research, 122(1-4): 45-83. https://doi.org/10.1016/S0301-9268(02)00207-3
      [39] Li, Z. X., Li, X. H., 2007. Formation of the 1 300 km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      [40] Li, Z.X., Li, X.H., Wartho, J.A., et al., 2010. Magmatic and Metamorphic Events during the Early Paleozoic Wuyi-Yunkai Orogeny, Southeastern South China: New Age Constraints and Pressure-Temperature Conditions. Geological Society of America Bulletin, 122(5-6): 772-793. https://doi.org/10.1130/B30021.1
      [41] Liang, C.H., Xu, X.B., Li, Q.M., et al., 2019. Inversion and Tectonic Implications of Fault-Slip Data of NE-SW-Striking Fault Zones in Eastern Jiangnan Area. Earth Science, 44(5): 1761-1772 (in Chinese with English abstract). http://www.researchgate.net/publication/327791224_Inversion_and_tectonic_implications_of_fault-slip_data_of_NE-SW-striking_fault_zones_in_eastern_Jiangnan_area/download
      [42] Lin, X., Meng, G., Pan, H., et al., 2019. Continental-Scale Stream Sediment Geochemical Mapping in Southern China: An Insight into Surface Processes and Tectonic Framework. Journal of Geochemical Exploration, 207: 106362. https://doi.org/10.1016/j.gexplo.2019.106362
      [43] Liu, S. F., Peng, S. B., Kusky, T., et al., 2018. Origin and Tectonic Implications of an Early Paleozoic (460-440 Ma) Subduction-Accretion Shear Zone in the Northwestern Yunkai Domain, South China. Lithos, 322: 104-128. https://doi.org/10.1016/j.lithos.2018.10.006
      [44] Ma, L., 2015. A Study on the Words Origin of Wuling and Lingnan. Journal of Chinese Literature and History, 56(4): 349-360 (in Chinese with English abstract).
      [45] Mao, J. W., Cheng, Y. B., Chen, M. H., et al., 2013. Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 48(3): 267-294. https://doi.org/10.1007/s00126-012-0446-z
      [46] Mao, J.W., Xie, G.Q., Guo, C.L., et al., 2007. Large-Scale Tungsten-Tin Mineralization in the Nanling Region, South China: Metallogenic Ages and Corresponding Geodynamic Processes. Acta Petrologica Sinica, 23(10): 2329-2338 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173681
      [47] Mou, C.L., Zhou, K.K., Chen, X.W., et al., 2016. Lithofacies Palaeogeographic Atlas of China: Ediacaran-Silurian. Geological Publishing House, Beijing (in Chinese).
      [48] Niu, Z.J., Yang, W.Q., Liu, H., et al., 2014. Precambrian Stratigraphic Regionalization and Redefinition of Some Lithostratigraphic Units in Nanling Metallogenic Belt. Geology and Mineral Resources of South China, 30(4): 308-318 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HNKC201404002.htm
      [49] Niu, Z.J., Yang, W.Q., Song, F., et al., 2017. Revision of Lower Palaeozoic Stratigraphy of the Nanling Metallogenic Belt. Journal of Stratigraphy, 41(3): 256-265(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DCXZ201703003&dbcode=CJFD&year=2017&dflag=pdfdown
      [50] Qin, X.F., Wang, Z.Q., Wang, T., et al., 2015. The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi: Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt. Acta Geoscientica Sinica, 36(3): 283-292(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB201503003.htm
      [51] Qiu, L., Yan, D.P., Ren, M., et al., 2018. The Source of Uranium within Hydrothermal Uranium Deposits of the Motianling Mining District, Guangxi, South China. Ore Geology Reviews, 96: 201-217. https://doi.org/10.1016/j.oregeorev.2018.04.001
      [52] Qiu, L., Yan, D.P., Tang, S.L., et al., 2016. Mesozoic Geology of Southwestern China: Indosinian Foreland Overthrusting and Subsequent Deformation. Journal of Asian Earth Sciences, 122: 91-105. https://doi.org/10.1016/j.jseaes.2016.03.006
      [53] Qiu, L., Yan, D.P., Tang, S.L., et al., 2020. Cenozoic Exhumation of the Neoproterozoic Sanfang Batholith in South China. Journal of the Geological Society, 177(2): 412-423. https://doi.org/10.1144/jgs2019-041
      [54] Rao, J.R., Xiao, H.Y., Liu, Y.R., et al., 2012. Location of the Yangtze-Cathaysia Plate Convergence Zone in Hunan. Chinese Journal of Geophysics, 55(2): 484-502(in Chinese with English abstract). http://www.researchgate.net/publication/279297245_Location_of_the_Yangtze-Cathaysia_plate_convergence_zone_in_Hunan
      [55] Shi, W., Dong, S. W., Zhang, Y. Q., et al., 2015. The Typical Large-Scale Superposed Folds in the Central South China: Implications for Mesozoic Intracontinental Deformation of the South China Block. Tectonophysics, 664: 50-66. https://doi.org/10.1016/j.tecto.2015.08.039
      [56] Shu, L. S., Deng, P., Yu, J. H., et al., 2008a. The Age and Tectonic Environment of the Rhyolitic Rocks on the Western Side of Wuyi Mountain, South China. Science China Earth Sciences, 51(8): 1053-1063. https://doi.org/10.1007/s11430-008-0078-4
