Zircon U-Pb Chronology and Petrogenesis of Two Types of Remelting Granite in Jining Area
-
摘要: 学术界对集宁-凉城地区的古元古代重熔型花岗岩成因一直持有不同的解释,本文对集宁土贵乌拉-隆盛庄一带两类重熔花岗岩进行了同位素年代学及地球化学研究.锆石LA-MC-ICP-MS U-Pb年代学结果显示,斑状石榴紫苏二长花岗质片麻岩具有1 954 Ma的侵位年龄及1 827 Ma的变质年龄,变质淡色石榴二长花岗岩具有1 956 Ma的侵位年龄.岩石地球化学特征显示斑状石榴紫苏二长花岗质片麻岩低硅、高镁铁,具有Eu负异常及Sr的相对亏损;变质淡色石榴二长花岗岩富硅、贫铁镁,强烈亏损Nb、Ta、Ti等高场强元素,富集K和Rb、Ba等亲石元素.二者形成时代相同,可能源自幔源岩浆底侵造成的重熔,斑状石榴紫苏二长花岗质片麻岩源岩为孔兹岩系沉积岩,混合了一定比例的幔源物质组分并经过分离结晶过程;变质淡色石榴二长花岗岩源岩主要为孔兹岩系沉积岩,较少受到幔源组分的影响.Abstract: The petrogenesis of Paleoproterozoic remelting granite in Jining-Liangcheng area has been interpreted differently in academia. Geochronologic and geochemical studies of two types of remelting granite are presented in this paper. Zircon LA-MC-ICP-MS U-Pb isotopic dating reveals that the porphyritic charnockites emplaced at 1 954 Ma and were metamorphosed at 1 827 Ma, and the meta-leucogranites emplaced at 1 956 Ma. The porphyritic charnockites are characterized by low Si contents, high Fe and Mg contents, with negative Eu anomalies and relative depletion of Sr. The meta-leucogranites have high content of Si and low contents of Fe and Mg, strong depletion in high filed-strength elements (HFSE, such as Nb, Ta and Ti) and enrichment in large iron lithophile elements (LILE, such as K, Rb and Ba). Both two types of granite were generated in the same period, from the remelting associated with mantle-source magma underplating. The source magma of the porphyritic charnockites was mixed with certain amount of mantle contribution during remelting of meta-sediments of khondalite series, before fractional crystallization. And the source magma of the meta-leucogranites was generated mainly from remelting of meta-sediments of khondalite series, with limited influence of mantle contribution.
-
Key words:
- remelting granite /
- Paleoproterozoic /
- zircon U-Pb chronology /
- geochemistry
-
图 1 研究区地质简图
a.大地构造简图,修改自Zhao et al.(2012);b.区域地质简图,修改自Guo et al.(2012);c.研究区地质简图
Fig. 1. Regional geological sketch map of study area
图 8 CaO/Na2O-Al2O3/TiO2图解(a)及Rb/Ba-Rb/Sr判别图解(b)(据Sylvester,1998)
Fig. 8. CaO/Na2O-Al2O3/TiO2 diagram (a) and Rb/Ba-Rb/Sr diagram (b) (after Sylvester, 1998)
-
[1] Chen, H. D., Wang, Z. L., Lu, N., et al., 2016. Zircon LA-ICP-MS U-Pb Age and Tectonic Significance of the Garnet Granites from Helin-Liangcheng Zone of Central Inner Mongolia. Geology in China, 43(1):81-90 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201601005 [2] Guo, J. H., Peng, P., Chen, Y., et al., 2012. UHT Sapphirine Granulite Metamorphism at 1.93-1.92 Ga Caused by Gabbronorite Intrusions:Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 222-223:124-142. https://doi.org/10.1016/j.precamres.2011.07.020 [3] Kröner, A., Wilde, S. A., Li, J. H., et al., 2005. Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan/Hengshan/Fuping Terrain of Northern China. Journal of Asian Earth Sciences, 24(5):577-595. https://doi.org/10.1016/j.jseaes.2004.01.001 [4] Kröner, A., Wilde, S. A., Zhao, G. C., et al., 2006. