Multi-Scale Characterization and Evaluation of Pore-Throat Combination Characteristics of Lacustrine Mixed Rock Reservoir
-
摘要: 以渤海海域石臼坨凸起陡坡带沙河街组混积岩储层为研究对象,利用高压压汞、二维大面积背散射扫描电镜成像技术(Maps)、矿物成分定量分析技术(QEMSCAN)及微米CT等实验手段,对研究区沙河街组湖相混积岩储集空间的宏观特征到微观特征、二维平面特征到三维空间特征、微米级到亚微米级的孔喉分布特征进行多尺度的定量表征.结合孔喉分形特征,对研究区沙河街组湖相混积岩储层孔喉结构进行了分类评价.研究结果表明:研究区湖相混积岩储层岩石类型多样,非均性质强,孔喉结构复杂.毫米-微米级孔喉网络主要发育在高孔、中-高渗的亮晶生屑云岩中,溶蚀孔、生物体腔孔是其重要的储集空间类型,孔喉分形维数最低;亚微米-微米级、微米级孔喉主要发育在中-高孔、中-低渗的云质生屑砂岩、陆屑白云岩等岩性中,主要储集空间类型为粒间溶孔、铸模孔、晶间孔等,孔喉分形维数中等;纳米-亚微米级孔喉主要分布在泥晶砂屑云岩、钙质粉砂岩中,晶间孔是其主要的储集空间类型,孔喉分形维数最高.湖相混积岩储层孔喉组合特征多尺度表征及评价为渤海海域混积岩储层流体识别和有效开发提供了依据.Abstract: In this study, it investigates the mixed rock reservoir of the Shahejie Formation in the steep slope of the Shijiutuo uplift in the Bohai Sea area. Through high-pressure mercury injection, two-dimensional large area back scattering scanning electron microscope imaging technology (Maps), mineral composition quantitative analysis technology (QEMSCAN) and micron CT and other experimental methods, the macro-to-micro, two-dimensional plane characteristics to three dimensional spatial characteristics and pore-throat distribution characteristics from micron to submicron in lacustrine mixed rock reservoir space of Shahejie Formation in the study area are quantitatively characterized by multi-scale analyses. According to the fractal characteristics of the pore-throat, the evaluation of the pore-throat structure of the mixed rock in the Shahejie Formation in the study area is established. The results reveal various rock types, strong heterogeneous properties and complex pore-throat structure in the lacustrine mixed rock reservoir in the study area. The millimeter-micron pore-throat network is mainly developed in high porosity, medium to high permeability bright crystalline dandruff dolomite. Dissolution pores and biological cavity holes contribute greatly to the expansion of reservoir space, the fractal dimension of pore-throat is the lowest. Submicron-micron and micron pore-throat is mainly developed in medium-high porosity, medium-low permeability dolomitic lithogenic sandstone and continental dolomite. The main storage space types are inter-granular dissolved pore, mold hole, inter-crystalline pore and so on. The pore-throat fractal dimension is medium. The pore-throat of nanometer-submicron is mainly distributed in mud crystal sand dolomite and calcareous siltstone. Inter-granular pores and micro-cracks are the main types of reservoir space. The fractal dimension of the pore throat is the highest. Multi-scale characterization and evaluation of pore-throat combination characteristics of lacustrine mixed rock reservoir provide basis for fluid identification and effective development of mixed rock reservoirs in Bohai Sea area.
