Zircon U-Pb Ages, Geochemistry and Geological Significance of Diorite Porphyrite in Jiangma Area, Tibet
-
摘要: 目前对班公湖-怒江蛇绿混杂岩带的中酸性侵入岩的报道相对较少,对其成因和形成机制的研究有助于揭示班公湖-怒江特提斯洋构造带的岩浆作用过程和动力学背景.对西藏班公湖-怒江蛇绿混杂岩带江玛地区的闪长玢岩进行了年龄分析、岩石地球化学研究.闪长玢岩的LA-ICP-MS锆石U-Pb年龄为121±1 Ma,表明其形成于早白垩世晚期.岩石地球化学特征表明,闪长玢岩具高Al2O3含量(18.2%~19.3%),属高铝玄武岩,岩石富集轻稀土元素和大离子亲石元素Rb、K等,亏损高场强元素Nb、Ta、Ti,属典型的岛弧玄武岩.综合区域地质资料认为,江玛地区闪长玢岩可能形成于俯冲带前缘增生的岛弧环境,是早白垩世期班公湖-怒江特提斯洋壳岩石圈南向俯冲消减背景下,板片脱水形成的流体与地幔楔橄榄岩发生交代作用的产物.Abstract: There are relatively few reports on the intermediate-acid intrusive rocks in the Bangonghu-Nujiang ophiolitic melange belt, the study on the petrogenesis and tectonic setting of this rocks is important to define the geodynamic evolution of Bangonghu-Nujiang Tethys oceanic. It reports zircon U-Pb age and major-trace elements for the diorite porphyrite from the Jiangma area in the Bangonghu-Nujiang suture zone. Zircon LA-ICP-MS U-Pb dating of the diorite porphyrite yields an Early Cretaceous age of a 121±1 Ma, indicating that the intruded rocks were formed in the late Early Cretaceous period. Geochemical studies show that diorite porphyrite has typical geochemical characteristics similar to the high-alumina basalts. They are characterized by high Al2O3 contents (18.2%-19.3%), and enriched in light rare earth elements and large ion lithophile elements (Rb and K), but depleted in high field strength elements (Nb, Ta and Ti). All of these geochemistry characteristics of the rocks are the same as the typically island arc basalts. Combined with the regional geological setting, the diorite porphyrite may be formed in an accretive arc environment related to the southward subduction of Bangonghu-Nujiang Tethys oceanic crust in late Early Cretaceous. The fluids derived from the subducted oceanic crust would metasomatize the overlying mantle peridotite to generate the mantle source of the studied diorite porphyrite.
-
图 1 江玛地区地质简图及采样位置
a.青藏高原构造单元划分(据Zhu et al., 2013修改); JSSZ.金沙江缝合带;LSSZ.龙木错-双湖缝合带;BNMZ.班公湖-怒江蛇绿混杂岩带;SNMZ.狮泉河-纳木错蛇绿混杂岩带;LMF.洛巴堆-米拉山断裂带;IYZSZ.印度河-雅鲁藏布缝合带;b.研究区地质图
Fig. 1. Simplified geological map in the Jiangma region, Tibet, showing sample locations
图 2 江玛地区地质构造特征及闪长玢岩镜下照片
a.羌塘地块的曲色组逆冲于缝合带去申拉组;b.去申拉组粉砂岩夹板岩岩性段内侵入的层状闪长玢岩体;c.去申拉组粉砂岩夹板岩岩性段因岩层不同能干性差异而形成的层间揉皱构造;d.研究区褶皱南翼的正常交错层理构造,指示去申拉组为正常沉积层序;e.研究区褶皱北翼的倒转的粒序层理构造,指示去申拉组倒转;f.研究区褶皱北翼的倒转的交错层理构造,指示去申拉组倒转;g.去申拉组凝灰岩层侵入的层状闪长玢岩体,该处为样品采集点;h.闪长玢岩露头;i.闪长玢岩正交偏光照片
Fig. 2. Geological structural characteristics in Jiangma area and photomicrographs of diorite porphyrite
图 5 闪长玢岩球粒陨石标准化稀土元素配分曲线图(a)及原始地幔标准化微量元素蛛网图(b)
a.标准化值据Boynton(1984);b.标准化值据Sun and McDonough(1989);OIB、N-type MORB数据引自Sun and McDonough(1989),BABB、IAB数据为平均值杨婧等(2016a, 2016b)
Fig. 5. Chondrite-normalized REE patterns(a)and primitive mantle-normalized trace element spider diagrams(b)for the diorite porphyrite
图 7 闪长玢岩构造判别图解
