Classification of Paleogene Source-to-Sink System and Its Petroleum Geological Significance in Zhuyi Depression of Pearl River Mouth Basin
-
摘要: 珠一坳陷深层古近系两套优质生烃层系内发育的储层具有近源成藏的优势,但其非均质性强、低孔渗的特点制约了油气勘探,研究与此直接相关的“源-汇”系统,对于寻找富烃优储耦合的有利区意义重大.以构造运动和盆山地貌为基础,结合断陷湖盆以半地堑为基本单元的结构特点,划分了盆地级、半地堑级和区带级的三级“源-汇”系统.盆地级分为外源、内源型两类,可用来宏观分析优质烃源岩分布;半地堑级分为陡坡、缓坡和长轴型3类,对于定性评价储层优劣具有较大意义;区带级分为迁移型、转换型、稳定型3类,为有利区目标评价和井点选择提供参考.研究认为迁移型和转换型“源-汇”系统可形成良好的生储盖配置,是最为有利的油气富集区,应作为古近系重点勘探对象.Abstract: The reservoirs developed in the two sets of high-quality hydrocarbon-generating layers in the deep Paleogene of the Zhuyi depression have the advantages of near-source accumulation, but their characteristics of strong heterogeneity, low porosity and permeability have restricted oil and gas exploration. The directly related source-to-sink system is of great significance for finding a favorable area for coupling of hydrocarbon-rich and optimal reservoirs. Based on the influence of regional tectonic movements, and combining the structural characteristics of the rift lake basin with the semi-submarine ridge as its basic unit, source-to-sink system is divided into three levels of basin-level, half-graben-level, and zone-level. Basin-level source-to-sink system is further divided into external and internal source types, which can be used to analyze the distribution of high-quality source rocks; half-graben-level source-to-sink system is further classified into steep slopes, gentle slopes, and long-axis types, which is of great significance to qualitative evaluation of reservoir quality; zone-level source-to-sink system is further divided into three types of migration, conversion, and stability, which provides a good reference for target evaluation and well selection in favorable areas. It is considered that migration-type and conversion-type source-to-sink system can form a good configuration of high-quality source rocks and reservoirs, and are the most favorable oil and gas enrichment areas, which should be the focus of Paleogene exploration.
-
图 2 古近纪构造事件与周缘板块活动关系(据施和生等,2020)
Fig. 2. Relationship between Paleogene tectonic events and peripheral plate activity
表 1 珠一坳陷古近系“源-汇”系统分类
Table 1. Classification of Paleogene source-to-sink system in the Zhuyi depression
级别 类型 基本特征 石油地质意义 分类依据 成因联系 盆地级 外源型 物源区位于盆地或凹陷外部,物源充沛,由四周向中央低谷汇聚,沉积类型多样 对宏观评价烃源岩有一定指导意义,外源型影响较大的洼陷生烃条件一般较差,受物源影响较弱的洼陷易于形成优质烃源岩 盆山地貌对物源背景的影响 ①三级分类方案从大到小,相互独立又互为补充,能够覆盖全区,满足不同级次的评价需求;②八种类型“源-汇”系统各具特色,对成烃、成储及油气成藏等研究有指导意义;③半地堑作为断陷盆地的基本结构单元,上承宏观尺度的盆地单元,下启中小尺度的区带单元 内源型 物源区位于盆地或凹陷内部,物源受内部隆起控制,由中央向四周低谷搬运,沉积体系规模相对较小 半地堑级 陡坡型 陡坡带坡度大、充填快,砂体淘洗改造程度有限,多形成局限分布的扇体 对定性评价储层有一定指导意义,陡坡型储层物性一般较差,缓坡型储层条件相对较好,长轴型易于形成大型的优质储层 半地堑边界对沉积体系的影响 缓坡型 缓坡地形较缓,砂体分选磨圆更为充分,多形成广泛展布的辫状河三角洲沉积体系 长轴型 长轴带由陡坡断层和缓坡地形挟持构成,易形成长源河搬运,以长源河三角洲沉积体系为主 区带级 迁移型 物源供给和沉积体系随构造转换发生迁移变化,发育多套生储盖组合,优质储层易叠合连片 对勘探的选区选点有一定指导意义.迁移型源汇系统具有好的勘探条件,转换型源汇系统次之,是目前深层古近系重点勘探的两种类型 构造活动对源-汇变化的影响 转换型 由两组断裂错开排列形成搬运沟谷,接受多物源、长物源汇聚,储集层非均质性较强 稳定型 受构造活动影响相对较弱、且没有明显组合特征.(将迁移型和转换型之外的区带全划归稳定型) 表 2 惠州25转换带不同地区储层物性条件对比
