• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    多层等效源方法在地面与航空磁异常数据融合中的应用

    高宝龙 胡正旺 李端 杜劲松

    高宝龙, 胡正旺, 李端, 杜劲松, 2021. 多层等效源方法在地面与航空磁异常数据融合中的应用. 地球科学, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134
    引用本文: 高宝龙, 胡正旺, 李端, 杜劲松, 2021. 多层等效源方法在地面与航空磁异常数据融合中的应用. 地球科学, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134
    Gao Baolong, Hu Zhengwang, Li Duan, Du Jinsong, 2021. Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method. Earth Science, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134
    Citation: Gao Baolong, Hu Zhengwang, Li Duan, Du Jinsong, 2021. Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method. Earth Science, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134

    多层等效源方法在地面与航空磁异常数据融合中的应用

    doi: 10.3799/dqkx.2020.134
    基金项目: 

    湖北大冶金牛火山岩盆地1∶2.5万重磁调查项目 [2016]29

    湖北大冶金牛火山岩盆地1∶2.5万重磁调查项目 [2017]2

    湖北大冶金牛火山岩盆地1∶2.5万重磁调查项目 [2018]17

    湖北大冶金牛火山岩盆地重磁异常研究及深部找矿预测项目 [2018]17

    地质过程与矿产资源国家重点实验室自主研究课题 MSFGPMR01-4

    详细信息
      作者简介:

      高宝龙(1979-),男,博士研究生,主要从事应用地球物理技术与科研工作. ORCID: 0000-0002-4004-1291. E-mail:45371309@qq.com

      通讯作者:

      胡正旺, E-mail: hzw@cug.edu.cn

    • 中图分类号: P631

    Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method

    • 摘要: 随着地磁场观测数据的不断积累,高效利用观测数据成为亟待解决的问题.以往研究表明,仅对单一观测手段获得的实测数据进行分析与解释,往往很难达到目前解决相关地质问题的精度要求.因为各观测方法获得的地磁场数据集通常在分辨率、精度、高程及覆盖范围方面存在局限性和差异性,造成单一数据集仅能有效表征地磁场某一频段信息的问题.而解决该问题的一种有效途径是数据间的融合.为此,基于等效源方法,提出一种多层等效源技术方案,应用于航空和地面磁测数据融合,提高地面数据插值补空、扩边及航空数据下延的精度.该方法针对观测信息的频谱特征,采用3个位于不同深度的等效源层模拟实测数据;较传统的单层等效源方法,减少了等效源设置的盲目性,增强了观测信息在等效源模型中分配的有序性和结构性.理论实验表明,多层等效源模型设置具有更高的计算精度,航空与地面磁测数据融合可以起到显著的相互丰富及改善的作用.最后,将该方法应用于湖北金牛火山岩盆地航空与地面磁测数据融合,获得了丰富的、平面上规则分布的地磁场数据.

       

    • 图  1  三层等效源模型示意图

      RLPS表示径向对数功率谱估算;zf, zs, zt分别表示3个等效源层中心埋深

      Fig.  1.  Three-layer equivalent source model

      图  2  理论模型及其地面上观测ΔT磁异常

      a.组合模型;b.地形高程(红框为地面观测范围);c.模拟地面观测ΔT磁异常

      Fig.  2.  Synthetic models and their theoretical ΔT anomaly on ground

      图  3  不同高度正演ΔT磁异常(a~c)和磁异常梯度正演结果(d~i)以及磁场分量正演结果(j~o)

      a,b,c分别为地面、350 m和500 m高度平面上ΔT计算结果;d~f为地面上磁异常梯度计算结果;g~i为350 m高度平面上相应计算结果;j~l为地面上磁场三分量计算结果;m~o为350 m高度平面上相应计算结果

      Fig.  3.  Theoretical ΔT anomaly at different elevations (a-c), theoretical magnetic gradients (d-i) and theoretical components (j-o) on ground and plane at 350 m

