OSL Ages and Its Hydrological Implications of Alluvial-Diluvial Deposits from the Southern Margin of Badain Jaran Desert
-
摘要: 冲洪积物是古气候和古水文信息的重要记录,为了探讨巴丹吉林沙漠南缘地区全新世气候环境及其对区域地下水的影响,对沙漠南缘的水成沉积物进行了沉积学分析和光释光年代学测试,结果表明本文研究的两个沙漠南缘沉积剖面分别为全新世中期(6.6~5.2 ka)的间歇性河流沉积和暂时性流水形成的洪泛沉积.基于前人全新世中期沙漠中湖泊水位、气候环境重建,以及本文研究的冲洪积物的沉积特征与年代,表明在气候湿润的地质时期巴丹吉林沙漠南缘及山区的区域降水形成暂时性洪流和/或间歇性河流会对沙漠地区地下水进行补给.Abstract: Alluvial-diluvial deposits can record climatic and hydrologic information in geological history and play an important role in the reconstruction of paleoenvironment. Aqueous deposits were discovered at the south margin of Badain Jaran desert, Northwest China. Based on sedimentological analyses, two sections of the deposits as palaeoflood deposit and paleofluvial deposit were identified. OSL dating suggests that the deposits formed in the Middle Holocene. The alluvial-diluvial deposits in the southern margin of Badain Jaran Desert were mainly formed under a humid climate during the Middle Holocene. Based on the previous paleoclimate study, comprehensive analysis of the location and sedimentary features and the previous research of paleoclimate in this region, a conceptual model of recharge to the Badain Jaran is proposed. During humid climatic phases, such as the Middle Holocene, the precipitation in this region and adjacent mountain areas recharged the groundwater of the desert area by temporary flood or/and intermittent stream.
-
图 1 巴丹吉林沙漠(a)和研究剖面位置(b)简图
图像底图来源于Google卫星;A-A’为图 9剖面位置
Fig. 1. Sketch map of the location of Badain Jaran desert (a) and study section (b)
表 1 巴丹吉林沙漠南缘冲洪积物光释光(OSL)测年结果
Table 1. Results of OSL dating for alluvial-diluvial deposits from southern margin of Badain Jaran desert
样品号 深度(m) U
(10-6)Th
(10-6)K
(%)含水量(%) De
(Gy)OD(%) De统计模型 Dose rate
(Gy/ka)年代
(ka)BL-OSL-1 2.2 1.24±0.04 5.06±0.15 1.62±0.08 10±5 11.51±2.43 26.3 MAM 2.20±0.10 5.2±1.1 BL-OSL-2 3.93 1.34±0.04 6.10±0.18 1.49±0.07 10±5 12.77±2.13 24.8 MAM 2.13±0.10 6.0±1.0 BL-OSL-3 4.72 1.19±0.04 6.23±0.19 1.80±0.09 10±5 12.56±0.42 8.3 CAM 2.37±0.11 5.3±0.3 TC-OSL-1 3.60 1.24±0.04 5.10±0.15 1.54±0.08 10±5 13.83±1.99 23.8 MAM 2.10±0.10 6.6±1.0 TC-OSL-2 2.10 1.23±0.04 5.31±0.16 1.43±0.07 10±5 13.52±0.58 12.4 CAM 2.05±0.09 6.6±0.4 -
[1] Adamiec, G., Aitken, M., 1998. Dose-Rate Conversion Factors: Update. Ancient TL, 16(2): 37-50. [2] Aitken, M.J., Xie, J., 1990. Moisture Correction for Annual Gamma Dose. Ancient TL, 8(2): 6-9. [3] Chen, F. H., Yu, Z. C., Yang, M. L., et al., 2008. Holocene Moisture Evolution in Arid Central Asia and Its Out-of-Phase Relationship with Asian Monsoon History. Quaternary Science Reviews, 27(3/4): 351-364. [4] Chen, J.S., Li, L., Wang, J.Y., et al., 2004. Groundwater Maintains Dune Landscape. Nature, 432(7016): 459-460. https://doi.org/10.1038/432459a [5] Chen, T.Y., Lai, Z.P., Liu, S.W., et al., 2019. Luminescence Chronology and Palaeoenvironmental Significance of Limnic Relics from the Badain Jaran Desert, Northern China. Journal of Asian Earth Sciences, 177: 240-249. https://doi.org/10.1016/j.jseaes.2019.03.024 [6] Dahan, O., Tatarsky, B., Enzel, Y., et al., 2008. Dynamics of Flood Water Infiltration and Ground Water Recharge in Hyperarid Desert. Ground Water, 46(3): 450-461. https://doi.org/10.1111/j.1745-6584.2007.00414.x [7] Ding, H.W., Wang, G. L., 2007. Study on the Formation Mecheanism of the Lakes in the Badain Juran Desert. Arid Zone Research, 24(1): 