Petrogenesis of Neoarchean Ananba Quartz Diorite Gneiss in Southeastern Margin of Tarim: Implications for Crustal Evolution
-
摘要: 目前塔里木地块东南缘早前寒武纪岩石形成时代和成因机制研究较为薄弱,制约了人们对塔里木大陆地壳形成和早期演化的认识.岩石地球化学及锆石Hf同位素组成表明塔里木地块东南缘安南坝石英闪长片麻岩原岩岩浆为下地壳变玄武岩部分熔融形成,并有少量幔源物质的加入.LA-ICP-MS锆石U-Pb测年结果显示石英闪长片麻岩成岩年龄为2 662±12 Ma、2 676±15 Ma,结合已有资料综合说明塔里木东南缘太古宙岩石形成时代主要集中在2.55~2.70 Ga,变质年龄分别为1 980±30 Ma、1 828±20 Ma~2 087±29 Ma,是古元古代中晚期与造山作用有关的岩浆-变质事件的地质记录.石英闪长片麻岩中锆石两阶段模式年龄TDM2为2 954~3 742 Ma,峰值为~3.24 Ga,据此认为~3.2 Ga是塔里木东南缘大陆地壳生长的主要时期,并于2.55~2.70 Ga发生地壳再造,古老地壳再循环可能是该地区新太古代中晚期大陆地壳演化的重要方式.Abstract: The study on the formation age and petrogenetic mechanism of early Precambrian rocks in the southeast margin of Tarim block is relatively weak, which restricts the understanding of the formation and early evolution of continental crust. These geochemistry and zircon Hf isotope compositions show that primary magma of the quartz diorite gneiss was formed by partial melting of the lower crust meta-basalt with minor addition of mantle-derived materials. LA-ICP-MS zircon U-Pb dating results reveal that the diagenetic ages of the quartz diorite gneiss are 2 662±12 Ma and 2 676±15 Ma, indicating the Archean rock formation ages in the southeastern margin of Tarim were mainly concentrated in 2.55-2.70 Ga; corresponding metamorphic ages are 1 980±30 Ma and 1 828±20 Ma-2 087±29 Ma respectively, representing the geological record of magmatic-matamorphic events related to orogenic processes in the middle and late period of Paleoproterozoic in the southeastern margin of Tarim. Additionally, two-stage model ages(TDM2)of zircon for the quartz diorite gneiss in this study vary from 2 954 to 3 742 Ma, with peak ages clustering at ~3.24 Ga. Thus, combined with the available data, it is suggested that the ~3.2 Ga age represents the main period of continental crustal growth in the southeastern margin of Tarim, and subsequently crustal reconstruction occurred in 2.55-2.70 Ga. It is concluded that ancient crustal material recycling could be an important way of continental crustal evolution in the middle and late period of Neoarchean in this area.