      图  4  理论模拟地面与航空磁异常对数功率谱曲线

      图中红色与蓝色直线为对数功率谱曲线分段拟合线;a,b分别为地面与航空磁测数据计算曲线

      Fig.  4.  Radial logarithmic power spectrum of observed magnetic data

      图  5  等效源单元磁场响应随埋深变化的衰减曲线

      a.对应200 m×200 m×600 m等效源单元;b.对应2 000 m×2 000 m×6 000 m等效源单元

      Fig.  5.  Magnetic attenuation with depths of equivalent source cells

      图  6  三种方法计算ΔT磁异常与理论值绝对误差

      a~c分别为单层、三层等效源方法与傅里叶‒克里金方法在地面上的计算结果与理论值差值;d~f分别为350 m高度平面上对应差值

      Fig.  6.  Distribution of absolute errors between the computational ΔT and theoretical values

      图  7  单层与三层等效源方法计算磁异常梯度与理论值绝对误差

      a~c与d~f分别为单层与三层等效源方法在地面上计算(ΔTx, ΔTy, ΔTz)与理论值差值;g~i与j~l分别是单层和三层等效源方法在350 m高度平面上对应差值

      Fig.  7.  Distribution of absolute errors between the computational magnetic gradients and theoretical values

      图  8  单层与三层等效源方法计算磁场分量与理论值绝对误差

      a~c与d~f分别为单层与三层等效源方法在地面上计算(Hax, Hay, Za)与理论值差值;g~i与j~l分别是单层和三层等效源方法在350 m高度平面上对应差值

      Fig.  8.  Distribution of absolute errors between the computational components and theoretical values

      图  9  实测地面及航空ΔT磁异常

      a.地形高程;b.地面实测ΔT磁异常;c.航空测量ΔT磁异常

      Fig.  9.  Measured ΔT anomaly and elevation

      图  10  实测地面与航空磁异常对数功率谱曲线

      图中红色与蓝色直线为对数功率谱曲线分段拟合线;a,b分别为地面与航空磁测数据计算曲线

      Fig.  10.  Radial logarithmic power spectrum of observed magnetic data

      图  11  计算结果与观测数据拟合差以及288 m高度平面上ΔT计算结果

      a.恢复地面磁测数据拟合差;b.恢复航空磁测数据拟合差;c.计算ΔT

      Fig.  11.  Difference between calculation ΔT and observation values and computational ΔT on the plane at 288 m

      图  12  288 m高度平面上磁异常梯度及磁场分量转换结果

      a~c分别为转换ΔTx,ΔTy与ΔTz;d~f分别为转换HaxHayZa

      Fig.  12.  Transformations on the plane at 288 m

      表  1  理论模型参数

      Table  1.   Parameters of synthetic models

      模型体 中心埋深
      (m)
      磁化强度
      A·m-1
      磁化方向
      1 1 000 1.5 倾角I=45°
      偏角A=5°
      2 900 2
      3 1 600 2.5
      4 4 000 4
      5 5 500 3
      6 6 500 5
      下载: 导出CSV

      表  2  理论模型试验等效源层参数

      Table  2.   Parameters of equivalent source layers of the theoretical model

      层号 单元体几何参数
      (长×宽×高)(m)
      等效层顶面深度 展布形态
      1 200×200×200 距地表600 m 随地形起伏
      2 200×200×600 距0 m平面2 500 m 水平
      3 2 000×2 000×6 000 距0 m平面5 500 m 水平
      下载: 导出CSV