      [57] Shu, L. S., Faure, M., Wang, B., et al., 2008b. Late Palaeozoic-Early Mesozoic Geological Features of South China: Response to the Indosinian Collision Events in Southeast Asia. Comptes Rendus Geoscience, 340(2-3): 151-165. https://doi.org/10.1016/j.crte.2007.10.010
      [58] Shu, L. S., Jahn, B. M., Charvet, J., et al., 2014. Early Paleozoic Depositional Environment and Intraplate Tectono-Magmatism in the Cathaysia Block (South China): Evidence from Stratigraphic, Structural, Geochemical and Geochronological Investigations. American Journal of Science, 314(1): 154-186. https://doi.org/10.2475/01.2014.05
      [59] Shu, L. S., Wang, B., Cawood, P. A., et al., 2015. Early Paleozoic and Early Mesozoic Intraplate Tectonic and Magmatic Events in the Cathaysia Block, South China. Tectonics, 34(8): 1600-1621. https://doi.org/10.1002/2015tc003835
      [60] Shu, L. S., Wang, J. Q., Yao, J. L., 2019. Tectonic Evolution of the Eastern Jiangnan Region, South China: New Findings and Implications on the Assembly of the Rodinia Supercontinent. Precambrian Research, 322: 42-65. https://doi.org/10.1016/j.precamres.2018.12.007
      [61] Shu, L.S., 2006. Predevonian Tectonic Evolution of South China: From Cathaysian Block to Caledonian Period Folded Orogenic Belt. Geological Journal of China Universities, 12(4): 418-431(in Chinese with English abstract). http://ci.nii.ac.jp/naid/10030173364
      [62] Shu, L.S., 2012. An Analysis of Principal Features of Tectonic Evolution in South China Block. Geologcal Bulletin of China, 31(7): 1035-1053(in Chinese with English abstract). http://www.researchgate.net/publication/279561053_An_analysis_of_principal_features_of_tectonic_evolution_in_South_China_Block
      [63] Shu, L.S., Chen, X.Y., Lou, F.S., 2020. Pre-Jurassic Tectonics of the South China. Acta Geologica Sinica, 94(2): 333-360 (in Chinese with English abstract).
      [64] Shu, L.S., Zhou, X.M., Deng, P., et al., 2006. Principal Geological Features of Nanling Tectonic Belt, South China. Geological Review, 52(2): 251-265(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200602017.htm
      [65] Song, G.Y., Wang, X.Q., Shi, X.Y., et al., 2017. New U-Pb Age Constraints on the Upper Banxi Group and Synchrony of the Sturtian Glaciation in South China. Geoscience Frontiers, 8(5): 1161-1173. doi: 10.1016/j.gsf.2016.11.012
      [66] Su, J. B., Dong, S. W., Zhang, Y. Q., et al., 2017. Apatite Fission Track Geochronology of the Southern Hunan Province across the Shi-Hang Belt: Insights into the Cenozoic Dynamic Topography of South China. International Geology Review, 59(8): 981-995. https://doi.org/10.1080/00206814.2016.1240049
      [67] Tan, Z.J., Shan, Y.H., Liang, X.Q., et al., 2017. Mesozoic Superimposed Folds and Its Implications in Dabaoshan Polymetallic Ore Deposit, North Guangdong Province. Science Technology and Engineering, 17(4): 1-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KXJS201704001.htm
      [68] Tao, N., Li, Z. X., Danišík, M., et al., 2017. Thermochronological Record of Middle-Late Jurassic Magmatic Reheating to Eocene Rift-Related Rapid Cooling in the SE South China Block. Gondwana Research, 46: 191-203. https://doi.org/10.1016/j.gr.2017.03.003
      [69] Tao, N., Li, Z. X., Danišík, M., et al., 2019. Post-250 Ma Thermal Evolution of the Central Cathaysia Block (SE China) in Response to Flat-Slab Subduction at the Proto-Western Pacific Margin. Gondwana Research, 75: 1-15. https://doi.org/10.1016/j.gr.2019.03.019
      [70] Tian, Y., Wang, L.Z., Li, X., et al., 2015. Discovery of Metamorphic Ignimbrite in the Yingyangguan Formation and Its Geochronology. Geology and Mineral Resources of South China, 31(1): 110-111 (in Chinese with English abstract).
      [71] Wang, D.H., Chen, Y.C., Chen, Z.H., et al., 2007. Assessment on Mineral Resource in Nanling Region and Suggestion for Further Prospecting. Acta Geologica Sinica, 81(7): 882-890(in Chinese with English abstract).
      [72] Wang, D.H., Xu, Z.G., Sheng, J.F., et al., 2014. Progress on the Study of Regularity of Major Mineral Resources and Regional Metallogenic Regularity in China: A Review. Acta Geologica Sinica, 88(12): 2176-2191(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=DZXE201412003&dbcode=CJFD&year=2014&dflag=pdfdown
      [73] Wang, J. Q., Yu, J. H., Shu, L. S., 2016. Petrological Properties and Tectonic Significance for Longyou Garnet Amphibolite. Chinese Science Bulletin, 61(1): 125-134. https://doi.org/10.1360/n972015-00951
      [74] Wang, L.Z., Tian, Y., Li, X., et al., 2019. 40Ar/39Ar Dating of Yingyangguan Tectonic Melange in the Eastern Guangxi, China and Its Tectonic Implications. Journal of Earth Sciences and Environment, 41(6): 631-643 (in Chinese with English abstract).