a. V-Ti/1 000图解(Shervais, 1982);b. TiO2-Zr图解(Floyd and Winchester, 1975);c. La/Yb-La图解(李曙光, 1993);d. La/Nb-Y图解(Sandeman et al., 2006);e. Ti/100-Zr-Y×3图解(Pearce and Cann, 1973);f. 2Nb-Zr/4-Y图解(Meschede, 1986)
Fig. 7. Tectonic setting discrimination diagrams of the diorite porphyrite
表 1 闪长玢岩LA-ICP-MS锆石U-Pb定年结果
Table 1. LA-ICP-MS zircon U-Pb dating results of the diorite porphyrite
测点 含量(10-6) Th/U 同位素比值 表面年龄(Ma) Pb U Th 206Pb/
238U1σ 207Pb/
235U1σ 207Pb/206Pb 1σ 206Pb/
238U1σ 207Pb/
235U1σ 207Pb/
206U1σ 样品D1301TW1 02 58.9 2 201 2 855 1.30 0.018 7 0.000 2 0.131 3 0.003 5 0.050 8 0.001 3 120 1 125 3 232 64 03 59.1 2 142 3 328 1.55 0.018 5 0.000 2 0.121 6 0.003 3 0.047 5 0.001 2 118 1 117 3 76 94 04 102.3 3 597 5 603 1.56 0.019 0 0.000 2 0.124 7 0.003 1 0.047 6 0.001 2 121 1 119 3 80 92 05 73.6 2 382 4 364 1.83 0.019 4 0.000 2 0.133 2 0.003 9 0.049 7 0.001 4 124 1 127 3 183 67 06 33.5 1 265 1 455 1.15 0.018 9 0.000 2 0.128 2 0.004 6 0.049 1 0.001 7 120 1 122 4 154 79 07 69.6 2 561 3 679 1.44 0.019 0 0.000 2 0.129 5 0.004 4 0.049 1 0.001 5 121 2 124 4 154 77 08 50.4 1 933 2 570 1.33 0.018 8 0.000 2 0.132 5 0.004 2 0.050 8 0.001 5 120 1 126 4 235 70 10 39.4 1 488 1 801 1.21 0.018 9 0.000 2 0.136 0 0.004 1 0.052 2 0.001 6 121 1 130 4 295 64 11 122.7 4 065 7 692 1.89 0.019 1 0.000 2 0.133 8 0.003 6 0.050 7 0.001 3 122 1 127 3 233 61 13 83.5 2 873 5 115 1.78 0.018 5 0.000 2 0.122 6 0.003 6 0.048 0 0.001 4 118 1 117 3 98 66 14 55.8 1 852 3 349 1.81 0.019 3 0.000 2 0.139 3 0.004 4 0.052 1 0.001 6 123 1 132 4 300 70 17 68.7 2 407 3 988 1.66 0.018 9 0.000 2 0.135 9 0.003 6 0.051 9 0.001 3 121 1 129 3 280 62 18 66.2 2 211 3 985 1.80 0.019 3 0.000 2 0.127 2 0.003 6 0.047 7 0.001 3 123 1 122 3 87 67 20 76.4 2 780 4 169 1.50 0.018 9 0.000 2 0.122 7 0.003 1 0.046 9 0.001 2 121 1 118 3 43 59 21 213 7 102 12 924 1.82 0.019 1 0.000 1 0.126 1 0.002 5 0.047 6 0.000 9 122 1 121 2 76 48 表 2 闪长玢岩主量元素(%)和微量元素(10-6)分析结果
Table 2. Major elements (%) and trace elements (10-6) compositions of the diorite porphyrite
样品编号 D1031ZH2 D1031ZH3 D1031ZH4 D1031ZH5 D1031ZH6 D1031ZH7 D1031ZH8 样品名称 闪长玢岩 闪长玢岩 闪长玢岩 闪长玢岩 闪长玢岩 闪长玢岩 闪长玢岩 SiO2 52.4 51.0 51.9 52.6 52.9 51.5 51.7 TiO2 0.97 0.90 0.91 0.95 0.93 0.98 0.95 Al2O3 18.6 18.5 19.3 18.2 19.2 18.8 18.6 Fe2O3 2.88 3.21 3.03 2.85 3.37 3.68 3.48 FeO 4.05 3.68 3.51 3.48 2.99 3.85 3.45 MnO 0.14 0.12 0.11 0.12 0.12 0.13 0.12 MgO 3.94 3.55 3.11 3.54 3.20 3.62 3.71 CaO 4.14 6.08 5.63 4.63 5.10 5.62 5.11 Na2O 4.55 4.18 4.09 5.46 4.39 4.40 4.15 K2O 3.92 3.84 3.40 3.10 3.36 3.17 4.13 P2O5 0.50 0.50 0.49 0.49 0.50 0.53 0.52 H2O+ 2.05 1.81 2.18 1.98 1.79 2.21 2.62 H2O- 0.29 0.45 0.22 0.42 0.47 0.18 0.26 Total 98.4 97.8 97.9 97.8 98.4 98.7 98.8 Na2O+K2O 8.47 8.02 7.49 8.55 7.76 7.57 8.27 FeO*/MgO 1.69 1.85 2.00 1.71 1.88 1.97 1.77 Mg# 51.6 49.3 47.3 51.3 48.9 47.7 50.4 Be 1.71 1.49 1.73 1.93 1.83 1.43 1.62 Li 36.4 32.5 35.5 39.6 33.0 34.9 32.9 Cu 277 267 250 268 271 266 273 V 175 174 183 161 177 176 180 Cr 38.4 33.1 29.7 34.0 30.6 41.4 36.0 Co 22.0 21.4 20.0 19.4 18.5 