      表  3  实测数据应用等效源层参数

      Table  3.   Parameters of equivalent source layers of the actual application

      层号 单元体几何参数
      (长×宽×高)(m)
      等效层顶面深度 展布形态
      1 200×200×200 距地表200 m 随地形起伏
      2 200×200×600 距0 m平面2 600 m 水平
      3 2 000×2 000×6 000 距0 m平面6 000 m 水平
      下载: 导出CSV
    • [1] An, Y.L., Chai, Y.P., Zhang, M.H., et al., 2013. An Optimal Model of the Equivalent Source for Reduction-to-Plane of Potential Field on Uneven Surface and the New Method to Deduce Unit Potential Field Expression of the Optimal Model. Chinese Journal of Geophysics, 56(7): 2473-2483 (in Chinese with English abstract). doi: 10.1002/cjg2.20045/full
      [2] Andrews, S. B., Moore, P., King, M. A., 2015. Mass Change from GRACE: A Simulated Comparison of Level-1B Analysis Techniques. Geophysical Journal International, 200(1): 503-518. https://doi.org/10.1093/gji/ggu402
      [3] Asgharzadeh, M. F., von Frese, R. R. B., Kim, H. R., 2008. Spherical Prism Magnetic Effects by Gauss-Legendre Quadrature Integration. Geophysical Journal International, 173(1): 315-333. https://doi.org/10.1111/j.1365-246X.2007.03692.x
      [4] Barnes, G., Lumley, J., 2011. Processing Gravity Gradient Data. Geophysics, 76(2): I33-I47. https://doi.org/10.1190/1.3548548
      [5] Barzaghi, R., Tselfes, N., Tziavos, I. N., et al., 2008. Geoid and High Resolution Sea Surface Topography Modelling in the Mediterranean from Gravimetry, Altimetry and GOCE Data: Evaluation by Simulation. Journal of Geodesy, 83(8): 751-772. https://doi.org/10.1007/s00190-008-0292-z
      [6] Bhattacharyya, B.K., Chan, K.C., 1977. Reduction of Magnetic and Gravity Data on an Arbitrary Surface Acquired a Region of High Topographic. Geophysics, 42(42): 1411-1430. https://doi.org/10.1190/1.1440802 http://adsabs.harvard.edu/abs/1977Geop...42.1411B
      [7] Clark, D.A., 2013. New Method for Interpretation of Magnetic Vector and Gradient Tensor Data Ⅱ: Application to the Mount Leyshon Anomaly, Queensland, Australia. Exploration Geophysics, 44(2): 114-127. https://doi.org/10.1071/EG12066
      [8] Cordell, L., Grauch, V.J.S., 1982. Reconciliation of the Discrete and Integral Fourier Transforms. Geophysics, 47(2): 237-243. https://doi.org/10.1190/1.1441330
      [9] Dampney, C. N. G., 1969. The Equivalent Source Technique. Geophysics, 34(1): 39-53. doi: 10.1190/1.1439996
      [10] Du, J.S., Chen, C., 2015. Progress and Outlook in Global Lithospheric Magnetic Field Modelling by Satellite Magnetic Measurements. Progress in Geophysics, 30(3): 1017-1033 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201503005.htm
      [11] Featherstone, W.E., 2003. Software for Computing Five Existing Types of Deterministically Modified Integration Kernel for Gravimetric Geoid Determination. Computer and Geosciences, 29(2): 183-193. https://doi.org/10.1016/S0098-3004(02)0074-2 doi: 10.1016/S0098-3004(02)00074-2
      [12] Gao, X.B., Li, S.S., Li, H., et al., 2013. Application of Point Mass Model and Least Square Collocation in Multi-Source Gravity Data Fusion. Geodesy and Geodynamics, 33(1): 145-149 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DKXB201301034.htm
      [13] Guo, Z.H., Guan, Z.N., Xiong, S.Q., 2004. Cuboid ΔT and Its Gradient Forward Theoretical Expressions without Analytic Odd Points. Chinese Journal of Geophysics, 47(6): 1131-1138 (in Chinese with English abstract)
      [14] Kim, H. R., von Frese, R. R. B., Taylor, P. T., et al., 2007. Improved Magnetic Anomalies of the Antarctic Lithosphere from Satellite and Near-Surface Data. Geophysical Journal International, 171(1): 119-126. https://doi.org/10.1111/j.1365-246X.2007.03516.x