Table 2. Comparison of reservoir physical conditions in different areas of Huizhou 25 transition zone
层段 物性/岩性/距离 HZ25-a HZ25-b HZ25-c HZ25-d HZ25-e 惠州25转换带文昌组 平均孔隙度(%) 10.0 11.9 12.9 13.0 10.1 平均渗透率(10-3 μm2) 0.90 0.89 2.49 5.37 13.55 岩性描述 含砾粗砂岩-粗砂岩-中砂岩 粗砂岩-中砂岩-细砂岩 中砂岩-细砂岩 含砾粗砂岩-粗砂岩-中砂岩 中砂岩-细砂岩 总搬运距离(km) 11.9 12.7 13.1 14.1 18.9 -
[1] Chen, J., Jiang, Z.X., Zhang, W.Y., et al., 2018. Discussion on Depositional Models of Modern Aeolian Facies under the Guidance of Source-to-Sink System Theory: A Case Study of East Coast of Qinghai Lake. Journal of Desert Research, 38(5): 999-1008(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGSS201805012.htm [2] Chen, C.M., Shi, H.S., Xu, S.C., et al., 2003. The Conditions for Hydrocarbon Accumulation in the Eastern Pearl River Mouth Basin. Science Press, Beijing, 65-88(in Chinese). [3] Deng, P., 2018. The Nature and Tectonic Transition of the Multiphase Rifting in the Northern Margin of the South China Sea: Based on the Study of the Zhu I Depression in Pearl River Mouth Basin(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract). [4] Guo, L.Z., Zhong, Z.H., Wang, L.S., et al., 2001. Regional Tectonic Evolution around Yinggehai Basin of South China Sea. Geological Journal of China Universities, 7(1): 1-12(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=GXDX200101000&dbcode=CJFD&year=2001&dflag=pdfdown [5] Lee, T., Lawver, L.A., 1995. Cenozoic Plate Reconstruction of Southeast Asia. Tectonophysics, 251: 85-138. doi: 10.1016/0040-1951(95)00023-2 [6] Li, T.G., Cao, Q.Y., Li, A.C., et al., 2003. Source to Sink: Sedimentation in the Continental Margins. Advance in Earth Sciences, 18(5): 713-721(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ200305011.htm [7] Li, Z., Gao, J., 2016. Characteristic Source-Sink Systems and Palaeogeographic Reconstruction in Active Tectonic Regions: A Case Research on Detrital Zircons Recording the Pan-African Event in Northern Tarim Block. Journal of Palaeogeography, 18(3): 424-440(in Chinese with English abstract). http://www.cqvip.com/QK/84020X/20163/669209209.html [8] Li, Z., Gao, J., Guo, C.T., et al., 2015. Devonian-Carboniferous Tectonic Evolution of Continental Margins in Northern Tarim Block, Northwest China: Constrained by Basin-Fill Sequences and Provenance Systems. Earth Science Frontiers, 22(1): 35-52(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201501005.htm [9] Li, Z., Xu, J.Q., Gao, J., 2013. Basin-Range System Sedimentology and Case Studies in North China and Tarim Areas, China. Acta Sedimentologica Sinica, 31(5): 757-772(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/cjxb201305003 [10] Lin, C.S., Xia, Q.L., Shi, H.S., et al., 2015. Geomorphological Evolution, Source to Sink System and Basin Analysis. Earth Science Frontiers, 22(1): 9-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201501003.htm [11] Liu, P., Zhang, X.T., Du, J.Y., et al., 2018. Tectonic-Thermal Evolution Process and the Petroleum