20.3 20.9 Ni 35.4 33.7 25.8 26.7 27.6 33.0 31.1 Rb 131 113 107 115 87.4 88.0 141 Y 31.1 30.2 35.9 43.5 29.4 32.0 32.5 Zr 166 153 160 235 180 155 158 Nb 9.37 9.01 9.09 16.3 10.2 9.41 8.86 Cs 2.55 2.21 2.43 2.16 1.86 1.25 1.95 La 48.8 48.5 47.7 72.5 49.0 51.4 51.9 Ce 75.4 74.8 75.3 80.6 73.6 80.3 79.4 Pr 10.4 10.1 10.3 14.6 10.2 11.0 11.0 Nd 40.5 38.9 39.8 43.5 39.1 41.7 43.4 Sm 7.67 7.25 7.35 7.58 7.26 7.81 7.99 Eu 2.88 2.31 2.52 1.97 2.23 2.23 2.43 Gd 6.14 5.35 5.89 5.44 5.66 5.66 5.77 Tb 1.37 1.21 1.27 1.25 1.23 1.27 1.35 Dy 6.91 6.50 6.68 7.13 6.68 6.97 7.26 Ho 1.33 1.23 1.23 1.36 1.23 1.35 1.38 Er 4.23 3.83 3.95 3.98 3.87 4.07 4.23 Tm 0.50 0.50 0.48 0.53 0.47 0.52 0.53 Yb 3.98 3.69 3.76 3.78 3.51 3.67 3.90 Lu 0.67 0.63 0.67 0.69 0.59 0.61 0.65 Hf 4.32 5.49 5.58 8.59 6.07 5.58 4.03 Ta 2.32 1.64 1.96 3.63 2.87 2.04 1.43 ΣREE 211 205 207 245 205 218 221 LREE 186 182 183 221 181 194 196 HREE 25.1 22.9 23.9 24.2 23.2 24.1 25.1 LREE/HREE 7.39 7.92 7.65 9.14 7.80 8.07 7.82 LaN/YbN 8.80 9.43 9.11 13.8 10.0 10.0 9.55 La/Yb 12.3 13.2 12.7 19.2 14.0 14.0 13.3 δEu 1.24 1.08 1.13 0.89 1.03 0.98 1.04 δCe 0.78 0.79 0.80 0.57 0.77 0.79 0.78 Nb/Ta 4.04 5.51 4.64 4.50 3.56 4.62 6.18 注:FeO*=FeO+0.998×Fe2O3;A/CNK=Al2O3/(CaO+Na2O+K2O);Mg#=100×Mg/(Mg+ΣFe). -
[1] Anderson, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192:59-79. doi: 10.1016/S0009-2541(02)00195-X [2] Ariskin, A.A., 1999. Phase Equilibria Modeling in Igneous Petrology:Use of COMAGMAT Model for Simulating Fractionation of Ferro-Basaltic Magmas and the Ggenesis of High-Alumina Basalt. Journal of Volcanology and Geothermal Research, 90:115-162. doi: 10.1016/S0377-0273(99)00022-0 [3] Bartels, K.S., Kinzler, R.J., Grove, T.L., 1991. High Pressure Phase Relations of Primitive High-Alumina Basalt from Medicine Lake Volcano, Northern California. Contributions to Mineralogy and Petrology, 108:253-270. doi: 10.1007/BF00285935 [4] Barth, M.G., McDonough, W.F., Rudnick, R.L., 2000. Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 165(3-4):197-213. doi: 10.1016/S0009-2541(99)00173-4 [5] Bebout, G.E., 2007. Metamorphic Chemical Geodynamics of Subduction Zones. Earth and Planetary Science Letters, 260:373-393. doi: 10.1016/j.epsl.2007.05.050 [6] Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114. [7] Brophy, J.G., Marsh, B.D., 1986. On the Origin of High-Alumina Arc Basalt and the Mechanics of Melt Extraction. Journal of Petrology, 27:763-789. doi: 10.1093/petrology/27.4.763 [8] Crawford, A.J., Falloon, T.J., Eggins, S., 1987. The Origin of Island Arc High Alumina Basalts. Contributions to Mineralogy and Petrology, 97:417-430. doi: 10.1007/BF00372004 [9] Dai, L.Q., Zheng, F., Zhao, Z. F., et al., 2018. Geochemical Insights into the Lithology of Mantle Sources for Cenozoic Alkali Basalts in West Qinling, China. Lithos, 302-303:86-98. doi: 10.1016/j.lithos.2017.12.013 [10] Du, D.D., Qu, X.M., Wang, G.H., et al., 2011. Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Arc Granites. Acta Petrologica Sinica, 27(7):1993-2002 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201107009.htm [11] Eason, D., Sinton, J., 2006. Origin of High-Al N-MORB by Fractional Crystallization in the Upper Mantle beneath the Galápagos Spreading Center. Earth and Planetary Science Letters, 252:423-436. doi: 10.1016/j.epsl.2006.09.048 [12] Elliott, T., 2003. Tracers of the Slab. In: Eiler, J., ed., Inside the Subduction Factory. American Geophysical Union Geophysical Monograph, Washington, D.C., 23-45. [13] Fan, J.J., Li, C., Xie, C.M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet:Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of Neo-Tethys. Int. Geol. Rev., 56(12):1504-1520. doi: 10.1080/00206814.2014.947639 [14] Fan, J.J., Zhang, B.C., Liu, H.Y., et al., 2019. Early-Middle Jurassic Intra-Oceanic Subduction of the Bangong-Nujiang Oceanic Lithosphere:Evidence of the Dong Co Ophiolite. Acta Petrologica Sinica, 35(10):3048-3064 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.10.06 [15] Fang, W., Dai, L.Q., Zheng, Y.F., et al., 2020. Tectonic Transition from Oceanic Subduction to Continental Collision:New Geochemical Evidence from Early-Middle Triassic Mafic Igneous Rocks in Southern Liaodong Peninsula, East-Central China. Geological Society of America Bulletin. https://doi.org/10.1130/B35278.1 [16] Floyd, P.A., Winchester, J.A., 1975. Magma Type and Tectonic Setting Discrimination Using Immobile Elements. Earth and Planetary Science Letters, (27):211-218. https://www.sciencedirect.com/science/article/pii/0012821X7590031X [17] Geng, Q.R., Zhang, Z., Peng, Z.M., et al., 2016. Jurassic-Cretaceous Granitoids and Related Tectono-Metallogenesis in the Zapug-Duobuza Arc, Western Tibet. Ore Geology Reviews, 77:163-175. doi: 10.1016/j.oregeorev.2016.02.018 [18] Gribble, R.F., Stern, R.J., Newman, S., et al., 1998. Chemical and Isotopic Composition of Lavas from the Northern Mariana Trough:Implications for Magmagenesis in Back-Arc Basins. Journal of Petrology, 39(1):125-154. doi: 10.1093/petroj/39.1.125 [19] Grove, T.L., Till, C.B., Krawczynski, M.J., 2012. The Role of H2O in Subduction Zone Magmatism. Annual Review of Earth and Planetary Sciences, 40:413-439. doi: 10.1146/annurev-earth-042711-105310 [20] Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block:Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10):3106-3116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201010022.htm [21] Kapp, P., DeCelles, P.G., Gehrels, G.E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8):917-933. doi: 10.1130/B26033.1 [22] Kelemen, P., 2003. One View of the Geochemistry of Subduction-Related Magmatic Arcs with Emphasis on Primitive Andesite and Lower Crust. In: Holland, H. D., Turekian, K. K., eds., Treatise on Geochemistry. Elsevier, Amsterdan, 3: 612-615, 626-627. [23] Kuno, H., 1960. High-Alumina