Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method
-
摘要: 随着地磁场观测数据的不断积累,高效利用观测数据成为亟待解决的问题.以往研究表明,仅对单一观测手段获得的实测数据进行分析与解释,往往很难达到目前解决相关地质问题的精度要求.因为各观测方法获得的地磁场数据集通常在分辨率、精度、高程及覆盖范围方面存在局限性和差异性,造成单一数据集仅能有效表征地磁场某一频段信息的问题.而解决该问题的一种有效途径是数据间的融合.为此,基于等效源方法,提出一种多层等效源技术方案,应用于航空和地面磁测数据融合,提高地面数据插值补空、扩边及航空数据下延的精度.该方法针对观测信息的频谱特征,采用3个位于不同深度的等效源层模拟实测数据;较传统的单层等效源方法,减少了等效源设置的盲目性,增强了观测信息在等效源模型中分配的有序性和结构性.理论实验表明,多层等效源模型设置具有更高的计算精度,航空与地面磁测数据融合可以起到显著的相互丰富及改善的作用.最后,将该方法应用于湖北金牛火山岩盆地航空与地面磁测数据融合,获得了丰富的、平面上规则分布的地磁场数据.Abstract: With the accumulation of measured magnetic data, it is becoming urgent to use these data efficiently. Previous studies have shown that it is difficult to meet the accuracy requirement for solving geological problems by using the measured data from a single observation method. Because of the limitations and differences in resolution, accuracy, elevation and range of magnetic data obtained by various methods, single dataset can only effectively reflect the information over a certain range of wavelength of magnetic field. An effective way to solve this problem is the fusion of data. Therefore, based on the equivalent source method, a multi-layer equivalent source technology is proposed in this paper, which can be applied to the fusion of ground and airborne magnetic data to improve the accuracy of interpolation, continuation, extension, transformation, et al. According to the spectral characteristics of observation data, three-layer equivalent sources at different depths are used to fit the measured data. Compared with the traditional single-layer equivalent source method, it can reduce the blindness for setting equivalent sources, and improve the ordering and structural performance for allotting observation information into equivalent sources. Synthetic experiment shows that the three-layer model has higher computational accuracy, and data fusion can significantly improve each dataset. Finally, the method is applied to the fusion of ground and airborne magnetic data in Jinniu basin, Hubei, and abundant magnetic data with regular distribution on a plane are obtained.
-
Key words:
- data fusion /
- multi-layer equivalent source /
- interpolation /
- extension /
- data transformation /
- geophysics
-
图 3 不同高度正演ΔT磁异常(a~c)和磁异常梯度正演结果(d~i)以及磁场分量正演结果(j~o)
a,b,c分别为地面、350 m和500 m高度平面上ΔT计算结果;d~f为地面上磁异常梯度计算结果;g~i为350 m高度平面上相应计算结果;j~l为地面上磁场三分量计算结果;m~o为350 m高度平面上相应计算结果
Fig. 3. Theoretical ΔT anomaly at different elevations (a-c), theoretical magnetic gradients (d-i) and theoretical components (j-o) on ground and plane at 350 m
表 1 理论模型参数
Table 1. Parameters of synthetic models
模型体 中心埋深
(m)磁化强度
A·m-1)磁化方向 1 1 000 1.5 倾角I=45°
偏角A=5°2 900 2 3 1 600 2.5 4 4 000 4 5 5 500 3 6 6 500 5 表 2 理论模型试验等效源层参数
Table 2. Parameters of equivalent source layers of the theoretical model
层号 单元体几何参数
(长×宽×高)(m)等效层顶面深度 展布形态 1 200×200×200 距地表600 m 随地形起伏 2 200×200×600 距0 m平面2 500 m 水平 3 2 000×2 000×6 000 距0 m平面5 500 m 水平 表 3 实测数据应用等效源层参数
Table 3. Parameters of equivalent source layers of the actual application
层号 单元体几何参数
(长×宽×高)(m)等效层顶面深度 展布形态 1 200×200×200 距地表200 m 随地形起伏 2 200×200×600 距0 m平面2 600 m 水平 3 2 000×2 000×6 000 距0 m平面6 000 m 水平 -