-
图 2 研究区混积岩岩性及储集空间类型
a.灰色云质细砂岩岩心样品,QHD29-2E-X井,3 342.70 m,沙一段;b.含生屑云质砂砾岩,QHD29-2E-X井,3 385.03 m(正交光),沙一段;c.砂质生屑云岩岩心样品,QHD36-3-B井,3 777.50 m,沙二段;d.亮晶生屑白云岩,QHD36-3-B井,3 762.63 m(单偏光),沙二段;e.亮晶鲕粒云岩,泥晶包壳发育,QHD36-3-B井,3 829.00 m(正交光),沙二段;f.碳酸盐矿物溶蚀,QHD36-3-B井,3 773.10 m,扫描电镜,沙二段;g.亮晶栉壳状白云石,QHD36-3-B井,3 762.83 m(单偏光),沙二段;h.颗粒溶蚀,QHD29-2E-X井,3 350.00 m(单偏光),沙一段;i.多期白云石胶结,QHD29-2E-X井,3 385.03 m(正交光),沙一段
Fig. 2. Lithology and reservoir spatial types of mixed rocks in the study area
图 6 研究区QHD29-2E-X井沙一段3 371.52 m生屑白云岩样品柱塞及子样微米CT分析结果
a.柱塞三值分割图像(黑色:孔隙;灰色:基质;白色:颗粒);b.柱塞孔隙网络模型;c.子样二值分割图像(黑色:孔隙;白色:颗粒);d.子样孔隙网络模型
Fig. 6. Analysis results of micrometer CT analysis of core plunger and subsample of the micrite bioclastic dolostone sample of the QHD29-2E-X well 3 371.52 m in the research area
图 7 研究区混积岩3类毛管压力特征、孔喉半径分布及对应样品的微观特征
a, b为QHD29-2E-X井,3 371.93 m隐晶鲕粒白云岩样品;c, d为QHD29-2E-X井,3 367.78 m白云质生屑不等粒砂岩样品;e, f为QHD29-2E-X井,3 369.32 m白云质生屑中-细砂岩样品
Fig. 7. Three types of capillary pressure characteristics, pore-throat radius distribution and microscopic characteristics of the corresponding samples of mixed rocks in the study area
表 1 研究区典型混积岩样品孔喉分形结果
Table 1. Fractal results of pore throat of typical mixed rock samples in the study area
样品岩性 孔隙度(%) 渗透率(10-3 μm2) 排驱压力(MPa) 汞饱和度50%时压力(MPa) 汞饱和度50%时孔喉半径(μm) 最大汞饱和度(%) 孔喉分形维数(D) 相关系数(R2) 隐晶鲕粒白云岩 17.92 0.277 2.4 8.21 0.089 81.52 2.887 0.742 白云质极细粒岩屑砂岩 16.58 0.354 1.24 8.40 0.088 84.16 2.626 0.877 白云质表鲕状不等粒岩屑砂岩 21.05 3.936 0.24 2.97 0.248 93.98 2.372 0.929 含高岭石表鲕状白云质粗-中粒岩屑砂岩 23.43 21.086 0.12 2.04 0.359 89.25 2.305 0.904 粒屑白云岩 29.47 46.025 0.13 1.83 0.401 87.75 2.267 0.921 亮晶鲕粒白云岩 34.62 115.503 0.10 1.33 0.552 85.10 2.221 0.935 白云质表鲕状中-细粒岩屑砂岩 28.67 340.053 0.04 1.41 0.522 81.11 2.198 0.924 表 2 研究区混积岩储层孔隙结构分类评价
Table 2. The classification and evaluation of the pore structure of the mixed rock reservoir in the research area
类型 岩性 孔隙度(%) 渗透率(10-3 μm2) 储集空间类型 孔喉组合类型 孔喉半径(μm) 分形维数 Ⅰ 亮晶生屑云岩 24.9~40.1 202.7~1 960.5 残余原生孔粒间孔、生物体腔孔、铸模孔、粒间溶蚀孔 中-高孔中喉 0.373~35.640 2.124~2.192 Ⅱ 白云石生屑粗砂岩、含陆屑亮晶白云岩 18.4~27.6 23.4~354.2 粒间溶孔、粒内溶孔、铸模孔 中孔中-细喉 0.185~17.927 2.183~2.252 Ⅲ 含高岭石白云石生屑不等粒砂岩、白云石生屑砂砾岩 15.4~23.9 3.89~75.20 晶间孔、粒间溶孔、粒内溶孔、微裂缝 细孔细-微喉 0.033~4.106 2.214~2.604 Ⅳ 泥晶砂屑云岩、钙质粉砂岩 2.3~17.9 0.02~9.35 晶间孔、微裂缝 微孔微喉 0.018~0.372 2.581~2.815 -
[1] Chen, C., Sun, Y.M., 1996. Fractional Dimension of the Pore-Texture in Sandstones and Its Application. Acta Sedimentologica Sinica, 14(4):108-113(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600006119 [2] Clarkson, C.R., Jensen, J.L., Pedersen, P.K., et al., 2012. Innovative Methods for Flow-Unit and Pore-Structure Analyses in a Tight Siltstone and Shale Gas Reservoir. AAPG Bulletin, 96(2):355-374. https://doi.org/10.1306/05181110171 [3] Deng, H.C., Zhou, W., Guo, R., et al., 2014. Pore Structure Characteristics and Control Factors of Carbonate Reservoirs:The Middle-Lower Cretaceous Formation, AI Hardy Cloth Oilfield, Iraq. Acta Petrologica Sinica, 30(3):801-812(in Chinese with English abstract). [4] Devarapalli, R.S., Islam, A., Faisal, T.F., et al., 2017. Micro-CT and FIB-SEM Imaging and Pore Structure Characterization of Dolomite Rock at Multiple Scales. Arabian Journal of Geosciences, 10(16):361. https://doi.org/10.1007/s12517-017-3120-z [5] Feng, C., Wang, Q.B., Dai, L.M., et al., 2017. Geochemical Characteristics and Geological Significance of the E3s1 Lacustrine Mixed Sedimentary Rocks in the East Actic Region of Shijiutuo Symon Fault in Qinnan