      [75] Wang, P. M., Yu, J. H., Sun, T., et al., 2013a. Composition Variations of the Sinian-Cambrian Sedimentary Rocks in Hunan and Guangxi Provinces and Their Tectonic Significance. Science China Earth Sciences, 56(11): 1899-1917. https://doi.org/10.1007/s11430-013-4634-1
      [76] Wang, Y. J., Zhang, A. M., Cawood, P. A., et al., 2013b. Geochronological, Geochemical and Nd-Hf-Os Isotopic Fingerprinting of an Early Neoproterozoic Arc-Back-Arc System in South China and Its Accretionary Assembly along the Margin of Rodinia. Precambrian Research, 231: 343-371. https://doi.org/10.1016/j.precamres.2013.03.020
      [77] Wang, Y. J., Fan, W. M., Zhang, G. W., et al., 2013c. Phanerozoic Tectonics of the South China Block: Key Observations and Controversies. Gondwana Research, 23(4): 1273-1305. https://doi.org/10.1016/j.gr.2012.02.019
      [78] Wang, R.C., Zhu, J.C., Zhang, W.L., et al., 2008. Ore-Forming Mineralogy of W-Sn Granites in the Nanling Range: Concept and Case Study. Geological Journal of China Universities, 14(4): 485-495(in Chinese with English abstract). http://www.researchgate.net/publication/292850909_Ore-forming_mineralogy_of_W-sn_granites_in_the_nanling_range_Concept_and_case_study
      [79] Wang, Y., Zhang, F., Fan, W., et al., 2010a. Tectonic Setting of the South China Block in the Early Paleozoic: Resolving Intracontinental and Ocean Closure Models from Detrital Zircon U-Pb Geochronology. Tectonics, 29(6): TC6020. https://doi.org/10.1029/2010TC002750
      [80] Wang, W., Wang, F., Chen, F. K., et al., 2010b. Detrital Zircon Ages and Hf-Nd Isotopic Composition of Neoproterozoic Sedimentary Rocks in the Yangtze Block: Constraints on the Deposition Age and Provenance. The Journal of Geology, 118(1): 79-94. https://doi.org/10.1086/648533
      [81] Wang, W., Zhou, M. F., 2012. Sedimentary Records of the Yangtze Block (South China) and Their Correlation with Equivalent Neoproterozoic Sequences on Adjacent Continents. Sedimentary Geology, (265-266): 126-142. http://www.sciencedirect.com/science/article/pii/S0037073812001017
      [82] Wang, W., Zhou, M. F., Yan, D. P., et al., 2012. Depositional Age, Provenance, and Tectonic Setting of the Neoproterozoic Sibao Group, Southeastern Yangtze Block, South China. Precambrian Research, 192-195: 107-124. https://doi.org/10.1016/j.precamres.2011.10.010
      [83] Wang, Y.J., Fan, W.M., Cawood, P., et al., 2007a. Indosinian High-Strain Deformation for the Yunkaidashan Tectonic Belt, South China: Kinematics and 40Ar/39Ar Geochronological Constraints. Tectonics, 26(6): TC6008. https://doi.org/10.1029/2007TC002099
      [84] Wang, X. L., Zhou, J. C., Griffin, W. L., et al., 2007b. Detrital Zircon Geochronology of Precambrian Basement Sequences in the Jiangnan Orogen: Dating the Assembly of the Yangtze and Cathaysia Blocks. Precambrian Research, 159(1/2): 117-131. https://doi.org/10.1016/j.precamres.2007.06.005
      [85] Wang, X. L., Zhou, J. C., Qiu, J. S., et al., 2006. LA-ICP-MS U-Pb Zircon Geochronology of the Neoproterozoic Igneous Rocks from Northern Guangxi, South China: Implications for Tectonic Evolution. Precambrian Research, 145(1/2): 111-130. https://doi.org/10.1016/j.precamres.2005.11.014
      [86] Wang, Y., Wang, Y. J., Li, S. B., et al., 2020. Exhumation and Landscape Evolution in Eastern South China since the Cretaceous: New Insights from Fission-Track Thermochronology. Journal of Asian Earth Sciences, 191: 104239. https://doi.org/10.1016/j.jseaes.2020.104239
      [87] Wang, Y. J., Fan, W. M., Guo, F., et al., 2003. Geochemistry of Mesozoic Mafic Rocks Adjacent to the Chenzhou-Linwu Fault, South China: Implications for the Lithospheric Boundary between the Yangtze and Cathaysia Blocks. International Geology Review, 45(3): 263-286. https://doi.org/10.2747/0020-6814.45.3.263
      [88] Wang, Y. J., He, H. Y., Gan, C. S., et al., 2018. Petrogenesis of the Early Silurian Dashuang High-Mg Basalt-Andesite-Dacite in Eastern South China: Origin from a Palaeosubduction-Modified Mantle. Journal of the Geological Society, 175(6): 949-966. https://doi.org/10.1144/jgs2018-102
      [89] Wang, Y. J., Zhang, Y. H., Fan, W. M., et al., 2005. Structural Signatures and 40Ar/39Ar Geochronology of the Indosinian Xuefengshan Tectonic Belt, South China Block. Journal of Structural Geology, 27(6): 985-998. https://doi.org/10.1016/j.jsg.2005.04.004
      [90] Wang, Y. J., Zhang, Y. Z., Cawood, P. A., et al., 2019. Early Neoproterozoic Assembly and Subsequent Rifting in South China: Revealed from Mafic and Ultramafic Rocks, Central Jiangnan Orogen. Precambrian Research, 331: 105367. https://doi.org/10.1016/j.precamres.2019.105367