Basalt. Journal of Petrology, 1:121-145. doi: 10.1093/petrology/1.2.121 [24] Le Maitre, R.W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 1-193. [25] Li, G.M., Qin, K.Z., Li, J.X., et al., 2017. Cretaceous Magmatism and Metallogeny in the Bangong-Nujiang Metallogenic Belt, Central Tibet:Evidence from Petrogeochemistry, Zircon U-Pb Ages, and Hf-O Isotopic Compositions. Gondwana Research, 41:110-127. doi: 10.1016/j.gr.2015.09.006 [26] Li, S.G., 1993. Ba-Th-Nb-La Diagrams Used to Identify Tectonic Environments of Ophiolite. Acta Petrologica Sinica, 9(2):146-157 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199302004.htm [27] Li, Y., He, J., Han, Z., et al., 2016. Late Jurassic Sodium-Rich Adakitic Intrusive Rocks in the Southern Qiangtang Terrane, Central Tibet, and Their Implications for the Bangong-Nujiang Ocean Subduction. Lithos, 245:34-46. doi: 10.1016/j.lithos.2015.10.014 [28] Liu, D.L., Shi, R.D., Ding, L., et al., 2018. Late Cretaceous Transition from Subduction to Collision along the Bangong-Nujiang Tethys:New Volcanic Constraints from Central Tibet. Lithos, 296-299:452-470. doi: 10.1016/j.lithos.2017.11.012 [29] Liu, W.L., Xia, B., Zhong, Y., et al., 2014. Age and Composition of the Rebang Co and Julu Ophiolites, Central Tibet:Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 56(4):430-447. doi: 10.1080/00206814.2013.873356 [30] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. doi: 10.1093/petrology/egp082 [31] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55:1535-1546. doi: 10.1007/s11434-010-3052-4 [32] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257:34-43. doi: 10.1016/j.chemgeo.2008.08.004 [33] Ludwig, K.R., 2003.User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center, Special Publication, Berkeley, 4:1-71. https://searchworks.stanford.edu/view/6739593 [34] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56:207-218. doi: 10.1016/0009-2541(86)90004-5 [35] Olsen, K.H., 1995. Continental Rifts:Evolution, Structure, Tectonics. Elsevier, Amsterdam, 1-466. [36] Ozerov, A.Y., 2000. The Evolution of High-Alumina Basalts of the Klyuchevskoy Volcano, Kamchatka, Russia, Based on Microprobe Analyses of Mineral Inclusions. Journal of Volcanology and Geothermal Research, 95:65-79. doi: 10.1016/S0377-0273(99)00118-3 [37] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53:3-14. doi: 10.1016/j.jseaes.2011.12.018 [38] Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19:290-300. doi: 10.1016/0012-821X(73)90129-5 [39] Pearce, J.A., Stern, R.J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Geophys. Monogr. Ser. AGU, Washington, D. C., 63-86. [40] Ringwood, A.E., 1990. Slab-Mantle Interactions:Petrogenesis of in Traplate Magmas and Structure of the Upper Mantle. Chemical Geology, 82:187-207. doi: 10.1016/0009-2541(90)90081-H [41] Sandeman, H.A., Hanmer, S., Tella, S., et al., 2006. Petrogenesis of Neoar-Chaean