Geological Significance of Relatively Low Geothermal Gradient in a Rift Basin: An Example from Xijiang Main Sag in Pearl River Mouth Basin. Geological Science and Technology Information, 37(2): 149-156(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201802021.htm [12] Liu, Q.H., Zhu, X.M., Li, S.L., et al., 2016. Pre-Palaeogene Bedrock Distribution and Source-to-Sink System Analysis in the Shaleitian Uplift. Earth Science, 41(11): 1935-1949(in Chinese with English abstract). [13] Northrup, C.J., Royden, L.H., Burchfiel, B.C., 1995. Motion of the Pacific Plate Relative to Eurasia and Its Potential Relation to Cenozoic Extension along the Eastern Margin of Eurasia. Geology, 23(8): 719-722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2 [14] Pang, X., Chen, C.M., Peng, D.J., et al., 2007a. Sequence Stratigraphy of Pearl River Deep-Water Fan System in the South China Sea. Earth Science Frontiers, 14(1): 220-229(in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60010-4 [15] Pang, X., Chen, C.M., Peng, D.J., et al., 2007b. The Pearl River Deep-Water Fan System and Petroleum in South China Sea. Science Press, Beijing, 26-55(in Chinese). [16] Pang, X., Shen, J., Yuan, L.Z., et al., 2006. Petroleum Prospect in Deep-Water Fan System of the Pearl River in the South China Sea. Acta Petrolei Sinica, 27(3): 11-15(in Chinese with English abstract). http://www.researchgate.net/publication/292805775_Petroleum_prospect_in_deep-water_fan_system_of_the_Pearl_River_in_the_South_China_Sea [17] Shi, H.S., Du, J.Y., Mei, L.F., et al., 2020. Huizhou Movement and Its Implications in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 1-15(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380420600672 [18] Shi, H.S., Shu, Y., Du, J.Y., et al., 2017. Paleogene Petroleum Geology in the Eastern Pearl River Mouth Basin. Geological Publishing House, Beijing(in Chinese). [19] Shi, H.S., Yu, S.M., Mei, L.F., et al., 2009. Features of Paleogene Episodic Rifting in Huizhou Fault Depression in the Pearl River Mouth Basin. Natural Gas Industry, 29(1): 35-37, 40(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG200901012.htm [20] Suo, Y.H., Li, S.Z., Dai, L.M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618(in Chinese with English abstract). http://www.oalib.com/paper/1473902 [21] Wan, Y., Han, T.D., Duan, C.Q., et al., 2005. Landform System Structures and Characteristics of the Diancang Mountain Areas in West Yunnan Province. Journal of Glaciology and Geocryology, 27(2): 241-248(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-bcdt20050200d.htm [22] Wang, X.X., Zhu, X.M., Song, S., et al., 2016. "Source-to-Sink" System of the Lower Member 3 of Paleogene Shahejie Formation in Steep Slope Zone of Western Chezhen Sub-Sag, Bohai Bay Basin. Journal of Palaeogeography, 18(1): 65-79(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=GDLX201601006&dbcode=CJFD&year=2016&dflag=pdfdown [23] Xie, Y.H., Li, X.S., Fan, C.W., et al., 2016. The