-
Key words:
- quartz diorite gneiss /
- petrology /
- geochemistry /
- zircon U-Pb age /
- Hf isotope /
- southeastern margin of Tarim
-
图 1 塔里木盆地周缘前寒武纪变质岩分布图(据Lu et al., 2008)及研究区地质图(据辜平阳等,2019a)
Fig. 1. Distributions of Precambrian metamorphic rocks around Tarim basin(after Lu et al., 2008) and the geological map of study area (after Gu et al., 2019a)
-
[1] Albarède, F., Scherer, E. E., Blichert-Toft, J., et al., 2006. γ-Ray Irradiation in the Early Solar System and the Conundrum of the 176Lu Decay Constant. Geochimica et Cosmochimica Acta, 70(5):1261-1270. https://doi.org/10.1016/j.gca.2005.09.027 [2] Amelin, Y., Lee, D. C., Halliday, A. N., 2000. Early-Middle Archaean Crustal Evolution Deduced from Lu-Hf and U-Pb Isotopic Studies of Single Zircon Grains. Geochimica et Cosmochimica Acta, 64(24):4205-4225. https://doi.org/10.1016/S0016-7037(00)00493-2 [3] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/S0009-2541(02)00195-X [4] Bouvier, A., Vervoort, J. D., Patchett, P. J., 2008. The Lu-Hf and Sm-Nd Isotopic Composition of CHUR:Constraints from Unequilibrated Chondrites and Implications for the Bulk Composition of Terrestrial Planets. Earth and Planetary Science Letters, 273(1-2):48-57. https://doi.org/10.1016/j.epsl.2008.06.010 [5] Che, Z. C., Sun, Y., 1996. The Age of the Altun Granulite Facies Complex and the Basement of the Tarim Basin. Regional Geology of China, 15(1):51-57 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600705048 [6] Diwu, C.R., Sun, Y., Wang, Q., 2012. The Crustal Growth and Evolution of North China Craton:Revealed by Hf Isotopes in Detrital Zircons from Modern Rivers. Acta Petrologica Sinica, 28(11):3520-3530 (in Chinese with English abstract). [7] Dong, X., Zhang, Z. M., Tang, W., 2011. Precambrian Tectono-Thermal Events of the Northern Margin of the Tarim Craton:Constraints of Zircon U-Pb Chronology from High-Grade Metamorphic Rocks of the Korla, Xinjiang. Acta Petrologica Sinica, 27(1):47-58 (in Chinese with English abstract). [8] Ge, R. F., Zhu, W. B., Wilde, S. A., et al., 2014. Archean Magmatism and Crustal Evolution in the Northern Tarim Craton:Insights from Zircon U-Pb-Hf-O Isotopes and Geochemistry of ∼2.7 Ga Orthogneiss and Amphibolite in the Korla Complex. Precambrian Research, 252:145-165. https://doi.org/10.1016/j.precamres.2014.07.019 [9] Ge, R. F., Zhu, W. B., Wilde, S. A., et al., 2018. Remnants of Eoarchean Continental Crust Derived from a Subducted Proto-Arc. Science Advances, 4(2):eaao3159. https://doi.org/10.1126/sciadv.aao3159 [10] Ge, R. F., Zhu, W. B., Wu, H. L., et al., 2013a. Timing and Mechanisms of Multiple Episodes of Migmatization in the Korla Complex, Northern Tarim Craton, NW China:Constraints from Zircon U-Pb-Lu-Hf Isotopes and Implications for Crustal Growth. Precambrian Research, 231:136-156. https://doi.org/10.1016/j.precamres.2013.03.005 [11] Ge, R. F., Zhu, W. B., Wu, H. L., et al., 2013b. Zircon U-Pb Ages and Lu-Hf Isotopes of Paleoproterozoic Metasedimentary Rocks in the Korla Complex, NW China:Implications for Metamorphic Zircon Formation and Geological Evolution of the Tarim Craton. Precambrian Research, 231:1-18. https://doi.org/10.1016/j.precamres.2013.03.003 [12] Gehrels, G. E., Yin, A., Wang, X. F., 2003. Magmatic History of the Northeastern