Volcanic Rocks of the MacQuoid Supracrustal Belt:A Backarc Setting for the Northwestern Hearne Subdomain, Western Churchill Province, Canada. Precambrian Research, 144(1):140-165. [42] Shervais, J.W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolithic Lavas. Earth & Planetary Science Letters, 59(1):101-118. https://www.sciencedirect.com/science/article/pii/0012821X82901200 [43] Sui, Q.L., 2014. Chronology, Petrogenesis, and Tectonic Implication of Magmatic Rocks from Yanhu in Northern Lhasa Terrane, Tibet (Dissertation). China University of Geosciences, Beijing, 1-109 (in Chinese with English abstract). [44] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: Saunders, A.D., Norry, M.J., eds., Magmatism in the Oceanic Basins. Geological Society, London, Special Publications, 42(1): 313-345. [45] Wang, B.D., Xu, J.F., Zeng, Q.G., et al., 2007. Geochemistry and Genesis of Lhaguo Tso Ophiolite in South of Gerze Area, Center Tibet. Acta Petrologica Sinica, 23(6):1521-1530 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200706025.htm [46] Wang, L.Q., Wang, Y., Danzhen, W.X., et al., 2017. A Tentative Discussion on Metallogeny of the Main Magmatic-Hydrothermal Ore Deposits in the Western Bangong Co-Nujiang Metallogenic Belt, Tibet. Acta Geoscientica Sinica, 38(5):615-626 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQXB201705003.htm [47] Winchester, J.A., Floyd, P.A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. doi: 10.1016/0009-2541(77)90057-2 [48] Wu, H., Li, C., Hu, P.Y., et al., 2014. The Discovery of Early Cretaceous Bimodal Volcanic Rocks in the Dachagou Area of Tibet and Its Significance. Geological Bulletin of China, 33(11):1804-1814 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD201411016.htm [49] Wu, H., Li, C., Xu, M.J., et al., 2015.Early Cretaceous Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet:Implications for Slab Roll-Back and Subsequent Slab Break-off of the Lithosphere of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 97:51-66. doi: 10.1016/j.jseaes.2014.10.014 [50] Wu, J.L., Yin, X.K., Liu, W., et al., 2019. The Discovery of Nb-Rich Volcanic Rock of the Qushenla Formation in Yema Area of the Western Segment of Bangong Co-Nujiang Suture in Tibet and Its Implications. Geological Bulletin of China, 38(4):471-483 (in Chinese with English abstract). [51] Xie, W., Xu, Y.G., Chen, Y.B., et al., 2016. High-Alumina Basalts from the Bogda Mountains Suggest an Arc Setting for Chinese Northern Tianshan during the Late Carboniferous. Lithos, 256:165-181. https://www.sciencedirect.com/science/article/pii/S0024493716300329 [52] Xu, M.J., 2014. The Evolution of Shiquanhe-Yongzhu-Jiali Ophiolitic Mélange Belt, Tibetan Plateau (Dissertation). Jilin University, Changchun, 1-152 (in Chinese with English abstract). [53] Yang, J., Wang, J.R., Zhang, Q., et al., 2016a. Back-Arc Basin Basalt (BABB) Data Mining:Comparison with MORB and