1-7 (in Chinese with English abstract). [8] Dong, G.R., Gao, Q.Z., Zou, X.Y., et al., 1995. Climate Changes at Southern Fringe of the Badain Jaran Desert since Pleistocene. Chinese Science Bulletin, 40(13): 1214-1218 (in Chinese). doi: 10.1360/csb1995-40-13-1214 [9] Dong, Z., Qian, G., Lü, P., et al., 2013. Investigation of the Sand Sea with the Tallest Dunes on Earth: China's Badain Jaran Sand Sea. Earth-Science Reviews, 120: 20-39. https://doi.org/10.1016/j.earscirev.2013.02.003 [10] Duller, G.A.T., 2003. Distinguishing Quartz and Feldspar in Single Grain Luminescence Measurements. Radiation Measurements, 37(2): 161-165. https://doi.org/10.1016/s1350-4487(02)00170-1 doi: 10.1016/S1350-4487(02)00170-1 [11] Durcan, J.A., King, G.E., Duller, G.A.T., 2015. DRAC: Dose Rate and Age Calculator for Trapped Charge Dating. Quaternary Geochronology, 28: 54-61. https://doi.org/10.1016/j.quageo.2015.03.012 [12] Galbraith, R.F., Roberts, R.G., 2012. Statistical Aspects of Equivalent Dose and Error Calculation and Display in OSL Dating: An Overview and Some Recommendations. Quaternary Geochronology, 11: 1-27. https://doi.org/10.1016/j.quageo.2012.04.020 [13] Galbraith, R. F., Roberts, R. G., Laslett, G. M., et al., 1999. Optical Dating of Single and Multiple Grains of Quartz from Jinmium Rock Shelter, Northern Australia: Part Ⅰ, Experimental Design and Statistical Models. Archaeometry, 41(2): 339-364. doi: 10.1111/j.1475-4754.1999.tb00987.x [14] Gao, Q.Z., Dong, G.R., Li, B.S., et al., 1995. Evolution of Southern Fringe of Badain Jaran Desert since Late Pleistonce. Journal of Desert Research, 15(4): 345-352 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGSS504.004.htm [15] Gates, J.B., Edmunds, W.M., Darling, W.G., et al., 2008a. Conceptual Model of Recharge to Southeastern Badain Jaran Desert Groundwater and Lakes from Environmental Tracers. Applied Geochemistry, 23(12): 3519-3534. https://doi.org/10.1016/j.apgeochem.2008.07.019 [16] Gates, J. B., Edmunds, W. M., Ma, J. Z., et al., 2008b. Estimating Groundwater Recharge in a Cold Desert Environment in Northern China Using Chloride. Hydrogeology Journal, 16(5): 893-910. https://doi.org/10.1007/s10040-007-0264-z [17] Greenbaum, N., Schwartz, U., Benito, G., et al., 2014. Paleohydrology of Extraordinary Floods along the Swakop River at the Margin of the Namib Desert and Their Paleoclimate Implications. Quaternary Science Reviews, 103: 153-169. https://doi.org/10.1016/j.quascirev.2014.08.021 [18] Hu, W.F., Wang, N.A., Zhao, L.Q., et al., 2015. Water-Heat Exchange over a Typical Lake in Badain Jaran Desert, China. Progress in Geography, 34(8): 1061-1071 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2015.08.013 [19] Huang, C.C., Pang, J.L., Zha, X.C., et al., 2011. Prehistorical Floods in the Guanzhong Basin in the Yellow River Drainage Area: A Case Study along the Qishuihe River Valley over the Zhouyuan Loess Tableland. Science in China (Series D: Earth Sciences), 41(11): 1658-1669 (in Chinese). [20] Jiang, G.L., Nie, Z.L., Shen, J.M., et al., 2017. Research Progress of Quaternary Environment of Badian Jaran Desert. Marine Geology & Quaternary Geology, 37(1): 141-149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201701018.htm [21] Li, Z.L., Wang, N.A., Cheng, H.Y., et al., 2015a. Formation and Environmental Significance of Late Quaternary Calcareous Root Tubes in the Deserts of the Alashan Plateau, Northwest China. Quaternary International, 372: 167-174. https://doi.org/10.1016/j.quaint.2014.11.021 [22] Li, Z.L., Wang, N.A., Li, R.L., et al., 2015b. Indication of Millennial-Scale Moisture Changes by the Temporal Distribution of Holocene Calcareous Root Tubes in the Deserts of the Alashan Plateau, Northwest China. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 496-505. doi: 10.1016/j.palaeo.2015.09.023 [23] Liu, C., Liu, J., Wang, X., et al., 2016a. Analysis of Groundwater-Lake Interaction by Distributed Temperature Sensing in Badain Jaran Desert, Northwest China. Hydrological Processes, 30(9): 1330-1341. doi: 10.1002/hyp.10705 [24] Liu, S.W., Lai, Z.P., Wang, Y.X., et al., 2016b. Growing Pattern of Mega-Dunes in the Badain Jaran Desert in China Revealed by Luminescence Ages. Quaternary International, 410: 111-118. https://doi.org/10.1016/j.quaint.2015.09.048 [25] Liu, Z., 2012. Plant Root Tube Fossils in the South Region of the Badain Jaran Desert, Innert Mongolia, China, and Their Paleoenvironmental Interpretations. Quaternary International, 347: 284-285. https://doi.org/10.1016/j.quaint.2012.08.749 [26] Long, H., Lai, Z., Fuchs, M., et al., 2012. Timing of Late Quaternary Palaeolake Evolution in Tengger Desert of Northern China and Its Possible Forcing Mechanisms. Global and Planetary Change, 92-93: 119-129. https://doi.org/10.1016/j.gloplacha.2012.05.014 [27] Ma, N., Wang, N.A., Zhao, L.Q., et al., 2014. Observation of Mega-Dune Evaporation after Various Events in the Hinterland of Badain Jaran Desert. Chinese Science Bulletin, 59(7): 615-622 (in Chinese). doi: 10.1360/csb2014-59-7-615 [28] Morin, E., Grodek, T., Dahan, O., et al., 2009. Flood Routing and Alluvial Aquifer Recharge along the Ephemeral Arid Kuiseb River, Namibia. Journal of Hydrology, 368(1-4): 262-275. https://doi.org/10.1016/j.jhydrol.2009.02.015 [29] Murray, A.S., Wintle, A.G., 2000. Luminescence Dating of Quartz Using an Improved Single-Aliquot Regenerative-Dose Protocol. Radiation Measurements, 32(1): 57-73. https://doi.org/10.1016/s1350-4487(99)00253-x doi: 10.1016/S1350-4487(99)00253-X [30] Ning, K., Wang, N.A., Lv, X.Y., et al., 2019. A Grain Size and n-Alkanes Record of Holocene Environmental Evolution from a Groundwater Recharge Lake in Badain Jaran Desert, Northwestern China. The Holocene, 29(6): 1045-1058. https://doi.org/10.1177/0959683619831430 [31] Prescott, J.R., Hutton, J.T., 1994. Cosmic Ray Contributions to Dose Rates for Luminescence and ESR Dating: Largedepths and Long-Term Time Variations. Radiation Measurements, 23(2/3): 497-500. http://www.sciencedirect.com/science/article/pii/1350448794900868 [32] Smedley, R.K., Skirrow, G.K.A., 2020. Luminescence Dating in Fluvial Settings: Overcoming the Challenge of Partial Bleaching. In: Herget, J., Fontana, A., eds., Palaeohydrology. Geography of the Physical Environment. Springer, Switzerland. https: //doi.org/10.1007/978-3-030-23315-0_8 [33] Wang, F., Sun, D., Chen, F., et al., 2015. Formation and Evolution of the Badain Jaran Desert, North China, as Revealed by a Drill Core from the Desert Centre and by Geological Survey. Palaeogeography, Palaeoclimatology, Palaeoecology, 426: 139-158. https://doi.org/10.1016/j.palaeo.2015.03.011 [34] Wang, N. A., Ma, N., Chen, H.B., et al., 2013. A Preliminary Study of Precipitation Characteristics in the Hinterland of Badain Jaran Desert. Advances