Axial Channel Provenance System and Natural Gas Accumulation of the Upper Miocene Huangliu Formation in Qiongdongnan Basin, South China Sea. Petroleum Exploration and Development, 43(4): 521-549(in Chinese with English abstract). http://www.onacademic.com/detail/journal_1000039519544610_8856.html [24] Xu, C.G., Du, X.F., 2017. Industrial Application of Source-to-Sink Theory in Continental Rift Basin: A Case Study of Bohai Sea Area. China Offshore Oil and Gas, 29(4): 9-18(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201704002.htm [25] Xu, C.G., Du, X.F., Xu, W., et al., 2017a. New Advances of the "Source-to-Sink" System Research in Sedimentary Basin. Oil & Gas Geology, 38(1): 1-11(in Chinese with English abstract). http://www.researchgate.net/publication/316935609_New_advances_of_the_Source-to-Sink_system_research_in_sedimentary_basin [26] Xu, C.G., Jia, D.H., Wan, L.W., 2017b. Control of the Strike-Slip Fault to the Source-to-Sink System of the Paleogene in Bohai Sea Area. Earth Science, 42(11): 1871-1881(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201711002.htm [27] Zhou, Z.Y., Li, C.F., 2008. Tectonic of Continental Edge and Geodynamic. Science Press, Beijing, 66-88(in Chinese). [28] Zhu, H.T., Xu, C.G., Zhu, X.M., et al., 2017. Advances of the Source-to-Sink Units and Coupling Model Research in Continental Basin. Earth Science, 42(11): 1851-1870(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=DQKX201711001&dbcode=CJFD&year=2017&dflag=pdfdown [29] Zhu, H.T., Yang, X.H., Zhou, X.H., et al., 2013. Sediment Transport Pathway Characteristics of Continental Lacustrine Basins Based on 3-D Seismic Data: An Example from Dongying Formation of Western Slope of Bozhong Sag. Earth Science, 38(1): 121-129(in Chinese with English abstract). [30] Zhu, X., Zhu, H.T., Zeng, H.L., et al., 2017. Subdivision, Characteristics, and Varieties of the Source-to-Sink Systems of the Modern Lake Erhai Basin, Yunnan Province. Earth Science, 42(11): 2010-2024(in Chinese with English abstract). http://www.researchgate.net/publication/322299580_Subdivision_Characteristics_and_Varieties_of_the_Source-to-Sink_Systems_of_the_Modern_Lake_Erhai_Basin_Yunnan_Province [31] Zhu, Y.H., Zhu, W.L., Xu, Q., et al., 2011. Sedimentary Response to Shelf-Edge Delta and Slope Deep-Water Fan in 13.8 Ma of Miocene Epoch in Pearl River Mouth Basin. Journal of Central South University (Science and Technology), 42(12): 3827-3834(in Chinese with English abstract). http://epub.cnki.net/grid2008/docdown/docdownload.aspx?filename=ZNGD201112038&dbcode=CJFD&year=2011&dflag=pdfdown [32] 陈骥, 姜在兴, 张万益, 等, 2018. "源-汇"沉积体系主导下的现代风成相发育模式探讨: 以青海湖东岸为例. 中国沙漠, 38(5): 999-1008. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSS201805012.htm [33] 陈长民, 施和生, 许仕策, 等, 2003. 珠江口盆地(东部)第三系油气藏形成条件. 北京: 科学出版社, 65-88. [34] 邓棚, 2018. 南海北部陆缘古近纪多幕裂陷作用属性及转换——以珠江口盆地珠一坳陷为例(博士学位论文). 武汉: 中国地质大学. [35] 郭令智, 钟志洪, 王良书, 等, 2001. 莺歌海盆地周边区域构造演化. 高校地质学报, 7(1): 1-12. doi: 10.3969/j.issn.1006-7493.2001.01.001 [36] 李铁刚, 曹奇原, 李安春, 等, 2003. 