IAB. Advances in Earth Science, 31(1):66-77 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXJZ201601006.htm [54] Yang, J., Wang, J.R., Zhang, Q., et al., 2016b. Global IAB Data Excavation:The Performance in Basalt Discrimination Diagrams and Preliminary Interpretation. Geological Bulletin of China, 35(12):1937-1949 (in Chinese with English abstract). [55] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28:211-280. doi: 10.1146/annurev.earth.28.1.211 [56] Yin, T., Li, W., Yin, X.K., et al., 2019. The Early Cretaceous Granodiorites in the Aweng Co Area, Tibet:Evidence for the Subduction of the Bangong Co-Nujiang River Oceanic Crust to the South. Geology in China, 46(5):1105-1115 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201905012.htm [57] Yin, T., Yin, X.K., Qin Y.L., et al., 2020. Geochemistry of Basalt and Andesitic Porphyrite in Longbaesang Area, Tibet:Implications for the Tectonic Evolution of the Bangonghu-Nujiang Ocean. Earth Science, 45(7):2345-2359 (in Chinese with English abstract). [58] Yuan, Y.J., Yin, Z.X., Liu, W.L., et al., 2015. Tectonic Evolution of the Meso-Tethys in the Western Segment of Bangognhu-Nujiang Suture Zone:Insights from Geochemistry and Gecchronology of the Lagkor Tso Ophilite. Acta Geologica Sinica, 89(2):369-388. doi: 10.1111/1755-6724.12436 [59] Zeng, M., Chen, J.P., Wei, C.C., 2017. The Mugagangri Group is an Accretionary Complex Accreted onto the South Margin of Qiangtang. Earth Science Frontiers, 24(5):207-217 (in Chinese with English abstract). [60] Zeng, X.W., Wang, M., Fan, J.J., et al., 2018. Geochemistry and Geochronology of Gabbros from the Asa Ophiolite, Tibet:Implications for the Early Cretaceous Evolution of the Meso-Tethys Ocean. Lithos, 320-321:192-206. doi: 10.1016/j.lithos.2018.09.013 [61] Zhang, K.J., Tang, X.C., 2009. Eclogites in the Interior of the Tibetan Plateau and Their Geodynamic Implications. Chinese Science Bulletin, 54:2556-2567. doi: 10.1360/csb2009-54-17-2556 [62] Zhang, K.J., Xia, B., Zhang, Y.X., et al., 2014. Central Tibetan Meso-Tethyan Oceanic Plateau. Lithos, 210-211:278-288. doi: 10.1016/j.lithos.2014.09.004 [63] Zhang, L.L., Zhu, D.C., Zhao, Z.D., et.al., 2011. Early Cretaceous Granitoids in Xainza, Tibet:Evidence of Slab Break-off. Acta Petrological Sinica, 27(7):1938-1948 (in Chinese with English abstract). [64] Zhang, S.Q., Qi, X.X., Wei, C., et al., 2018. Geochemistry, Zircon U-Pb Dating and Hf Isotope Compositions of Early Cretaceous Magmatic Rocks in Yongzhu Area, Northern Lhasa Terrane, Tibet, and Its Geological Significance. Earth Science, 43(4):1085-1109 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201804011.htm [65] Zheng, F., Dai, L.Q., Zhao, Z.F., et al., 2020. Syn-Exhumation Magmatism during Continental Collision:Geochemical Evidence from the Early Paleozoic Fushui Mafic Rocks in the Qinling Orogen, Central China. Lithos, 352-353:70-88. https://doi.org/10.1016/j.lithos.2019.105318 [66] Zhu, D.C., Li, S.M., Cawood, P.A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245:7-17. doi: 10.1016/j.lithos.2015.06.023 [67] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3):534-546 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200603002.htm [68] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301:241-255. doi: 10.1016/j.epsl.2010.11.005 [69] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23:1429-1454. doi: 10.1016/j.gr.2012.02.002 [70] 杜道德, 曲晓明, 王根厚, 等, 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7):1993-2002. http://www.cqvip.com/QK/94579X/201107/38831401.html [71] 范建军, 张博川, 刘海永, 等, 2019.班公湖-怒江洋早-中侏罗世洋内俯冲:来自洞错蛇绿岩的证据.岩石学报, 35(10):3048-3064. http://d.wanfangdata.com.cn/periodical/ysxb98201910007 [72] 康志强, 许继峰, 王保弟, 等, 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?.岩石学报, 26(10):3106-3116. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201010022.htm [73] 李曙光, 1993.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图.岩石学报, 9(2):146-157. http://www.cnki.com.cn/Article/CJFD1993-YSXB199302004.htm [74] 隋清霖, 2014.西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义.北京: 中国地质大学, 1-109. [75] 王保弟, 许继峰, 曾庆高, 等, 2007.西藏改则地区拉果错蛇绿岩地球化学特征及成因.岩石学报, 23(6):1521-1530. http://d.wanfangdata.com.cn/Periodical/ysxb98200706026 [76] 王立强, 王勇, 旦真王修, 等, 2017.班公湖-怒江成矿带西段主要岩浆热液型矿床成矿特征初探.地球学报, 38(5):615-626. http://www.cnki.com.cn/Article/CJFDTotal-DQXB201705003.htm [77] 吴浩, 李才, 胡培远, 等, 2014.藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义.地质通报, 33(11):1804-1814. http://d.wanfangdata.com.cn/Periodical/zgqydz201411016 [78] 吴建亮, 尹显科, 刘文, 等, 2019.西藏班公湖-怒江缝合带西段野马去申拉组富Nb火山岩的发现及其指示意义.地质通报, 38(4):471-483. http://www.cqvip.com/QK/95894A/201904/7001912698.html [79] 徐梦婧, 2014.青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化.长春: 吉林大学, 1-152. [80] 杨婧, 王金荣, 张旗, 等, 2016a.弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比.地球科学进展, 31(1):66-77. http://www.cqvip.com/QK/94287X/201601/668311917.html [81] 杨婧, 王金荣, 张旗, 等, 2016b.全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释.地质通报, 35(12):1937-1949. http://www.cqvip.com/QK/95894A/201612/7000084358.html [82] 尹滔, 李威, 尹显科, 等, 2019.西藏阿翁错地区早白垩世花岗闪长岩——班公湖-怒江洋壳南向俯冲消减证据.中国地质, 46(5):1105-1115. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201905012.htm [83] 尹滔, 尹显科, 秦宇龙, 等, 2020.西藏隆巴俄桑地区玄武岩与安山玢岩的地球化学:对班公湖-怒江洋构造演化的启示.地球科学, 45(7):2345-2359. doi: 10.3799/dqkx.2020.045 [84] 曾敏, 陈建平, 位冲冲, 2017.木嘎岗日岩群是羌塘南缘的增生楔杂岩.地学前缘, 24(5):207-217. http://d.wanfangdata.com.cn/Periodical/dxqy201705020 [85] 张亮亮, 朱弟成, 赵志丹, 等, 2011.西藏申扎早白垩世花岗岩类:板片断离的证据.岩石学报, 27(7):1938-1948. http://d.wanfangdata.com.cn/Periodical/ysxb98201107003 [86] 张诗启, 戚学祥, 韦诚, 等, 2018.拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义.地球科学, 43(4):1085-1109. doi: 10.3799/dqkx.2018.711 [87] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9):1312-1328. http://d.wanfangdata.com.cn/Periodical_dizhixb200609008.aspx