Sag. Journal of Northeast Petroleum University, 41(2):44-53(in Chinese with English abstract). [6] Gao, Z.Y., Wang, X.Q., Li, J.M., et al., 2018.Quantitative Characterization and Distribution of Pore Throat Assemblages of Cretaceous Reservoir in the Kelasu Tectonic Belt, Kuqa Depression. Acta Petrolei Sinica, 39(6):645-659(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201806004 [7] Li, Y.L., Zhang, Y.F., Yin, S.L., et al., 2016.Characterization of the Pore Space in Tight Sandstone Reservoirs from Macroscopic and Microscopic Perspectives:A Case Study of Gaotaizi Reservoir in Qijia Area, the Songliao Basin. Oil & Gas Geology, 37(6):915-922(in Chinese with English abstract). [8] Lü, Z.X., Wang, X.D., Wu, J.Y., et al., 2018. Diagenetic Evolution Characteristics of Paleogene Lacustrine Carbonate Reservoirs in the Central Bohai Sea Area. Natural Gas Geoscience, 29(7):921-931(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201807001 [9] Mandelbrot, B., 1983.The Fractal Geometry of Nature. American Journal of Physics, 51(3):286. https://doi.org/10.1119/1.13295 [10] Mount, J., 1985. Mixed Siliciclastic and Carbonate Sediments:A Proposed First-Order Textural and Compositional Classification. Sedimentology, 32(3):435-442. https://doi.org/10.1111/j.1365-3091.1985.tb00522.x [11] Peng, J., Han, H.D., Xia, Q.S., et al., 2018.Fractal Characterization and Genetic Mechanism of Micro-Pore Structure in Deeply Buried Tight Sandstone Reservoirs:A Case Study of Kalpintag Formation in Shuntuoguole Area, Tarim Basin. Acta Petrolei Sinica, 39(7):775-791(in Chinese with English abstract). [12] Pu, X.G., Wu, Y.P., Zhou, J.S., et al., 2005. The Fractal Structures of Pore and Throat and New Physical Evaluation Parameter of the Oil-Gas Reservoir with Low Permeability. Natural Gas Industry, 25(12):37-39(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200512012 [13] Shen, J.S., Zhang, C.K., 2008. Study on the Heterogeneity of the Pore Structure of Chang 6 Reservoir in ZJ Oilfield, Erdos Basin Using Fractal Theory. Journal of Xi'an Shiyou University, 23(6):19-23, 28(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xasyxyxb200806005 [14] Shi, Y., Qi, Y.D., Yang, Z.M., et al., 2009. Fractal Study of Low Permeability Reservoir Based on Constant-Rate Mercury Injection. Petroleum Geology and Recovery Efficiency, 16(2):88-90(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl200902027 [15] Wang, Q.B., Liu, L., Niu, C.M., et al., 2018. Impacts of the Freshwater Diagenetic Environment to the Mix-Deposition of Lacustrine Carbonate and Clastic at the Steep Slope of Shijiutuo Uplift, Bohai Bay Basin. Earth Science, 43(Suppl.2):234-242(in Chinese with English abstract). [16] Wen, H.J., Yan, L., Jiang, F.C., et al., 2007. The Fractal Characteristics of the Pore Texture in Low Porosity and Low Permeability Reservoir. Journal of Daqing Petroleum Institute, 31(1):15-18(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsyxyxb200701005 [17] Xie, X.N., Ye, M.S., Xu, C.G., et al., 2018.High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43(10):3526-3539(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015 [18] Xu, S.Y., Wang, S.P., 2013. Fractal Feature about the Micro-structure in Sandstone Reservoir:Taking the Paleogene Shahejie Formation in Shengtuo Oilfield as an Example. Natural Gas Geoscience, 24(5):886-893(in Chinese with English abstract). [19] Xu, W., Du, X.F., Huang, X.B., et al., 2019. Research Advances