      [15] Li, D., 2018. Reconstruction Method of Gravity and Magnetic Fields by Equivalent Sources (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [16] Li, D., Chen, C., Liang, Q., et al., 2018. Reconstruction of Discrete Data Using Three-Tier Equivalent Source with Variable Size. Earth Science, 43(3): 873-886 (in Chinese with English abstract).
      [17] Li, D., Liang, Q., Du, J., et al., 2020. Transforming Total-Field Magnetic Anomalies into Three Components Using Dual-Layer Equivalent Source. Geophysical Research Letters, 47(3): e2019GL084607. https://doi.org/10.1029/2019GL084607 doi: 10.1029/2019GL084607
      [18] Li, J.C., Chao, D.B., Ning, J.S., 1995. Spherical Cap Harmonic Expansion for Local Gravity Field Representation. Manuscripta Geodaetica, 20: 265-277. http://www.ingentaconnect.com/content/ssam/03408825/1995/00000020/00000004/art00004
      [19] Li, Y., Nabighian, M., Oldenburg, D.W., 2014. Using an Equivalent Source with Positivity for Low-Latitude Reduction to the Pole without Striation. Geophysics, 79(6): J81-J90. https://doi.org/10.1190/GEO2014-0134.1 doi: 10.1190/geo2014-0134.1
      [20] Li, Y., Oldenburg, D.W., 1996. 3-D Inversion of Magnetic Data. Geophysics, 61(2): 394-408. https://doi.org/10.1190/1.1443968
      [21] MacLennan, C.A., Li, Y.G., 2013. Denoising Multicomponent CSEM Data with Equivalent Source Processing Techniques. Geophysics, 78(3): 125-135. https://doi.org/10.1190/GEO2012-0226.1 http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SEGEAB000029000001000774000001&idtype=cvips&gifs=Yes
      [22] Maus, S., Barckhausen, U., Berkenbosch, H., et al., 2009. EMAG2: A 2-Arc Min Resolution Earth Magnetic Anomaly Grid Compiled from Satellite, Airborne, and Marine Magnetic Measurements. Geochemistry, Geophysics, Geosystems, 10(8): Q08005. https://doi.org/10.1029/2009GC002471 doi: 10.1029/2009GC002471/abstract
      [23] Oliveira Jr, V.C., Barbosa, V.C.F., Uieda, L., 2013. Polynomial Equivalent Layer. Geophysics, 78(1): 1-13. https://doi.org/10.1190/geo2012-0196.1 http://adsabs.harvard.edu/abs/2013Geop...78G...1O
      [24] Ou, J. M., Du, A. M., Thébault, E., et al., 2013. A High Resolution Lithospheric Magnetic Field Model over China. Science China Earth Sciences, 56(10): 1759-1768. https://doi.org/10.1007/s11430-013-4580-y
      [25] Pang, X.L., 2012. Research on Reduction of Aeromagnetic Anomalies by Means of Equivalent Source Technology (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract), .
      [26] Pilkington, M., 1997. 3-D Magnetic Imaging Using Conjugate Gradients. Geophysics, 62(4): 1132-1142. https://doi.org/10.1190/1.1444214
      [27] Purucker, M.E., 1990. The Computation of Vector Magnetic Anomalies: A Comparison of Techniques and Errors. Physics of the Earth and Planetary Interiors, 62: 231-245. https://doi.org/10.1016/0031-9201(90)90168-W
      [28] Purucker, M.E., Ravat, D., Prey, H., et al., 2000. An Altitude-Normalized Magnetic Map of Mars and Its Interpretation. Geophysical Research Letters, 27(16): 2449-2452. doi: 10.1029/2000GL000072
      [29] Ravat, D., Langel, R.A., Purucker, M., et al., 1995. Global Vector and Scalar Magsat Magnetic Anomaly Maps. Journal of Geophysical Research, 100: 20111-20136. doi: 10.1029/95JB01237
      [30] Silva, J.B.C., Santos, D.F., Garabito, G., 2014. Harmonic and Biharmonic Biases in Potential Field Inversion. Geophysics, 79(1): G15-G25. https://doi.org/10.1190/GEO2013-0137.1 doi: 10.1190/geo2013-0137.1