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China:Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton. Precambrian Research, 146(1-2):45-67. https://doi.org/10.1016/j.precamres.2006.01.008 [5] Luo, Z. B., Zhang, H. F., Zhang, R. Y., et al., 2012. Forming Temperatures of Paleoproterozoic Metamophic Peraluminous-Strong Peraluminous Granites in Zhuozi-Liangcheng, Inner Mongolia:Evidence for Regional High-Ultra High Temperatures Metamorphism. Journal of Mineralogy and Petrology, 32(2):20-30 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201202005.htm [6] Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6):529. https://doi.org/10.1130/0091-7613(2003)0310529:hacgio>2.0.co; 2 doi: 10.1130/0091-7613(2003)0310529:hacgio>2.0.co;2 [7] Peng, P., Guo, J. H., Windley, B. F., et al., 2012b. Petrogenesis of Late Paleoproterozoic Liangcheng Charnockites and S-Type Granites in the Central-Northern Margin of the North China Craton:Implications for Ridge Subduction. Precambrian Research, 222-223:107-123. https://doi.org/10.1016/j.precamres.2011.06.002 [8] Peng, P., Guo, J. H., Zhai, M. G., et al., 2010. Paleoproterozoic Gabbronoritic and Granitic Magmatism in the Northern Margin of the North China Craton:Evidence of Crust-Mantle Interaction. Precambrian Research, 183(3):635-659. https://doi.org/10.1016/j.precamres.2010.08.015 [9] Peng, P., Guo, J. H., Zhai, M. G., et al., 2012a. Genesis of the Hengling Magmatic Belt in the North China Craton:Implications for Paleoproterozoic Tectonics. Lithos, 148:27-44. https://doi.org/10.1016/j.lithos.2012.05.021 [10] Peng, P., Zhai, M. G., Zhang, H. F., et al., 2004. Geochemistry and Geological Significance of the 1.8 Ga Mafic Dyke Swarms in the North China Craton. Acta Petrologica Sinica, 20(3):439-456 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200403008 [11] Santosh, M., Sajeev, K., Li, J. H., 2006. Extreme Crustal Metamorphism during Columbia Supercontinent Assembly:Evidence from North China Craton. Gondwana Research, 10(3-4):256-266. https://doi.org/10.1016/j.gr.2006.06.005 [12] Santosh, M., Wilde, S. A., Li, J. H., 2007. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton:Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 159(3-4):178-196. https://doi.org/10.1016/j.precamres.2007.06.006 [13] Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4):29-44. https://doi.org/10.1016/S0024-4937(98)00024-3 [14] Wang, L. J., Guo, J. H., Yin, C. Q., et al., 2017. Petrogenesis of Ca. 1.95 Ga Meta-Leucogranites from the Jining Complex in the Khondalite Belt, North China Craton:Water-Fluxed Melting of Metasedimentary Rocks. Precambrian Research, 303:355-371. https://doi.org/10.1016/j.precamres.2017.04.036 [15] Wang, Y. J., Peng, T. P., Fan, W. M., et al., 2007. Early Proterozic Mafic Dikes in the North China Craton and Their Tectonic Implications. Bulletin of Mineralogy, Petrology and Geochemistry, 26(1):1-9 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200701001 [16] Wang, Y. J., Zhao, G. C., Cawood, P. A., et al., 2008. Geochemistry of Paleoproterozoic (∼1 770 Ma) Mafic Dikes from the Trans-North China Orogen and Tectonic Implications. Journal of Asian Earth Sciences, 33(1/2):61-77. https://doi.org/10.1016/j.jseaes.2007.10.018 [17] Wei, C. J., 2018. Paleoproterozoic Metamorphism and Tectonic Evolution in Wutai-Hengshan Region, Trans-North China Orogen. Earth Science, 