Tibetan Plateau. Journal of Geophysical Research:Solid Earth, 108(B9):2423. https://doi.org/10.1029/2002JB001876 [13] Gu, P. Y., Xu, X. Y., He, S. P., et al., 2018. Petrogenesis of Mafic Granulites from Annanba Area in Southeastern Tarim:Evidence Form Geochemistry and Sr-Nd-Pb Isotopes. Acta Petrologica et Mineralogica, 37(5):811-823 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=YSKW201805007&dbcode=CJFD&year=2018&dflag=pdfdown [14] Gu, P. Y., Xu, X. Y., He, S. P., et al., 2019a. Zircon U-Pb Ages and Hf Isotopes of Mafic Granulite from Annanba Area of Aksai, Gansu:Implications for the Precambrian Geological Evolution of the Southeastern Tarim. Chinese Journal of Geology, 54(2):549-570 (in Chinese with English abstract). [15] Gu, P. Y., Xu, X. Y., He, S. P., et al., 2019b. Ca. 2.5 Ga Granodioritic Gneiss in Annanba Area of Southeastern Tarim and Its Petrogenesis. Geological Bulletin of China, 38(5):834-844 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201905013 [16] He, Z. Y., Zhang, Z. M., Zong, K. Q., et al., 2013. Paleoproterozoic Crustal Evolution of the Tarim Craton:Constrained by Zircon U-Pb and Hf Isotopes of Meta-Igneous Rocks from Korla and Dunhuang. Journal of Asian Earth Sciences, 78:54-70. https://doi.org/10.1016/j.jseaes.2013.07.022 [17] Kang, L., Xiao, P. X., Gao, X. F., et al., 2016. Chronology, Geochemistry and Petrogenesis of Monzonitic Granite and Quartz Diorite in Mangai Area:Its Inspiration to Early Paleozoic Tectonic-Magmatic Evolution of the Southern Altyn Tagh. Acta Petrologica Sinica, 32(6):1731-1748 (in Chinese with English abstract). http://www.researchgate.net/publication/305166266_Chronology_geochemistry_and_pedogenesis_of_monzonitic_granite_and_quartz_diorite_in_Mangai_area_Its_inspiration_to_Early_Paleozoic_tectonic-magma_tic_evolution_of_the_southern_Altyn_Tagh_Acta_Petrolog [18] Kinny, P. D., Maas, R., 2003. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry. 53(1):327-341. https://doi.org/10.2113/0530327. [19] Lei, R. X., Wu, C. Z., Chi, G. X., et al., 2012. Petrogenesis of the Palaeoproterozoic Xishankou Pluton, Northern Tarim Block, Northwest China:Implications for Assembly of the Supercontinent Columbia. International Geology Review, 54(15):1829-1842. https://doi.org/10.1080/00206814.2012.678045 [20] Li, D. P., Li, X. L., Zhou, X. K., et al., 2007. SHRIMP U-Pb Zircon Dating of Neoarchean Metagabbro Dikes on the Southwestern Margin of the Tarim Plate and Its Significance. Geology in China, 34(2):262-269 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200702007 [21] Li, H. M., Lu, S. N., Zheng, J. K., et al., 2001.3.6 Ga Zircon in Granitic Gneiss from the Eastern Altyn Tagh and Its Geological Implication. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4):259-262 (in Chinese with English abstract). [22] Liu, X. M., Gao, S., Diwu, C. R., et al., 2007. Simultaneous In-Situ Determination of U-Pb Age and Trace Elements in Zircon by LA-ICP-MS in 20 μm Spot Size. Chinese Science Bulletin, 52(9):1257-1264. https://doi.org/10.1007/s11434-007-0160-x [23] Liu, Y. S., Xin, H. T., Zhou, S. J., et al., 2010. Precambrian and Paleozoic Tectonic Evolution in the Lapeiquan Area of the Eastern Altyn Tagh Mountain. Geological Publishing House, Beijing (in Chinese). [24] Long, X. P., Yuan, C., Sun, M., et