      [91] Wang, Y.L., 2006. Modest Proposal for the Research of the Nanling National Passageway. Study of Ethnics in Guangxi, (4): 109-116(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MZYA200604020.htm
      [92] Wei, Z.S., Jin, Q, 2005. The Definition of Wuling (Five Ridges) and Its Cultural Symbolic Meanings. Around Southeast Asia, (1): 71-73(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DLYZ200501014&dbcode=CJFD&year=2005&dflag=pdfdown
      [93] Wu, H., Jiang, X.S., Wang, J., et al., 2013. Ages and Provenance of the Neoproterozoic Dajiangbian Formation and Aiqiling Formation in Southeast Hunan Province: U-Pb Geochronological Evedence of Detrital Zircons. Geological Review, 59(5): 853-868 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201305007.htm
      [94] Wu, L. Y., Hu, R. Z., Peng, J. T., et al., 2011. He and Ar Isotopic Compositions and Genetic Implications for the Giant Shizhuyuan W-Sn-Bi-Mo Deposit, Hunan Province, South China. International Geology Review, 53(5/6): 677-690. https://doi.org/10.1080/00206814.2010.510022
      [95] Xiang, L., Wang, R. C., Romer, R. L., et al., 2020. Neoproterozoic Nb-Ta-W-Sn Bearing Tourmaline Leucogranite in the Western Part of Jiangnan Orogen: Implications for Episodic Mineralization in South China. Lithos, 360/361: 105450. https://doi.org/10.1016/j.lithos.2020.105450
      [96] Xu, C. H., Zhang, L., Shi, H. S., et al., 2017. Tracing an Early Jurassic Magmatic Arc from South to East China Seas. Tectonics, 36(3): 466-492. https://doi.org/10.1002/2016tc004446
      [97] Xu, X. B., Li, Q. M., Gui, L., et al., 2018a. Detrital Zircon U-Pb Geochronology and Geochemistry of Early Neoproterozoic Sedimentary Rocks from the Northwestern Zhejiang Basin, South China. Marine and Petroleum Geology, 98: 607-621. https://doi.org/10.1016/j.marpetgeo.2018.09.015
      [98] Xu, X. B., Lin, S. F., Tang, S., et al., 2018b. Transformation from Neoproterozoic Sinistral to Early Paleozoic Dextral Shearing for the Jingdezhen Ductile Shear Zone in the Jiangnan Orogen, South China. Journal of Earth Science, 29(2): 376-390. https://doi.org/10.1007/s12583-017-0965-8
      [99] Xu, X. B., Li, Q. M., Gui, L., et al., 2019. Early Mesozoic Tectonic Transition of the Eastern South China Block: Constraints from Late Triassic Dashuang Complex in Eastern Zhejiang Province. International Geology Review, 61(8): 997-1015. https://doi.org/10.1080/00206814.2018.1490931
      [100] Xu, X. B., Li, Y., Tang, S., et al., 2015. Neoproterozoic to Early Paleozoic Polyorogenic Deformation in the Southeastern Margin of the Yangtze Block: Constraints from Structural Analysis and 40Ar/39Ar Geochronology. Journal of Asian Earth Sciences, 98: 141-151. https://doi.org/10.1016/j.jseaes.2014.11.015
      [101] Xu, X. B., Tang, S., Lin, S. F., 2016. Detrital Provenance of Early Mesozoic Basins in the Jiangnan Domain, South China: Paleogeographic and Geodynamic Implications. Tectonophysics, 675: 141-158. https://doi.org/10.1016/j.tecto.2016.02.047
      [102] Xu, X. B., Xue, D. J., Li, Y., et al., 2014. Neoproterozoic Sequences along the Dexing-Huangshan Fault Zone in the Eastern Jiangnan Orogen, South China: Geochronological and Geochemical Constrains. Gondwana Research, 25(1): 368-382. https://doi.org/10.1016/j.gr.2013.03.020
      [103] Xu, X.B., Zhang, Y.Q., Jia, D., et al., 2009. Early Mesozoic Geotectonic Processes in South China. Geology in China, 36(3): 573-593(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/zgdizhi200903007
      [104] Xu, X. B., Zhang, Y. Q., Shu, L. S., et al., 2011. LA-ICP-MS U-Pb and 40Ar/39Ar Geochronology of the Sheared Metamorphic Rocks in the Wuyishan: Constraints on the Timing of Early Paleozoic and Early Mesozoic Tectono-Thermal Events in SE China. Tectonophysics, 501(1-4): 71-86. https://doi.org/10.1016/j.tecto.2011.01.014
      [105] Yan, C.L., Shu, L.S., Faure, M., et al., 2019. Time Constraints on the Closure of the Paleo-South China Ocean and the Neoproterozoic Assembly of the Yangtze and Cathaysia Blocks: Insight from New Detrital Zircon Analyses. Gondwana Research, 73: 175-189. https://doi.org/10.1016/j.gr.2019.03.018
      [106] Yan, D.P., Qiu, L., Chen, F., et al., 2018. Structural Style and Kinematics of the Mesozoic Xuefengshan Intraplate Orogenic Belt, South China Block. Earth Science Frontiers, 25(1): 1-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201801002.htm