and Critical Issues of "Mixed Siliciclastic and Carbonate Sediments". Acta Sedimentologica Sinica, 37(2):225-238(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201902001 [20] Zhang, C.K., Shen, J.S., Fan, Z., 2007. Pore Structure Study of Low Porosity and Permeability Reservoirs in MHM Oilfield of Ordos Basin with Fractal Theory. Oil & Gas Geology, 28(1):110-115(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200701016 [21] Zhang, L., Wang, D.Y., Zhang, X.T., et al., 2019. The Controlling Factors of the High-Quality Mixed Reservoirs in QHD29-2E Structure, Bohai Sea. Acta Sedimentologica Sinica, 37(1):200-211(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201901019 [22] Zhang, N.S., Ren, X.J., Wei, J.X., et al., 2006. Rock Types of Mixosedimentite Reservoirs and Oil-Gas Distribution in Nanyishan of Qaidam Basin. Acta Petrolei Sinica, 27(1):42-46(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200601009 [23] Zhu, R.K., Jin, X., Wang, X.Q., et al., 2018.Multi-Scale Digital Rock Evaluation on Complex Reservoir. Earth Science, 43(5):1773-1782(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201805036 [24] 陈程, 孙义梅, 1996.砂岩孔隙结构分维及其应用.沉积学报, 14(4):108-113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600006119 [25] 邓虎成, 周文, 郭睿, 等, 2014.伊拉克艾哈代布油田中-下白垩统碳酸盐岩储层孔隙结构及控制因素.岩石学报, 30(3):801-812. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201403019 [26] 冯冲, 王清斌, 代黎明, 等, 2017.秦南凹陷石东陡坡带沙一段陆相混积岩地球化学特征及其地质意义.东北石油大学学报, 41(2):44-53. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsyxyxb201702005 [27] 高志勇, 王晓琦, 李建明, 等, 2018.库车坳陷克拉苏构造带白垩系储层孔喉组合类型定量表征与展布.石油学报, 39(6):645-659. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201806004 [28] 李易霖, 张云峰, 尹淑丽, 等, 2016.致密砂岩储集空间多尺度表征——以松辽盆地齐家地区高台子油层为例.石油与天然气地质, 37(6):915-922. [29] 吕正祥, 王先东, 吴家洋, 等, 2018.渤海海域中部古近系湖相碳酸盐岩储层成岩演化特征.天然气地球科学, 29(7):921-931. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201807001 [30] 彭军, 韩浩东, 夏青松, 等, 2018.深埋藏致密砂岩储层微观孔隙结构的分形表征及成因机理:以塔里木盆地顺托果勒地区柯坪塔格组为例.石油学报, 39(7):775-791. [31] 蒲秀刚, 吴永平, 周建生, 等, 2005.低渗油气储层孔喉的分形结构与物性评价新参数.天然气工业, 25(12):37-39. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200512012 [32] 沈金松, 张宸恺, 2008.应用分形理论研究鄂尔多斯ZJ油田长6段储层孔隙结构的非均质性.西安石油大学学报(自然科学版), 23(6):19-23, 28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xasyxyxb200806005 [33] 时宇, 齐亚东, 杨正明, 等, 2009.基于恒速压汞法的低渗透储层分形研究.油气地质与采收率, 16(2):88-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl200902027 [34] 王清斌, 刘立, 牛成民, 等, 2018.石臼坨凸起陡坡带大气淡水成岩环境对湖相混积岩储层的影响.地球科学, 43(增刊2):234-242. doi: 10.3799/dqkx.2018.138 [35] 文慧俭, 闫林, 姜福聪, 等, 2007.低孔低渗储层孔隙结构分形特征.大庆石油学院学报, (1):15-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqsyxyxb200701005 [36] 解习农, 叶茂松, 徐长贵, 等, 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43(10):3526-3539. doi: 10.3799/dqkx.2018.277 [37] 徐守余, 王淑萍, 2013.砂岩储层微观结构分形特征研究:以胜坨油田古近系沙河街组储层为例.天然气地球科学, 24(5):886-893. [38] 徐伟, 杜晓峰, 黄晓波, 等, 2019.混合沉积研究进展与关键问题.沉积学报, 37(2):225-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201902001 [39] 张宸恺, 沈金松, 樊震, 2007.应用分形理论研究鄂尔多斯MHM油田低孔渗储层孔隙结构.石油与天然气地质, 28(1):110-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200701016 [40] 张藜, 王德英, 张新涛, 等, 2019.渤海海域秦皇岛29-2东构造优质混积储层主控因素.沉积学报, 37(1):200-211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201901019 [41] 张宁生, 任晓娟, 魏金星, 等, 2006.柴达木盆地南翼山混积岩储层岩石类型及其与油气分布的关系.石油学报, 27(1):42-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200601009 [42] 朱如凯, 金旭, 王晓琦, 等, 2018.复杂储层多尺度数字岩石评价.地球科学, 43(5):1773-1782. doi: 10.3799/dqkx.2018.429