• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应

    赵淑凤 刘慧 赵磊 陈荣 马杰 刘珊

    赵淑凤, 刘慧, 赵磊, 陈荣, 马杰, 刘珊, 2021. 不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应. 地球科学, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131
    引用本文: 赵淑凤, 刘慧, 赵磊, 陈荣, 马杰, 刘珊, 2021. 不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应. 地球科学, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131
    Zhao Shufeng, Liu Hui, Zhao Lei, Chen Rong, Ma Jie, Liu Shan, 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131
    Citation: Zhao Shufeng, Liu Hui, Zhao Lei, Chen Rong, Ma Jie, Liu Shan, 2021. Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation. Earth Science, 46(4): 1481-1489. doi: 10.3799/dqkx.2020.131

    不同铁、氮转化功能微生物对Fe(Ⅱ)化学氧化的响应

    doi: 10.3799/dqkx.2020.131
    基金项目: 

    国家自然科学基金重点项目 41830862

    国家自然科学基金面上项目 41672353

    国家创新群体 41521001

    详细信息
      作者简介:

      赵淑凤(1994-), 女, 硕士研究生, 主要研究方向为环境化学生物学.ORCID: 0000-0003-3951-9240.E-mail: zsfeng2020@163.com

      通讯作者:

      刘慧, E-mail: hliu2009@cug.edu.cn

    • 中图分类号: P66

    Responses of Different Iron and Nitrogen Transformation Functional Microorganisms to Fe(Ⅱ) Chemical Oxidation

    • 摘要: 在地下水位波动带、地表水-地下水交互带等氧化还原变化区域,O2会与Fe(II)发生反应产生活性氧,如·OH、·O2-、H2O2等.这些活性氧具有生物毒性,可能对微生物的存活产生影响,而不同的功能微生物对Fe(II)化学氧化产生活性氧的响应可能不同.为了验证这一科学假设,选取了一种Fe(II)氧化菌Pseudogulbenkiania sp.strain 2002(strain 2002)和两种氨氧化细菌Rhodococcus sp.(A1)和Arthrobacter oxydansA2)作为模式菌种,并与铁还原菌Shewanella oneidensis strain MR-1(MR-1)对比,研究了Fe(II)化学氧化过程中微生物数量、细胞结构的变化,通过淬灭实验探究了活性氧的贡献.结果表明,不同功能微生物对Fe(II)化学氧化的响应截然不同.0.2 mmol/L Fe(II)氧化60 min后,MR-1数量下降了1.61个数量级,A1和A2分别下降了0.74和1.37个数量级,而strain 2002的存活几乎不受Fe(II)氧化的影响.透射电镜观察结果显示,MR-1、A1和A2菌细胞的外膜受到了不同程度的破坏,而strain 2002完好无损.淬灭实验结果表明,溶液中和胞内生成的活性氧是造成功能微生物死亡的原因,但是不同微生物由于对Fe(II)的吸附性能和对活性氧的抵御能力不同,因而对活性氧的响应机制不同.该研究结果对于诠释现代环境氧化还原变化区域微生物群落演化及地球史上氧气大爆发事件的生物地球化学过程具有重要的借鉴意义.

       

    • 图  1  0.2 mmol/L Fe(Ⅱ)化学氧化过程中水溶态Fe(Ⅱ)浓度的变化

      Fig.  1.  Variations of dissolved Fe(Ⅱ) concentration during 0.2 mmol/L Fe(Ⅱ) oxidation

      图  2  0.2 mmol/L Fe(Ⅱ)氧化过程中不同功能微生物的存活数量

      Fig.  2.  Surviving of different functional microorganisms during 0.2 mmol/L Fe(Ⅱ) oxidation

      图  3  好氧条件下Fe(Ⅱ)化学氧处理60 min后的微生物TEM图片

      a, b.MR-1;c, d. strain 2002;e, f.A1菌;g, h.A2菌.图a~d为全细胞TEM图片;图e~h为超薄切片的TEM图片

      Fig.  3.  TEM images of microorganisms under aerobic condition and Fe(Ⅱ) oxidation for 60 min

      图  4  好氧条件下Fe(Ⅱ)氧化60 min过程中生成的累积·OH量

      Fig.  4.  Variations in cumulative ·OH concentrations during 60-min Fe(Ⅱ) oxidation

      图  5  添加淬灭剂甲醇对Fe(Ⅱ)氧化60 min过程中氨氧化菌A1和A2数量的影响

      Fig.  5.  Effect of quencher methanol on viable cell numbers of ammonia oxidizing bacteria A1 and A2 during 60-min Fe(Ⅱ) oxidation