      [107] Yang, Z., Wang, R.C., Zhang, W.L., et al., 2014. Skarn-Type Tungsten Mineralization Associated with the Caledonian (Silurian) Niutangjie Granite, Northern Guangxi, China. Science China Earth Sciences, 57(7): 1551-1566. https://doi.org/10.1007/s11430-014-4838-z
      [108] Yao, J. L., Cawood, P. A., Shu, L. S., et al., 2016a. An Early Neoproterozoic Accretionary Prism Ophiolitic Mélange from the Western Jiangnan Orogenic Belt, South China. The Journal of Geology, 124(5): 587-601. https://doi.org/10.1086/687396
      [109] Yao, J. L., Shu, L. S., Cawood, P.A., et al., 2016b. Delineating and Characterizing the Boundary of the Cathaysia Block and the Jiangnan Orogenic Belt in South China. Precambrian Research, 275: 265-277. https://doi.org/10.1016/j.precamres.2016.01.023
      [110] Yao, J. L., Cawood, P. A., Shu, L. S., et al., 2019. Jiangnan Orogen, South China: A ~970-820 Ma Rodinia Margin Accretionary Belt. Earth-Science Reviews, 196: 102872. https://doi.org/10.1016/j.earscirev.2019.05.016
      [111] Yu, W.C., Algeo, T.J., Du, Y.S., et al., 2016. Genesis of Cryogenian Datangpo Manganese Deposit: Hydrothermal Influence and Episodic Post-Glacial Ventilation of Nanhua Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 459: 321-337. https://doi.org/10.1016/j.palaeo.2016.05.023
      [112] Yuan, S.D., 2017. Several Crucial Scientific Issues Related to the W-Sn Metallogenesis in the Nanling Range and Their Implications for Regional Exploration: A Review. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 736-749(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201705006.htm
      [113] Zhang, C., Cai, Y. Q., Dong, Q., et al., 2020. Cretaceous-Neogene Basin Control on the Formation of Uranium Deposits in South China: Evidence from Geology, Mineralization Ages, and H-O Isotopes. International Geology Review, 62(3): 263-310. https://doi.org/10.1080/00206814.2019.1598898
      [114] Zhang, C.L., Zou, H.B., Zhu, Q.B., et al., 2015. Late Mesoproterozoic to Early Neoproterozoic Ridge Subduction along Southern Margin of the Jiangnan Orogen: New Evidence from the Northeastern Jiangxi Ophiolite (NJO), South China. Precambrian Research, 268: 1-15. https://doi.org/10.1016/j.precamres.2015.07.005
      [115] Zhang, G. W., Guo, A. L., Wang, Y. J., et al., 2013. Tectonics of South China Continent and Its Implications. Science China Earth Sciences, 56(11): 1804-1828. https://doi.org/10.1007/s11430-013-4679-1
      [116] Zhang, K.X., Pan, G.T., He, W.H., et al., 2015. New Division of Tectonic-Strata Superregion in China. Earth Science, 40(2): 206-233(in Chinese with English abstract).
      [117] Zhang, S. B., Wu, R. X., Zheng, Y. F., 2012. Neoproterozoic Continental Accretion in South China: Geochemical Evidence from the Fuchuan Ophiolite in the Jiangnan Orogen. Precambrian Research, 220/221: 45-64. https://doi.org/10.1016/j.precamres.2012.07.010
      [118] Zhang, S. H., Jiang, G. Q., Dong, J., et al., 2008. New SHRIMP U-Pb Age from the Wuqiangxi Formation of Banxi Group: Implications for Rifting and Stratigraphic Erosion Associated with the Early Cryogenian (Sturtian) Glaciation in South China. Science in China (Series D), 51(11): 1537-1544. https://doi.org/10.1007/s11430-008-0119-z
      [119] Zhang, S. T., Zhang, R. Q., Lu, J. J., et al., 2019a. Neoproterozoic Tin Mineralization in South China: Geology and Cassiterite U-Pb Age of the Baotan Tin Deposit in Northern Guangxi. Mineralium Deposita, 54(8): 1125-1142. https://doi.org/10.1007/s00126-019-00862-y
      [120] Zhang, Y. Q., Dong, S. W., Li, J. H., 2019b. Imaging the Crustal Architecture of the South China Block by SinoProbe Seismic Profiling. Acta Geologica Sinica, 93(S1): 141. https://doi.org/10.1111/1755-6724.13992
      [121] Zhang, Y.Q., Xu, X.B., Jia, D., et al., 2009. Deformation Record of the Change from Indosinian Collision-Related Tectonic System to Yanshanian Subduction-Related Tectonic System in South China during the Early Mesozoic. Earth Science Frontiers, 16(1): 234-247(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200901033.htm
      [122] Zhao, L., Zhai, M. G., Zhou, X. W., et al., 2015. Geochronology and Geochemistry of a Suite of Mafic Rocks in Chencai Area, South China: Implications for Petrogenesis and Tectonic Setting. Lithos, 236/237: 226-244. https://doi.org/10.1016/j.lithos.2015.09.004
      [123] Zhao, R.Y., Wang, D.H., Chen, Y.C., et al., 2020. Geological Characteristics, Metallogeny and Geospatial Mineralization Model of Uranium in the Nanling Metallogenic Belt. Acta Geologica Sinica, 94(1): 149-160 (in Chinese with English abstract).