al., 2010. Archean Crustal Evolution of the Northern Tarim Craton, NW China:Zircon U-Pb and Hf Isotopic Constraints. Precambrian Research, 180(3-4):272-284. https://doi.org/10.1016/j.precamres.2010.05.001 [25] Long, X. P., Yuan, C., Sun, M., et al., 2011. The Discovery of the Oldest Rocks in the Kuluketage Area and Its Geological Implications. Science in China (Series D), 41(3):291-298 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed201103002 [26] Long, X. P., Yuan, C., Sun, M., et al., 2014. New Geochemical and Combined Zircon U-Pb and Lu-Hf Isotopic Data of Orthogneisses in the Northern Altyn Tagh, Northern Margin of the Tibetan Plateau:Implication for Archean Evolution of the Dunhuang Block and Crust Formation in NW China. Lithos, 200-201:418-431. https://doi.org/10.1016/j.lithos.2014.05.008 [27] Lu, S. N., Li, H. K., Zhang, C. L., et al., 2008. Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 160(1-2):94-107. https://doi.org/10.1016/j.precamres.2007.04.025 [28] Lu, S. N., Yuan, G. B., 2003. Geochronology of Early Precambrian Magmatic Activities in Aketashitage, East Altyn Tagh. Acta Geologica Sinica, 77(1):61-68 (in Chinese with English abstract). http://www.researchgate.net/publication/284223754_Geochronology_of_early_Precambrian_magmatic_activities_in_Aketasdhtage_east_Altyn_tagh [29] Mei, H. L., Yu, H. F., Lu, S. N., et al., 1998. Archean Tonalite in the Dunhuang, Gansu Province:Age from the U-Pb Single Zircon and Nd Isotope. Progress in Precambrian Research, 21(2):41-45 (in Chinese). http://www.researchgate.net/publication/285028295_Archean_tonalite_in_the_Dunhuang_Gansu_Province_Age_from_the_U-Pb_single_zircon_and_Nd_isotope [30] Rapp, R. P., Watson, E. B., 1995. Dehydration Melting of Metabasalt at 8-32 kbar:Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 36(4):891-931. https://doi.org/10.1093/petrology/36.4.891 [31] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. Treatise on Geochemistry. Elsevier, Amsterdam. https: //doi.org/10.1016/b0-08-043751-6/03016-4 [32] Rushmer, T., 1991. Partial Melting of Two Amphibolites:Contrasting Experimental Results under Fluid-Absent Conditions. Contributions to Mineralogy and Petrology, 107(1):41-59. https://doi.org/10.1007/BF00311184 [33] Wang, Z. M., Han, C. M., Xiao, W. J., et al., 2017. Paleoproterozoic Subduction-Related Magmatism and Crustal Evolution of the Dunhuang Block, NW China. Journal of Asian Earth Sciences, 134:13-28. https://doi.org/10.1016/j.jseaes.2016.11.008 [34] Wolf, M. B., Wyllie, P. J., 1994. Dehydration-Melting of Amphibolite at 10 kbar:The Effects of Temperature and Time. Contributions to Mineralogy and Petrology, 115(4):369-383. https://doi.org/10.1007/bf00320972 [35] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2):185-220 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [36] Wu, H. L., Zhu, W. B., Shu, L. S., et al., 2012. Records of the Assemblage Event of Columbia Supercontinent in the Northern Tarim Craton. Geological Journal of China Universities, 18(4):686-700 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geological-journal-china-universities_thesis/0201253565414.html [37] Wu, M. Q., Zuo, M. L., Zhang, D. H., et al., 2014. Genesis and Diagenetic Environment of TTG Suite. Geological Review, 