• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    宜昌潮水洞岩溶间歇泉动态特征及成因

    郭绪磊 陈乾龙 黄琨 周宏

    郭绪磊, 陈乾龙, 黄琨, 周宏, 2020. 宜昌潮水洞岩溶间歇泉动态特征及成因. 地球科学, 45(12): 4524-4534. doi: 10.3799/dqkx.2020.138
    引用本文: 郭绪磊, 陈乾龙, 黄琨, 周宏, 2020. 宜昌潮水洞岩溶间歇泉动态特征及成因. 地球科学, 45(12): 4524-4534. doi: 10.3799/dqkx.2020.138
    Guo Xulei, Chen Qianlong, Huang Kun, Zhou Hong, 2020. Dynamic Features and Causes of Chaoshuidong Siphonal Spring. Earth Science, 45(12): 4524-4534. doi: 10.3799/dqkx.2020.138
    Citation: Guo Xulei, Chen Qianlong, Huang Kun, Zhou Hong, 2020. Dynamic Features and Causes of Chaoshuidong Siphonal Spring. Earth Science, 45(12): 4524-4534. doi: 10.3799/dqkx.2020.138

    宜昌潮水洞岩溶间歇泉动态特征及成因

    doi: 10.3799/dqkx.2020.138
    基金项目: 

    中国地质调查局项目 DD20190824

    中国地质大学(武汉)中央高校基本科研业务费专项资金资助项目 1910491A28

    详细信息
      作者简介:

      郭绪磊(1992-), 男, 博士研究生, 主要从事岩溶水文地质方面的研究工作.ORCID:0000-0001-9354-766X.E-mail:guoxulei@cug.edu.cn

      通讯作者:

      周宏, E-mail:zhouhong@cug.edu.cn

    • 中图分类号: P641.3

    Dynamic Features and Causes of Chaoshuidong Siphonal Spring

    • 摘要: 潮水洞无降雨补给时仍有规律的间歇性流出,是典型的岩溶间歇泉,其流量、水化学动态规律及形成机制缺乏系统的研究.基于长期水文气象观测和水化学测试数据,分析了潮水洞不同时期流量、水温和电导率变化特征以及潮水洞岩溶水系统的水化学特征.潮水洞为多个岩溶水子系统的连接,其动态呈现为雨期和无雨期两个不同特征,且存在多个不稳定周期的间歇出流过程.通过c(Mg2+)/c(Ca2+)比值及水文动态特征辨识出间歇出流的地下水来源为天河板组灰岩含水层,随着过程流量的不断增加,深循环地下水占比最高达97%.结合水文地质条件概化出潮水洞岩溶水系统循环模式,天河板组灰岩含水层内虹吸管道的发育是间歇性动态特征的主要成因.

       

    • 图  1  潮水洞流域概况

      a.潮水洞流域水文地质图;b.潮水洞流域剖面图

      Fig.  1.  Overview of the Chaoshuidong Siphonal Spring (CSS)

      图  2  (a) 潮水洞2018-9-20—2018-11-06动态变化特征;(b)潮水洞雨期和无雨期水文动态特征分析; (c) 2018-9-20—2018-11-6潮水洞间歇出流间隔回归分析结果

      Fig.  2.  (a) Dynamic change characteristics of CSS between September 20th and November 6th, 2018;(b) analysis of hydrodynamic features during the rain and free-rain periods of the CSS; (c) the results of the regression analysis of the intermittent outlet interval of the CSS between September 20th and November 6th, 2018

      图  3  潮水河流域主要地下水排泄点离子比值特征

      Fig.  3.  Ion ratio characteristics of the main groundwater discharge points in the Chaoshuihe basin

      图  4  2019年5月2日潮水洞间歇出流过程

      a.镁钙比动态变化; b.流量、水温、电导率动态变化

      Fig.  4.  The intermittent flow of the tidal hole on May 2nd, 2019

      图  5  雨期和无雨期流量衰减阶段划分

      Fig.  5.  The results of the stage of flow attenuation during rain and rain-free period