      [124] Zhao, X. L., Jiang, Y., Xing, G. F., et al., 2020. The Early Paleozoic Oceanic Island Seamount in the Chencai Area, Zhejiang Province: Implication of the Yangtze-Cathaysia Amalgamation. Geological Journal, 55(2): 1148-1162. https://doi.org/10.1002/gj.3480
      [125] Zhao, Y.Y., Zheng, Y.F., 2011. Record and Time of Neoproterozoic Glaciations on Earth. Acta Petrologica Sinica, 27(2): 545-565(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_ysxb98201102013.aspx
      [126] Zhao, Z., Wang, D.H., Chen, Z.H., et al., 2017. Progress of Research on Metallogenic Regularity of Ion-Adsorption Type REE Deposit in the Nanling Range. Acta Geologica Sinica, 91(12): 2814-2827 (in Chinese with English abstract).
      [127] Zheng, Y. F., Wu, R. X., Wu, Y. B., et al., 2008. Rift Melting of Juvenile Arc-Derived Crust: Geochemical Evidence from Neoproterozoic Volcanic and Granitic Rocks in the Jiangnan Orogen, South China. Precambrian Research, 163(3/4): 351-383. https://doi.org/10.1016/j.precamres.2008.01.004
      [128] Zhou, C. M., Huyskens, M. H., Lang, X. G., et al., 2019. Calibrating the Terminations of Cryogenian Global Glaciations. Geology, 47(3): 251-254. https://doi.org/10.1130/g45719.1
      [129] Zhou, C. M., Tucker, R., Xiao, S. H., et al., 2004. New Constraints on the Ages of Neoproterozoic Glaciations in South China. Geology, 32(5): 437-440. https://doi.org/10.1130/g20286.1
      [130] Zhou, H.W., Li, X.H., Wang., H.R., et al., 2002. U-Pb Zircon Geochronology of Basic Volcanic Rocks of the Yingyangguan Group in Hezhou, Guangxi, and Its Tectonic Implication. Geological Review, 48(Suppl.): 22-25(in Chinese with English abstract). http://www.researchgate.net/publication/284108020_U-Pb_zircon_geochronology_of_basic_volcanic_rocks_within_the_Yingyangguan_Group_in_Hezhou_Guangxi_and_its_tectonic_implications?ev=auth_pub
      [131] Zhou, X. Y., Yu, J. H., O'Reilly, S. Y., et al., 2018. Component Variation in the Late Neoproterozoic to Cambrian Sedimentary Rocks of SW China-NE Vietnam, and Its Tectonic Significance. Precambrian Research, 308: 92-110. https://doi.org/10.1016/j.precamres.2018.02.003
      [132] Zhou, X.M., Chen, P.R., Xu, X.S., et al., 2007. Petrogenesis and Geodynamic Evolution of Late Mesozoic Granites in Nanling Region. Science Press, Beijing(in Chinese).
      [133] Zhu, G. L., Yu, J. H., Zhou, X. Y., et al., 2019. The Western Boundary between the Yangtze and Cathaysia Blocks, New Constraints from the Pingbian Group Sediments, Southwest South China Block. Precambrian Research, 331: 105350. https://doi.org/10.1016/j.precamres.2019.105350
      [134] Zhuo, K.W., Wang, Z.J., Wang, J., et al., 2009. SHRIMP Zircon U-Pb Age of Crystal Tuffs on the Top of Sinian Laobao Formation at Bahuang, Tongren Area, and Its Geological Implications. Geological Review, 55(5): 639-646 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200905005.htm