60(3):503-514 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201403003 [38] Xin, H. T., Liu, Y. S., Luo, Z. H., et al., 2013. The Growth of Archean Continental Crust in Aqtashtagh Area of Southeast Tarim, China:Constraints from Petrochemistry and Chronology about Milan Group and TTG-Gneiss. Earth Science Frontiers, 20(1):240-259 (in Chinese with English abstract abstract). http://www.researchgate.net/publication/285798906_The_growth_of_Archean_continental_crust_in_Aqtashtagh_Area_of_Southeast_Tarim_China_Constraints_from_petrochemistry_and_chronology_about_Milan_Group_and_TTG-gneiss [39] Xin, H. T., Zhao, F. Q., Luo, Z. H., et al., 2011. Determination of the Paleoproterozoic Geochronological Framework in Aqtashtagh Area in Southeastern Tarim, Chinaand Its Geological Significance. Acta Geologica Sinica, 85(12):1977-1993 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201112002 [40] Zhang, C. L., Li, H. K., Santosh, M., et al., 2012. Precambrian Evolution and Cratonization of the Tarim Block, NW China:Petrology, Geochemistry, Nd-Isotopes and U-Pb Zircon Geochronology from Archaean Gabbro-TTG-Potassic Granite Suite and Paleoproterozoic Metamorphic Belt. Journal of Asian Earth Sciences, 47:5-20. https://doi.org/10.1016/j.jseaes.2011.05.018 [41] Zhang, J. X., Li, H. K., Meng, F. C., et al., 2011. Polyphase Tectonothermal Events Recorded in "Metamorphic Basement" from the Altyn Tagh, the Southeastern Margin of the Tarim Basin, Western China:Constraint from U-Pb Zircon Geochronology. Acta Petrologica Sinica, 27(1):23-46 (in Chinese with English abstract). http://www.researchgate.net/publication/298851892_Polyphase_tectonothermal_events_recorded_in_metamorphic_basement_from_the_Altyn_Tagh_the_southeastern_margin_of_the_Tarim_basin_western_China_Constraint_from_U-Pb_zircon_geochronology [42] Zhang, J. X., Yu, S. Y., Gong, J. H., et al., 2013. The Latest Neoarchean-Paleoproterozoic Evolution of the Dunhuang Block, Eastern Tarim Craton, Northwestern China:Evidence from Zircon U-Pb Dating and Hf Isotopic Analyses. Precambrian Research, 226:21-42. https://doi.org/10.1016/j.precamres.2012.11.014 [43] Zhang, Q., Zhai, M. G., 2012. What is the Archean TTG?. Acta Petrologica Sinica, 28(11):3446-3456 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB201211004.htm [44] Zhao, Y., Diwu, C. R., Ao, W. H., et al., 2015. Ca.3.06 Ga Granodioritic Gneiss in Dunhuang Block. Chinese Science Bulletin, 60(1):75-87 (in Chinese with English abstract). doi: 10.1360/N972014-00382 [45] Zhao, Y., Diwu, C. R., Sun, Y., et al., 2013. Zircon Geochronology and Lu-Hf Isotope Compositions for Precambrian Rocks of the Dunhuang Complex in Shuixiakou Area, Gansu Province. Acta Petrologica Sinica, 29(5):1698-1712 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201305017 [46] Zhu, W. B., Ge, R. F., Wu, H. L., 2018. Paleoproterozoic Ca.2.0 Ga Magmatic-Metamorphic Event in the Northern Altyn Tagh Area. Acta Petrologica Sinica, 34(4):1175-1190 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201804017 [47] Zong, K. Q., Liu, Y. S., Zhang, Z. M., et al., 2013. The Generation and Evolution of Archean Continental Crust in the Dunhuang Block, Northeastern Tarim Craton, Northwestern China. Precambrian Research, 235:251-263. https://doi.org/10.1016/j.precamres.2013.07.002 [48] 车自成, 孙勇, 1996.