[1] An, Y.L., Chai, Y.P., Zhang, M.H., et al., 2013. An Optimal Model of the Equivalent Source for Reduction-to-Plane of Potential Field on Uneven Surface and the New Method to Deduce Unit Potential Field Expression of the Optimal Model. Chinese Journal of Geophysics, 56(7): 2473-2483 (in Chinese with English abstract). doi: 10.1002/cjg2.20045/full [2] Andrews, S. B., Moore, P., King, M. A., 2015. Mass Change from GRACE: A Simulated Comparison of Level-1B Analysis Techniques. Geophysical Journal International, 200(1): 503-518. https://doi.org/10.1093/gji/ggu402 [3] Asgharzadeh, M. F., von Frese, R. R. B., Kim, H. R., 2008. Spherical Prism Magnetic Effects by Gauss-Legendre Quadrature Integration. Geophysical Journal International, 173(1): 315-333. https://doi.org/10.1111/j.1365-246X.2007.03692.x [4] Barnes, G., Lumley, J., 2011. Processing Gravity Gradient Data. Geophysics, 76(2): I33-I47. https://doi.org/10.1190/1.3548548 [5] Barzaghi, R., Tselfes, N., Tziavos, I. N., et al., 2008. Geoid and High Resolution Sea Surface Topography Modelling in the Mediterranean from Gravimetry, Altimetry and GOCE Data: Evaluation by Simulation. Journal of Geodesy, 83(8): 751-772. https://doi.org/10.1007/s00190-008-0292-z [6] Bhattacharyya, B.K., Chan, K.C., 1977. Reduction of Magnetic and Gravity Data on an Arbitrary Surface Acquired a Region of High Topographic. Geophysics, 42(42): 1411-1430. https://doi.org/10.1190/1.1440802 http://adsabs.harvard.edu/abs/1977Geop...42.1411B [7] Clark, D.A., 2013. New Method for Interpretation of Magnetic Vector and Gradient Tensor Data Ⅱ: Application to the Mount Leyshon Anomaly, Queensland, Australia. Exploration Geophysics, 44(2): 114-127. https://doi.org/10.1071/EG12066 [8] Cordell, L., Grauch, V.J.S., 1982. Reconciliation of the Discrete and Integral Fourier Transforms. Geophysics, 47(2): 237-243. https://doi.org/10.1190/1.1441330 [9] Dampney, C. N. G., 1969. The Equivalent Source Technique. Geophysics, 34(1): 39-53. doi: 10.1190/1.1439996 [10] Du, J.S., Chen, C., 2015. Progress and Outlook in Global Lithospheric Magnetic Field Modelling by Satellite Magnetic Measurements. Progress in Geophysics, 30(3): 1017-1033 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201503005.htm [11] Featherstone, W.E., 2003. Software for Computing Five Existing Types of Deterministically Modified Integration Kernel for Gravimetric Geoid Determination. Computer and Geosciences, 29(2): 183-193. https://doi.org/10.1016/S0098-3004(02)0074-2 doi: 10.1016/S0098-3004(02)00074-2 [12] Gao, X.B., Li, S.S., Li, H., et al., 2013. Application of Point Mass Model and Least Square Collocation in Multi-Source Gravity Data Fusion. Geodesy and Geodynamics, 33(1): 145-149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201301034.htm [13] Guo, Z.H., Guan, Z.N., Xiong, S.Q., 2004. Cuboid ΔT and Its Gradient Forward Theoretical Expressions without Analytic Odd Points. Chinese Journal of Geophysics, 47(6): 1131-1138 (in Chinese with English abstract) [14] Kim, H. R., von Frese, R. R. B., Taylor, P. T., et al., 2007. Improved Magnetic Anomalies of the Antarctic Lithosphere from Satellite and Near-Surface Data. Geophysical Journal International, 171(1): 119-126. https://doi.org/10.1111/j.1365-246X.2007.03516.x [15] Li, D., 2018. Reconstruction Method of Gravity and Magnetic Fields by Equivalent Sources (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [16] Li, D., Chen, C., Liang, Q., et al., 2018. Reconstruction of Discrete Data Using Three-Tier Equivalent Source with Variable Size. Earth Science, 43(3): 873-886 (in Chinese with English abstract). [17] Li, D., Liang, Q., Du, J., et al., 2020. Transforming Total-Field Magnetic Anomalies into Three Components Using Dual-Layer Equivalent Source. Geophysical Research Letters, 47(3): e2019GL084607. https://doi.org/10.1029/2019GL084607 doi: 10.1029/2019GL084607 [18] Li, J.C., Chao, D.B., Ning, J.S., 1995. Spherical Cap Harmonic Expansion for Local Gravity Field Representation. Manuscripta Geodaetica, 20: 265-277. http://www.ingentaconnect.com/content/ssam/03408825/1995/00000020/00000004/art00004 [19] Li, Y., Nabighian, M., Oldenburg, D.W., 2014. Using an Equivalent Source with Positivity for Low-Latitude Reduction to the Pole without Striation. Geophysics, 79(6): J81-J90. https://doi.org/10.1190/GEO2014-0134.1 doi: 10.1190/geo2014-0134.1 [20] Li, Y., Oldenburg, D.W., 1996. 3-D Inversion of Magnetic Data. Geophysics, 61(2): 394-408. https://doi.org/10.1190/1.1443968 [21] MacLennan, C.A., Li, Y.G., 2013. Denoising Multicomponent CSEM Data with Equivalent Source Processing Techniques. Geophysics, 78(3): 125-135. https://doi.org/10.1190/GEO2012-0226.1 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SEGEAB000029000001000774000001&idtype=cvips&gifs=Yes [22] Maus, S., Barckhausen, U., Berkenbosch, H., et al., 2009. EMAG2: A 2-Arc Min Resolution Earth Magnetic Anomaly Grid Compiled from Satellite, Airborne, and Marine Magnetic Measurements. Geochemistry, Geophysics, Geosystems, 10(8): Q08005. https://doi.org/10.1029/2009GC002471 doi: 10.1029/2009GC002471/abstract [23] Oliveira Jr, V.C., Barbosa, V.C.F., Uieda, L., 2013. Polynomial Equivalent Layer. Geophysics, 78(1): 1-13. https://doi.org/10.1190/geo2012-0196.1 http://adsabs.harvard.edu/abs/2013Geop...78G...1O [24] Ou, J. M., Du, A. M., Thébault, E., et al., 2013. A High Resolution Lithospheric Magnetic Field Model over China. Science China Earth Sciences, 56(10): 1759-1768. https://doi.org/10.1007/s11430-013-4580-y [25] Pang, X.L., 2012. Research on Reduction of Aeromagnetic Anomalies by Means of Equivalent Source Technology (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract), . [26] Pilkington, M., 1997. 3-D Magnetic Imaging Using Conjugate Gradients. Geophysics, 62(4): 1132-1142. https://doi.org/10.1190/1.1444214 [27] Purucker, M.E., 1990. The Computation of Vector Magnetic Anomalies: A Comparison of Techniques and Errors. Physics of the Earth and Planetary Interiors, 62: 231-245. https://doi.org/10.1016/0031-9201(90)90168-W [28] Purucker, M.E., Ravat, D., Prey, H., et al., 2000. An Altitude-Normalized Magnetic Map of Mars and Its Interpretation. Geophysical Research Letters, 27(16): 2449-2452. doi: 10.1029/2000GL000072 [29] Ravat, D., Langel, R.A., Purucker, M., et al., 1995. Global Vector and Scalar Magsat Magnetic Anomaly Maps. Journal of Geophysical Research, 100: 20111-20136. doi: 10.1029/95JB01237 [30] Silva, J.B.C., Santos, D.F., Garabito, G., 2014. Harmonic and Biharmonic Biases in Potential Field Inversion. Geophysics, 79(1): G15-G25. https://doi.org/10.1190/GEO2013-0137.1 doi: 10.1190/geo2013-0137.1 [31] Sjöberg, L. E., 