      [135] 柏道远, 陈建成, 孟德保, 等, 2006. 湖南炎陵印支期隔槽式褶皱形成机制. 地球科学与环境学报, 28(4): 10-14. doi: 10.3969/j.issn.1672-6561.2006.04.002
      [136] 柏道远, 贾宝华, 钟响, 等, 2012b. 湘中南晋宁期和加里东期构造线走向变化成因. 地质力学学报, 18(2): 165-177. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201202006.htm
      [137] 柏道远, 贾宝华, 钟响, 等, 2012a. 湘东南印支运动变形特征研究. 地质论评, 58(1): 19-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201201002.htm
      [138] 陈骏, 陆建军, 陈卫锋, 等, 2008. 南岭地区钨锡铌钽花岗岩及其成矿作用. 高校地质学报, 14(4): 459-473. doi: 10.3969/j.issn.1006-7493.2008.04.001
      [139] 陈林燊, 陈汉林, 龚俊峰, 等, 2019. 江山-绍兴构造带陈蔡岩群斜长角闪岩变质时代, 地球化学特征及其构造演化意义. 地球科学, 44(4): 1216-1236. doi: 10.3799/dqkx.2018.526
      [140] 陈涛, 张宏达, 1994. 南岭植物区系地理学研究: Ⅰ. 植物区系的组成和特点. 热带亚热带植物学报, 2(1): 10-23. https://www.cnki.com.cn/Article/CJFDTOTAL-RYZB401.001.htm
      [141] 陈振宇, 黄国龙, 朱捌, 等, 2014. 南岭地区花岗岩型铀矿的特征及其成矿专属性. 大地构造与成矿学, 38(2): 264-275. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201402006.htm
      [142] 董云鹏, 朱炳泉, 常向阳, 等, 2002. 滇东师宗-弥勒带北段基性火山岩地球化学及其对华南大陆构造格局的制约. 岩石学报, 18(1): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200201004.htm
      [143] 胡瑞忠, 骆金诚, 陈佑纬, 等, 2019. 华南铀矿床研究若干进展. 岩石学报, 35(9): 2625-2636. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201909001.htm
      [144] 华仁民, 陈培荣, 张文兰, 等, 2005. 南岭与中生代花岗岩类有关的成矿作用及其大地构造背景. 高校地质学报, 11(3): 291-304. doi: 10.3969/j.issn.1006-7493.2005.03.002
      [145] 黄晶, 储雪蕾, 张启锐, 等, 2007. 新元古代冰期及其年代. 地学前缘, 14(2): 249-256. doi: 10.3321/j.issn:1005-2321.2007.02.022
      [146] 蒋少涌, 温汉捷, 许成, 等, 2019. 关键金属元素的多圈层循环与富集机理: 主要科学问题及未来研究方向. 中国科学基金, 33(2): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902003.htm
      [147] 李光来, 华仁民, 胡东泉, 等, 2010. 赣南地区石雷石英闪长岩的成因: 岩石化学、副矿物微量元素、锆石U-Pb年代学与Sr-Nd-Hf同位素制约. 岩石学报, 26(3): 903-918. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201003021.htm
      [148] 李健明, 孙新蕾, 王爽, 等, 2020. 九嶷山及邻区地壳结构噪声成像及其对华南地区的构造演化启示. 地球物理学报, 63(1): 184-195. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202001021.htm
      [149] 李三忠, 李玺瑶, 赵淑娟, 等, 2016. 全球早古生代造山带(Ⅲ): 华南陆内造山. 吉林大学学报(地球科学版), 46(4): 1005-1025. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604003.htm
      [150] 李三忠, 臧艺博, 王鹏程, 等, 2017. 华南中生代构造转换和古太平洋俯冲启动. 地学前缘, 24(4): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201704028.htm
      [151] 李四光, 1942. 南嶺何在. 地质论评, 7(6): 253-266. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP194206003.htm
      [152] 梁承华, 徐先兵, 李启铭, 等, 2019. 江南东段地区NE-SW向断裂带断层滑移矢量反演及其大地构造意义. 地球科学, 44(5): 1761-1772. doi: 10.3799/dqkx.2018.245
      [153] 马雷, 2015. "岭南"、"五岭"考. 中华文史论丛, (4): 349-360. https://www.cnki.com.cn/Article/CJFDTOTAL-WSLC201504015.htm
      [154] 毛景文, 谢桂青, 郭春丽, 等, 2007. 南岭地区大规模钨锡多金属成矿作用: 成矿时限及地球动力学背景. 岩石学报, 23(10): 2329-2338. doi: 10.3969/j.issn.1000-0569.2007.10.002
      [155] 牟传龙, 周恳恳, 陈小炜, 等, 2016. 中国岩相古地理图集: 埃迪卡拉纪-志留纪. 北京: 地质出版社.