in Water Science, 24(2): 153-160 (in Chinese with English abstract). http://www.cqvip.com/QK/71135X/201107/45105404.html [35] Wang, N.A., Ning, K., Li, Z.L., et al., 2016. Holocene High Lake-Levels and Pan-Lake Period on Badain Jaran Desert. Science in China (Series D: Earth Sciences), 46(8): 1106-1115 (in Chinese). doi: 10.1007/s11430-016-5307-7 [36] Wintle, A.G., Murray, A.S., 2006. A Review of Quartz Optically Stimulated Luminescence Characteristics and Their Relevance in Single-Aliquot Regeneration Dating Protocols. Radiation Measurements, 41(4): 369-391. https://doi.org/10.1016/j.radmeas.2005.11.001 [37] Yang, X., Liu, T., Xiao, H., 2003. Evolution of Megadunes and Lakes in the Badain Jaran Desert, Inner Mongolia, China during the Last 31, 000 Years. Quaternary International, 104(1): 99-112. https://doi.org/10.1016/S1040-6182(02)00138-6 [38] Yang, X., Ma, N., Dong, J., et al., 2010. Recharge to the Inter-Dune Lakes and Holocene Climatic Changes in the Badain Jaran Desert, Western China. Quaternary Research, 73(1): 10-19. https://doi.org/10.1016/j.yqres.2009.10.009 [39] Zhao, Y., Yu, Z., Chen, F., et al., 2008. Holocene Vegetation and Climate Change from a Lake Sediment Record in the Tengger Sandy Desert, Northwest China. Journal of Arid Environments, 72(11): 2054-2064. https://doi.org/10.1016/j.jaridenv.2008.06.016 [40] Zhou, Y.Y., Wang, X.S., 2018. A Monte-Carlo Simulation Based Assessement of the Vertical Soil Moisture Distribution and Infiltration Rate in the Vadose Zone of the Badain Jaran Desert, China. Earth Science, 43(Suppl. 1): 326-338 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1028.htm [41] Zou, L., Liu, P.H., Tian, Z.H., et al., 2019. Late Paleozoic Metamorphic Complex of Precambrian Metamorphic Basement from Eastern Alxa Block: New Evidence from Zircon LA-ICP-MS U-Pb Dating of Boluositanmiao Complex. Earth Science, 44(4): 1406-1423 (in Chinese with English abstract). [42] 丁宏伟, 王贵玲, 2007. 巴丹吉林沙漠湖泊形成的机理分析. 干旱区研究, 24(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GHQJ200701000.htm [43] 董光荣, 高全洲, 邹学勇, 等, 1995. 晚更新世以来巴丹吉林沙漠南缘气候变化. 科学通报, 40(13): 1214-1218. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199513017.htm [44] 高全洲, 董光荣, 李保生, 等, 1995. 晚更新世以来巴丹吉林南缘地区沙漠演化. 中国沙漠, 15(4): 345-352. doi: 10.3321/j.issn:1000-694X.1995.04.014 [45] 胡文峰, 王乃昂, 赵力强, 等, 2015. 巴丹吉林沙漠典型湖泊湖气界面水-热交换特征. 地理科学进展, 34(8): 1061-1071. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201508013.htm [46] 黄春长, 庞奖励, 查小春, 等, 2011. 黄河流域关中盆地史前大洪水研究——以周原漆水河谷地为例. 中国科学(D辑: 地球科学), 41(11): 1658-1669. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201111011.htm [47] 姜高磊, 聂振龙, 申建梅, 等, 2017. 巴丹吉林沙漠第四纪环境研究现状. 海洋地质与第四纪地质, 37(1): 141-149. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201701018.htm [48] 马宁, 王乃昂, 赵力强, 等, 2014. 巴丹吉林沙漠腹地降水事件后的沙山蒸发观测. 科学通报, 59(7): 615-622. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201407010.htm [49] 王乃昂, 马宁, 陈红宝, 等, 2013. 巴丹吉林沙漠腹地降水特征的初步分析. 水科学进展, 24(2): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201302000.htm [50] 王乃昂, 宁凯, 李卓仑, 等, 2016. 巴丹吉林沙漠全新世的高湖面与泛湖期. 中国科学(D辑: 地球科学), 46(8): 1106-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201608009.htm [51] 周燕怡, 王旭升, 2018. 巴丹吉林沙漠包气带水垂向分布和下渗的Monte-Carlo模拟评估. 地球科学, 43(增刊1): 326-338. doi: 10.3799/dqkx.2017.581 [52] 邹雷, 刘平华, 田忠华, 等, 2019. 东阿拉善地块前寒武纪变质基底中晚古生代变质杂岩: 来自波罗斯坦庙杂岩LA-ICP-MS锆石U-Pb定年的新证据. 地球科学, 44(4): 1406-1423. doi: 10.3799/dqkx.2018.386