2005. A Local Least-Squares Modification of Stokes' Formula. Studia Geophysica et Geodaetica, 49(1): 23-30. https://doi.org/10.1007/s11200-005-1623-7 [32] Stolz, R., Zakosarenko, V., Schulz, M., et al., 2006. Magnetic Full-Tensor SQUID Gradiometer System for Geophysical Application. The Leading Edge, 25(2): 178-180. https://doi.org/10.1190/1.2172308 [33] Syberg, F.J.R., 1972. A Fourier Method for the Regional-Residual Problem of Potential Fields. Geophysical Prospecting, (20): 47-75. https://doi.org/10.1111/j.1365-2478.1972.tb00619.x [34] Tikhonov, A.N., Arsenin, V.Y., 1977. Solution of Ill-Posed Problem. Mathematics of Computation, 32(144): 491-491. [35] Whaler, K.A., 1994. Downward Continuation of Magsat Lithospheric Anomalies to the Earth's Surface. Geophysical Journal International, 116: 267-278. https://doi.org/10.1111/j.1365-246X.1994.tb01797.x [36] Wu, Y.H., Luo, Z.C., Zhou, B.Y., 2016. Regional Gravity Modeling Based on Heterogeneous Data Sets by Using Poisson Wavelets Radial Basis Functions. Chinese Journal of Geophysics, 59(3): 852-864 (in Chinese with English abstract). doi: 10.6038/cjg20160308 [37] Xia, J., Sprowl, D.R., 1991. Correction of Topographic Distortion in Gravity Data. Geophysics, 56(4): 537-541. https://doi.org/10.1190/1.1443070 [38] Xie, R.K., Wang, P., Duan, S.L., et al., 2015. Analysis of the Reduction of Aeromagnetic Gradients Data to a Horizontal Plane. Progress in Geophysics, 30(6): 2836-2840 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQWJ201506051&dbcode=CJFD&year=2015&dflag=pdfdown [39] Zhang, W., Zhang, X.J., Tong, J., et al., 2018. Gravity and Magnetic Anomaly Characteristics and Its Geological Interpretation in Rizhao and Lianyungang Areas. Earth Science, 43(12): 4490-4497 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812017.htm [40] Zhou, J., Meng, X., Guo, L., et al., 2015. Three-Dimensional Cross-Gradient Joint Inversion of Gravity and Normalized Magnetic Source Strength Data in the Presence of Remanent Magnetization. Journal of Applied Geophysics, 199: 51-60. https://doi.org/10.1016/j.jappgeo.2015.05.001 http://www.sciencedirect.com/science/article/pii/S0926985115001512 [41] 安玉林, 柴玉普, 张明华, 等, 2013. 曲化平用最佳等效源模型及其单位位场表达式推导的新方法. 地球物理学报, 56(7): 2473-2483. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307032.htm [42] 杜劲松, 陈超, 2015. 基于卫星磁测数据的全球岩石圈磁场建模进展与展望. 地球物理学进展, 30(3): 1017-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503005.htm [43] 高新兵, 李珊珊, 李海, 等, 2013. 点质量模型与最小二乘配置在多源重力数据融合中的应用. 大地测量与地球动力学, 33(1): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201301034.htm [44] 郭志宏, 管志宁, 熊盛青, 2004. 长方体ΔT场及其梯度场无解析奇异点理论表达式. 地球物理学报, 47(6): 1131-1138. doi: 10.3321/j.issn:0001-5733.2004.06.029 [45] 李端, 2018. 基于等效源技术的重磁场重构方法(博士学位论文). 武汉: 中国地质大学. [46] 李端, 陈超, 梁青, 等, 2018. 基于三层变尺度等效源的离散重力数据重构. 地球科学, 43(3): 873-886. doi: 10.3799/dqkx.2017.513 [47] 庞旭林, 2012. 航磁异常数据曲面延拓等效源法技术研究(硕士学位论文). 北京: 中国地质大学. [48] 吴怿昊, 罗志才, 周波阳, 2016. 基于泊松小波径向基函数融合多源数据的局部重力场建模. 地球物理学报, 59(3): 852-864. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603008.htm [49] 谢汝宽, 王平, 段树岭, 等, 2015. 航磁梯度数据曲化平分析. 地球物理学进展, 30(6): 2836-2840. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201506051.htm [50] 张婉, 张玄杰, 佟晶, 等, 2018. 日照-连云港地区重磁异常特征及其构造意义. 地球科学, 43(12): 4490-4497. doi: 10.3799/dqkx.2018.518