      [156] 牛志军, 杨文强, 刘浩, 等, 2014. 南岭成矿带前寒武纪地层区划与岩石地层的厘定. 华南地质与矿产, 30(4): 308-318. doi: 10.3969/j.issn.1007-3701.2014.04.002
      [157] 牛志军, 杨文强, 宋芳, 等, 2017. 南岭成矿带早古生代地层区划与岩石地层的厘定. 地层学杂志, 41(3): 256-265. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201703003.htm
      [158] 覃小锋, 王宗起, 王涛, 等, 2015. 桂东鹰扬关群火山岩时代和构造环境的重新厘定: 对钦杭结合带西南段构造格局的制约. 地球学报, 36(3): 283-292. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201503003.htm
      [159] 饶家荣, 肖海云, 刘耀荣, 等, 2012. 扬子、华夏古板块会聚带在湖南的位置. 地球物理学报, 55(2): 484-502. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201202011.htm
      [160] 舒良树, 2006. 华南前泥盆纪构造演化: 从华夏地块到加里东期造山带. 高校地质学报, 12(4): 418-431. doi: 10.3969/j.issn.1006-7493.2006.04.002
      [161] 舒良树, 2012. 华南构造演化的基本特征. 地质通报, 31(7): 1035-1053. doi: 10.3969/j.issn.1671-2552.2012.07.003
      [162] 舒良树, 陈祥云, 楼法生, 2020. 华南前侏罗纪构造. 地质学报, 94(2): 333-360. doi: 10.3969/j.issn.0001-5717.2020.02.001
      [163] 舒良树, 周新民, 邓平, 等, 2006. 南岭构造带的基本地质特征. 地质论评, 52(2): 251-265. doi: 10.3321/j.issn:0371-5736.2006.02.016
      [164] 谭志军, 单业华, 梁新权, 等, 2017. 粤北大宝山矿区中生代叠加褶皱特征及其地质意义. 科学技术与工程, 17(4): 1-12. doi: 10.3969/j.issn.1671-1815.2017.04.001
      [165] 田洋, 王令占, 李响, 等, 2015. 广西鹰扬关组变质熔结凝灰岩的发现及年代特征. 华南地质与矿产, 31(1): 110-111. doi: 10.3969/j.issn.1007-3701.2015.01.014
      [166] 王登红, 陈毓川, 陈郑辉, 等, 2007. 南岭地区矿产资源形势分析和找矿方向研究. 地质学报, 81(7): 882-890. doi: 10.3321/j.issn:0001-5717.2007.07.002
      [167] 王登红, 徐志刚, 盛继福, 等, 2014. 全国重要矿产和区域成矿规律研究进展综述. 地质学报, 88(12): 2176-2191. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201412003.htm
      [168] 王令占, 田洋, 李响, 等, 2019. 桂东地区鹰扬关构造混杂岩40Ar/39Ar年龄及其构造意义. 地球科学与环境学报, 41(6): 631-643. doi: 10.3969/j.issn.1672-6561.2019.06.001
      [169] 王汝成, 朱金初, 张文兰, 等, 2008. 南岭地区钨锡花岗岩的成矿矿物学: 概念与实例. 高校地质学报, 14(4): 485-495. doi: 10.3969/j.issn.1006-7493.2008.04.003
      [170] 王元林, 2006. 费孝通与南岭民族走廊研究. 广西民族研究, (4): 109-116. doi: 10.3969/j.issn.1004-454X.2006.04.018
      [171] 韦祖松, 金强, 2005. 五岭界说及其文化象征意义. 东南亚纵横, 25(1): 71-73. doi: 10.3969/j.issn.1003-2479.2005.01.015
      [172] 伍皓, 江新胜, 王剑, 等, 2013. 湘东南新元古界大江边组和埃岐岭组的形成时代和物源. 地质论评, 59(5): 853-868. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201305007.htm
      [173] 徐先兵, 张岳桥, 贾东, 等, 2009. 华南早中生代大地构造过程. 中国地质, 36(3): 573-593. doi: 10.3969/j.issn.1000-3657.2009.03.007
      [174] 颜丹平, 邱亮, 陈峰, 等, 2018. 华南地块雪峰山中生代板内造山带构造样式及其形成机制. 地学前缘, 25(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201801002.htm
      [175] 袁顺达, 2017. 南岭钨锡成矿作用几个关键科学问题及其对区域找矿勘查的启示. 矿物岩石地球化学通报, 36(5): 736-749. doi: 10.3969/j.issn.1007-2802.2017.05.004
      [176] 张克信, 潘桂棠, 何卫红, 等, 2015. 中国构造-地层大区划分新方案. 地球科学, 40(2): 206-233. doi: 10.3799/dqkx.2015.016
      [177] 张岳桥, 徐先兵, 贾东, 等, 2009. 华南早中生代从印支期碰撞构造体系向燕山期俯冲构造体系转换的形变记录. 地学前缘, 16(1): 234-247. doi: 10.3321/j.issn:1005-2321.2009.01.026
      [178] 赵如意, 王登红, 陈毓川, 等, 2020. 南岭成矿带铀矿地质特征、成矿规律与全位成矿模式. 地质学报, 94(1): 149-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202001012.htm
      [179] 赵彦彦, 郑永飞, 2011. 全球新元古代冰期的记录和时限. 岩石学报, 27(2): 545-565. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201102014.htm
      [180] 赵芝, 王登红, 陈郑辉, 等, 2017. 南岭离子吸附型稀土矿床成矿规律研究新进展. 地质学报, 91(12): 2814-2827. doi: 10.3969/j.issn.0001-5717.2017.12.016
      [181] 周汉文, 李献华, 王汉荣, 等, 2002. 广西鹰扬关群基性火山岩的锆石U-Pb年龄及其地质意义. 地质论评, 48(增刊): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP2002S1005.htm
      [182] 周新民, 陈培荣, 徐夕生, 等, 2007. 南岭地区晚中生代花岗岩成因与岩石圈动力学演化. 北京: 科学出版社.
      [183] 卓皆文, 汪正江, 王剑, 等, 2009. 铜仁坝黄震旦系老堡组顶部晶屑凝灰岩SHRIMP锆石U-Pb年龄及其地质意义. 地质论评, 55(5): 639-646. doi: 10.3321/j.issn:0371-5736.2009.05.005
    • dqkxzx-46-4-1133-附表 1.doc
    • 加载中
    图(7)
    计量
    • 文章访问数:  955
    • HTML全文浏览量:  314
    • PDF下载量:  189
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-04-17
    • 刊出日期:  2021-04-15

    目录

      /

      返回文章
      返回