      [31] Sjöberg, L. E., 2005. A Local Least-Squares Modification of Stokes' Formula. Studia Geophysica et Geodaetica, 49(1): 23-30. https://doi.org/10.1007/s11200-005-1623-7
      [32] Stolz, R., Zakosarenko, V., Schulz, M., et al., 2006. Magnetic Full-Tensor SQUID Gradiometer System for Geophysical Application. The Leading Edge, 25(2): 178-180. https://doi.org/10.1190/1.2172308
      [33] Syberg, F.J.R., 1972. A Fourier Method for the Regional-Residual Problem of Potential Fields. Geophysical Prospecting, (20): 47-75. https://doi.org/10.1111/j.1365-2478.1972.tb00619.x
      [34] Tikhonov, A.N., Arsenin, V.Y., 1977. Solution of Ill-Posed Problem. Mathematics of Computation, 32(144): 491-491.
      [35] Whaler, K.A., 1994. Downward Continuation of Magsat Lithospheric Anomalies to the Earth's Surface. Geophysical Journal International, 116: 267-278. https://doi.org/10.1111/j.1365-246X.1994.tb01797.x
      [36] Wu, Y.H., Luo, Z.C., Zhou, B.Y., 2016. Regional Gravity Modeling Based on Heterogeneous Data Sets by Using Poisson Wavelets Radial Basis Functions. Chinese Journal of Geophysics, 59(3): 852-864 (in Chinese with English abstract). doi: 10.6038/cjg20160308
      [37] Xia, J., Sprowl, D.R., 1991. Correction of Topographic Distortion in Gravity Data. Geophysics, 56(4): 537-541. https://doi.org/10.1190/1.1443070
      [38] Xie, R.K., Wang, P., Duan, S.L., et al., 2015. Analysis of the Reduction of Aeromagnetic Gradients Data to a Horizontal Plane. Progress in Geophysics, 30(6): 2836-2840 (in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQWJ201506051&dbcode=CJFD&year=2015&dflag=pdfdown
      [39] Zhang, W., Zhang, X.J., Tong, J., et al., 2018. Gravity and Magnetic Anomaly Characteristics and Its Geological Interpretation in Rizhao and Lianyungang Areas. Earth Science, 43(12): 4490-4497 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201812017.htm
      [40] Zhou, J., Meng, X., Guo, L., et al., 2015. Three-Dimensional Cross-Gradient Joint Inversion of Gravity and Normalized Magnetic Source Strength Data in the Presence of Remanent Magnetization. Journal of Applied Geophysics, 199: 51-60. https://doi.org/10.1016/j.jappgeo.2015.05.001 http://www.sciencedirect.com/science/article/pii/S0926985115001512
      [41] 安玉林, 柴玉普, 张明华, 等, 2013. 曲化平用最佳等效源模型及其单位位场表达式推导的新方法. 地球物理学报, 56(7): 2473-2483. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307032.htm
      [42] 杜劲松, 陈超, 2015. 基于卫星磁测数据的全球岩石圈磁场建模进展与展望. 地球物理学进展, 30(3): 1017-1033. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201503005.htm
      [43] 高新兵, 李珊珊, 李海, 等, 2013. 点质量模型与最小二乘配置在多源重力数据融合中的应用. 大地测量与地球动力学, 33(1): 145-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201301034.htm
      [44] 郭志宏, 管志宁, 熊盛青, 2004. 长方体ΔT场及其梯度场无解析奇异点理论表达式. 地球物理学报, 47(6): 1131-1138. doi: 10.3321/j.issn:0001-5733.2004.06.029
      [45] 李端, 2018. 基于等效源技术的重磁场重构方法(博士学位论文). 武汉: 中国地质大学.
      [46] 李端, 陈超, 梁青, 等, 2018. 基于三层变尺度等效源的离散重力数据重构. 地球科学, 43(3): 873-886. doi: 10.3799/dqkx.2017.513
      [47] 庞旭林, 2012. 航磁异常数据曲面延拓等效源法技术研究(硕士学位论文). 北京: 中国地质大学.
      [48] 吴怿昊, 罗志才, 周波阳, 2016. 基于泊松小波径向基函数融合多源数据的局部重力场建模. 地球物理学报, 59(3): 852-864. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201603008.htm
      [49] 谢汝宽, 王平, 段树岭, 等, 2015. 航磁梯度数据曲化平分析. 地球物理学进展, 30(6): 2836-2840. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201506051.htm
      [50] 张婉, 张玄杰, 佟晶, 等, 2018. 日照-连云港地区重磁异常特征及其构造意义. 地球科学, 43(12): 4490-4497. doi: 10.3799/dqkx.2018.518
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  550
    • HTML全文浏览量:  215
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-07-22
    • 刊出日期:  2021-05-15

    目录

      /

      返回文章
      返回