43(1):24-43 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201801002 [18] Zhai, M. G., 2004.2.1-1.7 Ga Geological Event Group and Its Geotectonic Significance. Acta Petrologica Sinica, 20(6):1343-1354 (in Chinese with English abstract). [19] Zhai, M. G., 2012. Evolution of the North China Craton and Early Plate Tectonics. Acta Geologica Sinica, 86(9):1335-1349 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201209004.htm [20] Zhai, M. G., Liu, W. J., 2003. Palaeoproterozoic Tectonic History of the North China Craton:A Review. Precambrian Research, 122(1-4):183-199. https://doi.org/10.1016/S0301-9268(02)00211-5 [21] Zhai, M. G., Peng, P., 2007. Paleoproterozoic Events in the North China Craton. Acta Petrologica Sinica, 23(11):2665-2682 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200711002.htm [22] Zhai, M. G., Santosh, M., 2011. The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview. Gondwana Research, 20(1):6-25. https://doi.org/10.1016/j.gr.2011.02.005 [23] Zhang, H. F., Luo, Z. B., Wang, H. Z., 2013. Paleoproterozic 2.0 Ga Meta-Granite in the Liangcheng Area, Inner Mongolia:Constraint on Regional Ultra-High Temperature Metamorphism. Acta Petrologica Sinica, 29(7):2391-2404 (in Chinese with English abstract). http://www.researchgate.net/publication/287640516_Paleoproterozic_20Ga_meta-granite_in_the_Liangcheng_area_Inner_Mongolia_Constraint_on_regional_ultra-high_temperature_metamorphism?ev=auth_pub [24] Zhang, J. H., Tian, H., Wang, H. C., et al., 2019. Re-Definition of the Two-Stage Early-Precambrian Meta-Supracrustal Rocks in the Huai'an Complex, North China Craton:Evidences from Petrology and Zircon U-Pb Geochronology. Earth Science, 44(1):1-22 (in Chinese with English abstract). http://www.researchgate.net/publication/332108466_Re-Definition_of_the_Two-Stage_Early-Precambrian_Meta-Supracrustal_Rocks_in_the_Huai'an_Complex_North_China_Craton_Evidences_from_Petrology_and_Zircon_U-Pb_Geochronology [25] Zhang, J. H., Wang, H. C., Guo, J. H., et al., 2020. Petrogenesis of the~2.03 Ga Meta-Garnet Granite in the Huai'an Complex of the North China Craton:Further Evidence on a Paleoproterozoic Rift-Related Tectonic Regime. Geological Survey and Research, 43(2):114-126 (in Chinese with English abstract). [26] Zhang, Y. Q., Wang, G. M., Xu, Y. W., et al., 2015. Methods for Choosing Target Points In-Situ Zircon U-Pb Dating. Geological Survey and Research, 38(3):233-238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201503012 [27] Zhang, Y. Q., Zhang, T., Chen, H. D., et al., 2016. LA-MC-ICP-MS Zircon U-Pb Dating of Garnet Monzonitic Granite in the Manhan Mountain of Liangcheng, Inner Mongolia, and Its Petrogenesis. Geology in China, 43(3):768-779 (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201603006 [28] Zhao, G. C., Cawood, P. A., Li, S. Z., et al., 2012. Amalgamation of the North China Craton:Key Issues and Discussion. Precambrian Research, 222-223:55-76. https://doi.org/10.1016/j.precamres.2012.09.016 [29] Zhao, G. C., Cawood, P. A., Lu, L. Z., 1999. Petrology and P-T History of the Wutai Amphibolites:Implications for Tectonic Evolution of the Wutai Complex, China. Precambrian Research, 