      图  6  潮水洞岩溶水系统概念模型

      a.间歇出流模式;b.储水期模式

      Fig.  6.  The concept model of CSS

      表  1  潮水洞岩溶水系统样品水化学分类

      Table  1.   Water chemistry classification of samples of karst water system of CSS

      采样点类型 统计 离子(mg/L) TDS (mg/L) 水化学类型
      Ca2+ Mg2+ Na++K+ Cl- SO42- HCO3- NO3-
      潮水洞基流 平均值 73.74 29.40 3.74 3.62 19.68 279.77 17.77 243.82 HCO3-Ca-Mg
      最大值 79.39 34.50 5.08 5.12 20.66 313.39 18.91 290.49
      最小值 62.36 23.94 2.92 2.99 18.74 252.67 13.97 160.38
      潮水洞间歇流 平均值 80.55 21.59 2.51 2.48 19.27 242.72 17.20 267.49 HCO3-Ca-Mg
      最大值 88.92 23.36 2.78 2.72 19.47 246.08 17.42 275.78
      最小值 64.28 18.02 2.05 2.34 19.05 239.49 16.99 247.64
      天河板含水系统 平均值 96.03 15.22 1.58 2.19 17.75 304.35 10.08 195.18 HCO3-Ca
      最大值 134.00 18.50 2.38 5.19 26.54 384.42 13.40 255.39
      最小值 84.10 13.80 0.88 1.19 13.28 249.75 1.37 158.20
      石龙洞含水系统 平均值 68.30 42.55 1.50 1.42 14.39 340.00 5.35 192.66 HCO3-Ca-Mg
      最大值 70.80 44.70 1.54 1.50 14.58 340.00 5.81 192.80
      最小值 65.80 40.40 1.46 1.34 14.20 340.00 4.89 192.52
      下载: 导出CSV

      表  2  潮水洞雨期和无雨期流量衰减分析结果

      Table  2.   The results of the analysis of flow attenuation of CSS during rain and rain-free periods