阿尔金麻粒岩相杂岩的时代及塔里木盆地的基底.中国区域地质, 15(1):51-57. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600705048 [49] 第五春荣, 孙勇, 王倩, 2012.华北克拉通地壳生长和演化:来自现代河流碎屑锆石Hf同位素组成的启示.岩石学报, 28(11):3520-3530. http://d.wanfangdata.com.cn/Periodical/ysxb98201211007 [50] 董昕, 张泽明, 唐伟, 2011.塔里木克拉通北缘的前寒武纪构造热事件-新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定.岩石学报, 27(1):47-58. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201101003 [51] 辜平阳, 徐学义, 何世平, 等, 2018.塔里木盆地东南缘安南坝地区镁铁质麻粒岩的成因:来自地球化学及Sr-Nd-Pb同位素的制约.岩石矿物学杂志, 37(5):811-823. http://d.old.wanfangdata.com.cn/Periodical_yskwxzz201805007.aspx [52] 辜平阳, 徐学义, 何世平, 等, 2019a.甘肃阿克塞县安南坝地区镁铁质麻粒岩锆石U-Pb年龄和Hf同位素组成:对塔里木东南缘前寒武纪地质演化的启示.地质科学, 54(2):549-570. http://d.old.wanfangdata.com.cn/Periodical_dzkx201902017.aspx [53] 辜平阳, 徐学义, 何世平, 等, 2019b.塔里木东南缘安南坝地区约2.5 Ga花岗闪长质片麻岩的发现及岩石成因.地质通报, 38(5):834-844. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201905013 [54] 康磊, 校培喜, 高晓峰, 等, 2016.茫崖二长花岗岩、石英闪长岩的年代学、地球化学及岩石成因:对阿尔金南缘早古生代构造-岩浆演化的启示.岩石学报, 32(6):1731-1748. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201606012.htm [55] 黎敦朋, 李新林, 周小康, 等, 2007.塔里木西南缘新太古代变质辉长岩脉的锆石SHRIMP U-Pb定年及其地质意义.中国地质, 34(2):262-269. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200702007 [56] 李惠民, 陆松年, 郑健康, 等, 2001.阿尔金山东端花岗片麻岩中3.6 Ga锆石的地质意义.矿物岩石地球化学通报, 20(4):259-262. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200104016 [57] 刘永顺, 辛后田, 周世军, 等, 2010.阿尔金山东段拉配泉地区前寒武纪及古生代构造构造演化.北京:地质出版社. [58] 龙晓平, 袁超, 孙敏, 等, 2011.库鲁克塔格地区最古老岩石的发现及其地质意义.中国科学(D辑), 41(3):291-298. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201103002 [59] 陆松年, 袁桂邦, 2003.阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据.地质学报, 77(1):61-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200301008 [60] 梅华林, 于海峰, 陆松年, 等, 1998.甘肃敦煌太古宙英云闪长岩:单颗粒锆石U-Pb年龄和Nd同位素.前寒武纪研究进展, 21(2):41 -45. http://d.wanfangdata.com.cn/Periodical/qhwjyjjz199802006 [61] 吴福元, 李献华, 郑永飞, 等, 2007.Lu-Hf同位素体系及其岩石学应用.岩石学报, 32(2):185-220. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200702001 [62] 吴海林, 朱文斌, 舒良树, 等, 2012. Columbia超大陆聚合事件在塔里木克拉通北缘的记录.高校地质学报, 18(4):686-700. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201204009 [63] 吴鸣谦, 左梦璐, 张德会, 等, 2014. TTG岩套的成因及其形成环境.地质论评, 60(3):503-514. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201403003 [64] 辛后田, 刘永顺, 罗照华, 等, 2013.塔里木盆地东南缘阿克塔什塔格地区新太古代陆壳增生:米兰岩群和TTG片麻岩的地球化学及年代学约束.地学前缘, 20(1):240-259. http://d.wanfangdata.com.cn/Periodical/dxqy201301020 [65] 辛后田, 赵凤清, 罗照华, 等, 2011.塔里木盆地东南缘阿克塔什塔格地区古元古代精细年代格架的建立及其地质意义.地质学报, 85(12):1977-1993. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201112002 [66] 张建新, 李怀坤, 孟繁聪, 等, 2011.塔里木盆地东南缘(阿尔金山)"变质基底"记录的多期构造热事件:锆石U-Pb年代学的制约.岩石学报, 27(1):23-46. http://www.cnki.com.cn/article/cjfdtotal-ysxb201101003.htm [67] 张旗, 翟明国, 2012.太古宙TTG岩石是什么含义?岩石学报, 28(11):3446-3456. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201211004.htm [68] 赵燕, 第五春荣, 敖文昊, 等, 2015.敦煌地块发现~3.06 Ga花岗闪长质片麻岩.科学通报, 60(1):75-87. http://www.cqvip.com/QK/94252X/20151/663726251.html [69] 赵燕, 第五春荣, 孙勇, 等, 2013.甘肃敦煌水峡口地区前寒武纪岩石的锆石U-Pb年龄、Hf同位素组成及其地质意义.岩石学报, 29(5):1698-1712. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201305017 [70] 朱文斌, 葛荣峰, 吴海林, 2018.北阿尔金地区古元古代Ca.2.0 Ga岩浆-变质事件.岩石学报, 34(4):1175-1190. http://www.cqvip.com/QK/94579X/20184/675002214.html -
dqkxzx-45-9-3268-附表1 2 3 4.doc