从源到汇: 大陆边缘的沉积作用. 地球科学进展, 18(5): 713-721. doi: 10.3321/j.issn:1001-8166.2003.05.011 [37] 李忠, 高剑, 2016. 构造活动区特征源汇体系及古地理重建: 以塔里木块体北缘记录"泛非"事件的碎屑锆石分析为例. 古地理学报, 18(3): 424-440. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201603010.htm [38] 李忠, 高剑, 郭春涛, 等, 2015. 塔里木块体北部泥盆-石炭纪陆缘构造演化: 盆地充填序列与物源体系约束. 地学前缘, 22(1): 35-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501005.htm [39] 李忠, 徐建强, 高剑, 2013. 盆山系统沉积学-兼论华北和塔里木地区研究实例. 沉积学报, 31(5): 757-772. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305003.htm [40] 林畅松, 夏庆龙, 施和生, 等, 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501003.htm [41] 刘培, 张向涛, 杜家元, 等, 2018. 低地温断陷构造-热演化过程及其石油地质意义: 以珠江口盆地西江主洼为例. 地质科技情报, 37(2): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201802021.htm [42] 刘强虎, 朱筱敏, 李顺利, 等, 2016. 沙垒田凸起前古近系基岩分布及源-汇过程. 地球科学, 41(11): 1935-1949. doi: 10.3799/dqkx.2016.134 [43] 庞雄, 陈长民, 彭大钧, 等, 2007a. 南海珠江深水扇系统的层序地层学研究. 地学前缘, 14(1): 220-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200701023.htm [44] 庞雄, 陈长民, 彭大钧, 等, 2007b. 南海珠江深水扇系统及油气. 北京: 科学出版社, 26-55. [45] 庞雄, 申俊, 袁立忠, 等, 2006. 南海珠江深水扇系统及其油气勘探前景. 石油学报, 27(3): 11-15. doi: 10.3321/j.issn:0253-2697.2006.03.003 [46] 施和生, 杜家元, 梅廉夫, 等, 2020, 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm [47] 施和生, 舒誉, 杜家元, 等, 2017. 珠江口盆地古近系石油地质. 北京: 地质出版社. [48] 施和生, 于水明, 梅廉夫, 等, 2009. 珠江口盆地惠州凹陷古近纪幕式裂陷特征. 天然气工业, 29(1): 35-37, 40. doi: 10.3787/j.issn.1000-0976.2009.01.008 [49] 索艳慧, 李三忠, 戴黎明, 等, 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化. 岩石学报, 28(8): 2602-2618. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201208026.htm [50] 万晔, 韩添丁, 段昌群, 等, 2005. 滇西名山点苍山地区地貌结构与特征研究. 冰川冻土, 27(2): 241-248. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT20050200D.htm [51] 王星星, 朱筱敏, 宋爽, 等, 2016. 渤海湾盆地车西洼陷陡坡带古近系沙河街组沙三下段"源-汇"系统. 古地理学报, 18(1): 65-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201601006.htm [52] 谢玉洪, 李绪深, 范彩伟, 等, 2016. 琼东南盆地上中新统黄流组轴向水道"源-汇"系统与天然气成藏特征. 石油勘探与开发, 43(4): 521-549. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604004.htm [53] 徐长贵, 杜晓峰, 2017. 陆相断陷盆地源-汇理论工业化应用初探: 以渤海海域为例. 中国海上油气, 29(4): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201704002.htm [54] 徐长贵, 杜晓峰, 徐伟, 等, 2017a. 沉积盆地"源-汇"系统研究新进展. 石油与天然气地质, 38(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201701002.htm [55] 徐长贵, 加东辉, 宛良伟, 2017b. 渤海走滑断裂对古近系"源-汇"系统的控制作用. 地球科学, 42(11): 1871-1881. doi: 10.3799/dqkx.2017.118 [56] 周祖翼, 李春峰, 2008. 大陆边缘构造与地球力学. 北京: 科学出版社, 66-88. [57] 朱红涛, 徐长贵, 朱筱敏, 等, 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851-1870. doi: 10.3799/dqkx.2017.117 [58] 朱红涛, 杨香华, 周心怀, 等, 2013. 基于地震资料的陆相湖盆物源通道特征分析: 以渤中凹陷西斜坡东营组为例. 地球科学, 38(1): 121-129. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201301016.htm [59] 朱秀, 朱红涛, 曾洪流, 等, 2017. 云南洱海现代湖盆源-汇系统划分、特征及差异. 地球科学, 42(11): 2010-2024. doi: 10.3799/dqkx.2017.128 [60] 祝彦贺, 朱伟林, 徐强, 等, 2011. 珠江口盆地13.8 Ma陆架边缘三角洲与陆坡深水扇的"源汇"关系. 中南大学学报(自然科学版), 42(12): 3827-3834. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201112038.htm