      时期 日期(年-月-日) 降雨量P (mm) 第一衰减α1(h) 第二衰减α2(h) 第三衰减α3(h) 第四衰减α4(h) VP(104 m3) VI(104 m3) φ
      雨期 2019-3-21 39.5 0.24 0.11 0.089 0.003 7 6.06 11.05 0.55
      2019-3-31 21.5 0.18 0.088 0.032 0.004 2 2.07 5.10 0.41
      2019-4-9 31.5 0.17 0.049 0.034 0.004 8 6.82 10.99 0.62
      2019-5-6 65.5 0.16 0.080 0.026 0.007 5 3.67 5.10 0.72
      2019-6-22 57.5 0.17 0.065 0.033 0.003 7 6.62 13.09 0.51
      2019-6-28 54.0 0.26 0.059 0.033 0.002 2 6.97 15.96 0.44
      2019-8-3 97.5 0.17 0.041 0.016 0.002 1 15.99 26.73 0.60
      平均 0.193 0.070 0.038 0.004 0 6.89 12.57 0.55
      无雨期 2018-10-9 0 0.12 0.005
      2018-10-13 0 0.17 0.007
      2019-1-7 0 0.17 0.007
      2019-1-10 0 0.18 0.009
      2019-6-26 0 0.18 0.007
      2019-9-16 0 0.18 0.008
      2019-9-21 0 0.20 0.008
      平均 0 0.17 0.007
      下载: 导出CSV
    • [1] Bakalowicz, M., 2005.Karst Groundwater:A Challenge for New Resources.Hydrogeology Journal, 13(1):148-160. https://doi.org/10.1007/s10040-004-0402-9
      [2] Cheng, X., Wan, J.W., Huang, K., et al., 2019.Experimental Study on the Interference of Fluorescent Tracer.Carsologica Sinica, 38(5):795-803(in Chinese with English abstract).
      [3] Han, Y.F., 2010.Unscrambling of Huangnidong Karstic Geyser Generation.Coal Geology of China, 22(Suppl.1):54-55, 59(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGMT2010S1017.htm
      [4] Jiang, Y., Zhou, Z.F., Tang, Y, T., et al., 2018.A Brief Analysis of the Hydrologic Process Variation Characteristics and Genesis of Chaojing Intermittent Spring.Collected Papers of Eco-Cultural Summit Forum on Chaojing in Changshun and Intermittent Kasrt Spring in Southern China, Guizhou, 5-11(in Chinese).
      [5] Jiang, Z.C., Wang, R.J., Pei, J.G., et al., 2001.Epikarst Zone in South China and Its Regulation Function to Karst Water.Carsologica Sinica, 20(2):106-110(in Chinese with English abstract). http://www.researchgate.net/publication/292707139_Epikarst_zone_in_south_China_and_its_regulation_function_to_karst_water
      [6] Herman, E.K., Toran, L., White, W.B., 2009.Quantifying the Place of Karst Aquifers in the Groundwater to Surface Water Continuum:A Time Series Analysis Study of Storm Behavior in Pennsylvania Water Resources.Journal of Hydrology, 376(1-2):307-317. https://doi.org/10.1016/j.jhydrol.2009.07.043
      [7] Hurwitz, S., Kumar, A., Taylor, R., et al., 2008.Climate-Induced Variations of Geyser Periodicity in Yellowstone National Park, USA.Geology, 36(6):451-454. https://doi.org/10.1130/g24723a.1
      [8] Kalhor, K., Ghasemizadeh, R., Rajic, L., et al., 2019.Assessment of Groundwater Quality and Remediation in Karst Aquifers:A Review.Groundwater for Sustainable Development, 8:104-121. https://doi.org/10.1016/j.gsd.2018.10.004
      [9] Kansou, K., Bredeweg, B., 2014.Hypothesis Assessment with Qualitative Reasoning:Modelling the Fontestorbes Fountain.Ecological Informatics, 19:71-89. https://doi.org/10.1016/j.ecoinf.2013.10.007
      [10] Karst Research Group, 1978.Karst Research of China.Science Press, Beijing.
      [11] Long, X., Sun, Z.Y., Zhou, A.G., et al., 2015.Hydrogeochemical and Isotopic Evidence for Flow Paths of Karst Waters Collected in the Heshang Cave, Central China.Journal of Earth Science, 26(1):149-156. https://doi.org/10.1007/s12583-015-0522-2
      [12] Mangin, A., 1969.Etude Hydraulique du mécanisme d'intermittence de Fontestorbes (Bélesta, Ariège).Ann. Spéliol, 2(24):253-299. http://www.researchgate.net/publication/288915344_Etude_hydraulique_du_mecanisme_d'intermittence_de_Fontestorbes_Belesta_Ariege
      [13] Somaratne, N., 2014.Characteristics of Point Recharge in Karst Aquifers.Water, 6(9):2782-2807. doi: 10.3390/w6092782
      [14] Rudolph, M.L., Manga, M., Hurwitz, S., et al., 2012.Mechanics of Old Faithful Geyser, Calistoga, California.Geophysical Research Letters, 39(24):L24308. https://doi.org/10.1029/2012gl054012