93(2-3):181-199. https://doi.org/10.1016/S0301-9268(98)00090-4 [30] Zhao, G. C., Cawood, P. A., Wilde, S. A., et al., 2000. Metamorphism of Basement Rocks in the Central Zone of the North China Craton:Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 103(1):55-88. https://doi.org/10.1016/S0301-9268(00)00076-0 [31] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2003. Assembly, Accretion and Breakup of the Paleo-Mesoproterozoic Columbia Supercontinent:Records in the North China Craton. Gondwana Research, 6(3):417-434. https://doi.org/10.1016/S1342-937X(05)70996-5 [32] Zhao, G. C., Sun, M., Wilde, S. A., et al., 2005. Late Archean to Paleoproterozoic Evolution of the North China Craton:Key Issues Revisited. Precambrian Research, 136(2):177-202. https://doi.org/10.1016/j.precamres.2004.10.002 [33] Zhao, G. C., Wilde, S. A., Cawood, P. A., et al., 2001. Archean Blocks and Their Boundaries in the North China Craton:Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 107(1-2):45-73. https://doi.org/10.1016/S0301-9268(00)00154-6 [34] Zhong, C. T., Deng, J. F., Wan, Y. S., et al., 2007. Magmarecording of Paleoprotozoic Orogeny in Central Segment of Northern Margin of Nor China Craton:Geochemical Characteristics and Zircon SHRIMP Dating of S-Type Granitoids. Geochimica, 36(6):585-600 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_geochimica_thesis/0201252980786.html [35] 陈海东, 王子龙, 鲁宁, 等, 2016.内蒙古中部和林-凉城一带石榴花岗岩LA-ICP-MS锆石U-Pb年龄及构造意义.中国地质, 43(1):81-90. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201601005 [36] 罗志波, 张华锋, 张若愚, 等, 2012.内蒙卓资-凉城地区古元古代变质过铝/强过铝花岗岩的形成温度:区域高温/超高温变质作用证据.矿物岩石, 32(2):20-30. http://d.wanfangdata.com.cn/Periodical/kwys201202004 [37] 彭澎, 翟明国, 张华锋, 等, 2004.华北克拉通1.8 Ga镁铁质岩墙群的地球化学特征及其地质意义:以晋冀蒙交界地区为例.岩石学报, 20(3):439-456. http://www.cqvip.com/Main/Detail.aspx?id=10140828 [38] 王岳军, 彭头平, 范蔚茗, 等, 2007.华北陆块早元古代基性岩墙群及其构造意义.矿物岩石地球化学通报, 26(1):1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200701001 [39] 魏春景, 2018.华北中部造山带五台-恒山地区古元古代变质作用与构造演化.地球科学, 43(1):24-43. doi: 10.3799/dqkx.2018.002 [40] 翟明国, 2004.华北克拉通2.1~1.7 Ga地质事件群的分解和构造意义探讨.岩石学报, 20(6):1343-1354. http://d.wanfangdata.com.cn/Periodical/ysxb98200406004 [41] 翟明国, 2012.华北克拉通的形成以及早期板块构造.地质学报, 86(9):1335-1349. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201209002 [42] 翟明国, 彭澎, 2007.华北克拉通古元古代构造事件.岩石学报, 23(11):2665-2682. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200711001 [43] 张华锋, 罗志波, 王浩铮, 2013.内蒙凉城2.0 Ga变质花岗岩对超高温变质作用的制约.岩石学报, 29(7):2391-2404. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201307009 [44] 张家辉, 田辉, 王惠初, 等, 2019.华北克拉通怀安杂岩中早前寒武纪两期变质表壳岩的重新厘定:岩石学及锆石U-Pb年代学证据.地球科学, 44(1):1-22. doi: 10.3799/dqkx.2018.259 [45] 张家辉, 王惠初, 郭敬辉, 等, 2020.华北克拉通怀安杂岩中~2.03 Ga变质石榴花岗岩的成因其对古元古代裂谷事件的制约.地质调查与研究, 43(2):114-126 [46] 张永清, 王国明, 许雅雯, 等, 2015.锆石微区原位U-Pb定年的测定位置选择方法.地质调查与研究, 38(3):233-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201503012 [47] 张玉清, 张婷, 陈海东, 等, 2016.内蒙古凉城蛮汗山石榴石二长花岗岩LA-MC-ICP-MS锆石U-Pb年龄及成因讨论.中国地质, 43(3):768-779. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201603006 [48] 钟长汀, 邓晋福, 万渝生, 等, 2007.华北克拉通北缘中段古元古代造山作用的岩浆记录:S型花岗岩地球化学特征及锆石SHRIMP年龄.地球化学, 36(6):585-600. http://d.wanfangdata.com.cn/Periodical/dqhx200706007 -
dqkxzx-45-9-3258-附表1 2.docx