      [15] Wang, Y., Luo, Z.H., Wu, Y., et al., 2019.Urbanization Factors of Groundwater Vulnerability Assessment in Karst Area:A Case Study of Shuicheng Basin.Earth Science, 44(9):2909-2919(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909009.htm
      [16] Wang, Y.L., Zhou, Z.F., Xue, B, Q., et al., 2018.A Brief Analysis of the Characteristics and Influencing Factors of CO2 Transformation in Water-Gas Process in Karst Spring under the Short Time Scale.Collected Papers of Eco-Cultural Summit Forum on Chaojing in Changshun and Intermittent Kasrt Spring in Southern China, Guizhou, 19-28(in Chinese).
      [17] Williams, P.W., 1977.Hydrology of the Walkoropupu Springs:A Major Tidal Karst Resurgence in Northwest Nelson (New Zealand).Journal of Hydrology, 35(1-2):73-92. https://doi.org/10.1016/0022-1694(77)90078-6
      [18] Xue, B.Q., Zhou, Z.F., Wang, Y.L., et al., 2018.Chemical Characteristics and Genetic Analysis of Main Ions of Surface Karst Spring on Chaojing in Changshun.Collected Papers of Eco-Cultural Summit Forum on Chaojing in Changshun and Intermittent Kasrt Spring in Southern China, Guizhou, 29-35(in Chinese).
      [19] Yang, Z.H., Song, X.Q., Su, W.C., 2019.Slope Runoff Process and Its Utilization Technology in Southwest Karst Area.Earth Science, 44(9):2931-2943(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909012.htm
      [20] Yin, D.C., Luo, M.M., Zhang, L., et al., 2016.Methods of Calculating Recharge Coefficient of Precipitation Event Based on Spring Recession Analyses.Hydrogeology & Engineering Geology, 43(3):11-16(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SWDG201603003.htm
      [21] Yuan, D.X., Jiang, Y.J., Shen, L.C., et al., 2016.The Modern Karstology.Science Press, Beijing(in Chinese).
      [22] Zhang, R.Q., Zhou, H., Chen, Z.H., et al., 1991.The Systematic Analysis of Guozhuang Spring Karst-Water System in Shanxi.Earth Science, 16(1):1-17(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQKX199101000&dbcode=CJFD&year=1991&dflag=pdfdown
      [23] Zou, C.J., 1993.Developing Regularity and Dynamic Model Test Study of Karst Tidal Spring.Carsologica Sinica, 12(2):133-141(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGYR199302006.htm
      [24] 程烯, 万军伟, 黄琨, 等, 2019.荧光示踪剂的干扰实验研究.中国岩溶, 38(5):795-803. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201905019.htm
      [25] 韩玉福, 2010.解读黄泥洞岩溶间歇泉的生成.中国煤炭地质, 22(增刊1):54-55, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT2010S1017.htm
      [26] 蒋翼, 周忠发, 汤云涛, 等, 2018.潮井间歇泉水文过程变化特征及成因浅析.贵州: 中国南方喀斯特间歇泉-长顺"潮井"生态文化高层论坛论文集, 5-11.
      [27] 蒋忠诚, 王瑞江, 裴建国, 等, 2001.我国南方表层岩溶带及其对岩溶水的调蓄功能.中国岩溶, 20(2):106-110. doi: 10.3969/j.issn.1001-4810.2001.02.005
      [28] 汪炎林, 周忠发, 薛冰清, 等, 2018.短时间尺度下岩溶泉水-气CO2转化特征及影响因素浅析.贵州: 中国南方喀斯特间歇泉-长顺"潮井"生态文化高层论坛论文集, 19-28.
      [29] 汪莹, 罗朝晖, 吴亚, 等, 2019.岩溶地下水脆弱性评价的城镇化因子:以水城盆地为例.地球科学, 44(9):2909-2919. doi: 10.3799/dqkx.2019.135
      [30] 薛冰清, 周忠发, 汪炎林, 等, 2018.长顺潮井表层岩溶泉水主要离子化学特征及成因分析.贵州: 中国南方喀斯特间歇泉-长顺"潮井"生态文化高层论坛论文集, 29-35.
      [31] 杨振华, 宋小庆, 苏维词, 2019.西南喀斯特地区坡地产流过程及其利用技术.地球科学, 44(9):2931-2943. doi: 10.3799/dqkx.2019.213
      [32] 尹德超, 罗明明, 张亮, 等, 2016.基于流量衰减分析的次降水入渗补给系数计算方法.水文地质工程地质, 43(3):11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201603003.htm
      [33] 袁道先, 蒋勇军, 沈立成, 等, 2016.现代岩溶学.北京:科学出版社.
      [34] 张人权, 周宏, 陈植华, 等, 1991.山西郭庄泉岩溶水系统分析.地球科学, 16(1):1-17. doi: 10.3321/j.issn:1000-2383.1991.01.002
      [35] 邹成杰, 1993.岩溶多潮泉发育规律研究.中国岩溶, 12(2):133-141. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR199302006.htm
    • 加载中
    图(6) / 表(2)
    计量
    • 文章访问数:  661
    • HTML全文浏览量:  241
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-04-29
    • 刊出日期:  2020-12-15

    目录

      /

      返回文章
      返回