    • [1] Chen, R., Liu, H., Tong, M., et al., 2018. Impact of Fe(Ⅱ) Oxidation in the Presence of Iron-Reducing Bacteria on Subsequent Fe(Ⅲ) Bio-Reduction. The Science of the Total Environment, 639: 1007-1014. https://doi.org/10.1016/j.scitotenv.2018.05.241
      [2] Chen, R., Liu, H., Zhang, P., et al., 2019. Attenuation of Fe (Ⅲ)-Reducing Bacteria during Table Fluctuation of Groundwater Containing Fe2+. Science of the Total Environment, 694: 133660. https://doi.org/10.1016/j.scitotenv.2019.133660
      [3] Cornelis, P., Wei, Q., Andrews, S. C., et al., 2011. Iron Homeostasis and Management of Oxidative Stress Response in Bacteria. Metallomics, 3(6): 540-549. https://doi.org/10.1039/c1mt00022e
      [4] Emerson, D., De Vet, W., 2015. The Role of FeOB in Engineered Water Ecosystems: A Review. Journal American Water Works Association, 107(1): E47-E57. https://doi.org/10.5942/jawwa.2015.107.0004
      [5] Grannas, A. M., Martin, C. B., Chin, Y. P., et al., 2006. Hydroxyl Radical Production from Irradiated Arctic Dissolved Organic Matter. Biogeochemistry, 78(1): 51-66. https://doi.org/10.1007/s10533-005-2342-4
      [6] He, J.Z., Zhang, L.M., 2009. Advances in Ammonia-Oxidizing Microorganisms and Global Nitrogen Cycle. Acta Ecologica Sinica, 29(1): 406-415(in Chinese with English abstract). http://www.oalib.com/paper/1401250
      [7] Heffron, J., McDermid, B., Mayer, B. K., 2019. Bacteriophage Inactivation as a Function of Ferrous Iron Oxidation. Environmental Science: Water Research & Technology, 5(7): 1309-1317. https://doi.org/10.1039/C9EW00190E
      [8] Hu, M., Li, F.B., 2014. Soil Microbe Mediated Iron Cycling and Its Environmental Implication. Acta Pedologica Sinica, 51(4): 683-698(in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/trxb201404002
      [9] Imlay, J.A., 2003. Pathways of Oxidative Damage. Annual Review of Microbiology, 57(1): 395-418. https://doi.org/10.1146/annurev.micro.57.030502.090938
      [10] Joo, S. H., Feitz, A. J., Sedlak, D. L., et al., 2005. Quantification of the Oxidizing Capacity of Nanoparticulate Zero-Valent Iron. Environmental Science & Technology, 39(5): 1263-1268. https://doi.org/10.1021/es048983d
      [11] Keenan, C. R., Sedlak, D. L., 2008. Factors Affecting the Yield of Oxidants from the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen. Environmental Science & Technology, 42(4): 1262-1267. https://doi.org/10.1021/es7025664
      [12] Kim, J. Y., Park, H. J., Lee, C., et al., 2010. Inactivation of Escherichia coli by Nanoparticulate Zerovalent Iron and Ferrous Ion. Applied and Environmental Microbiology, 76(22): 7668-7670. https://doi.org/10.1128/aem.01009-10
      [13] Lee, C., Kim, J. Y., Lee, W. I., et al., 2008. Bactericidal Effect of Zero-Valent Iron Nanoparticles on Escherichia coli. Environmental Science & Technology, 42(13): 4927-4933. https://doi.org/10.1021/es800408u
      [14] Liu, G.F., Zhu, J.Q., Yu, H.L., et al., 2018. Review on Electron-Shuttle-Mediated Microbial Reduction of Iron Oxides Minerals. Earth Science, 43(Suppl. 1): 157-170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1016.htm
      [15] Lyons, T.W., Reinhard, C.T., Planavsky, N.J., 2014. The Rise of Oxygen in Earth's Early Ocean and Atmosphere. Nature, 506(7488): 307-315. https://doi.org/10.1038/nature13068
      [16] Ma, S.C., Tong, M., Yuan, S. H., et al., 2019. Responses of the Microbial Community Structure in Fe(Ⅱ)-Bearing Sediments to Oxygenation: The Role of Reactive Oxygen Species. ACS Earth and Space Chemistry, 3(5): 738-747. https://doi.org/10.1021/acsearthspacechem.8b00189
      [17] Melton, E.D., Swanner, E.D., Behrens, S., et al., 2014. The Interplay of Microbially Mediated and Abiotic Reactions in the Biogeochemical Fe Cycle. Nature Reviews Microbiology, 12(12): 797-808. https://doi.org/10.1038/nrmicro3347
      [18] Wang, R., Zheng, P., Zhang, M., et al., 2015. Nitrate-Dependent Anaerobic Ferrous/Iron Oxidation Microorganism: Review on Its Species, Distribution and Characteristics. Microbiology, 42(12): 2448-2456(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSWT201512018.htm
      [19] Weber, K.A., Achenbach, L.A., Coates, J.D., 2006. Microorganisms Pumping Iron: Anaerobic Microbial Iron Oxidation and Reduction. Nature Reviews Microbiology, 4(10): 752-764. https://doi.org/10.1038/nrmicro1490
      [20] Xie, S.C., Yang, H., Luo, G.M., et al., 2012. Geomicrobial Functional Groups: A Window on the Interaction between Life and Environments. Chinese Science Bulletin, 57(1): 3-22(in Chinese). doi: 10.1360/csb2012-57-1-3
      [21] Zhang, P., Yuan, S.H., 2017. Production of Hydroxyl Radicals from Abiotic Oxidation of Pyrite by Oxygen under Circumneutral Conditions in the Presence of Low-Molecular-Weight Organic Acids. Geochimica et Cosmochimica Acta, 218: 153-166. https://doi.org/10.1016/j.gca.2017.08.032
      [22] Zhang, X., Chen, T.H., Wang, J., et al., 2018. Influence of Iron Oxides on Methanogenic Process of Organic Matter and Related Mechanism. Earth Science, 43(Suppl. 1): 136-144(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_earth-science_thesis/0201272213930.html
      [23] Zhao, L., 2013. Influence of Elodea Nuttallii-Nitrogen Cycling Bacteria on Nitrogen Cycling of Shallow Eutrophic Taihu Lake, China(Dissertation). Nanjing University, Nanjing(in Chinese with English abstract).
      [24] Zhao, L.D., Dong, H.L., Kukkadapu, R., et al., 2013. Biological Oxidation of Fe(Ⅱ) in Reduced Nontronite Coupled with Nitrate Reduction by Pseudogulbenkiania sp. Strain 2002. Geochimica et Cosmochimica Acta, 119: 231-247. https://doi.org/10.1016/j.gca.2013.05.033
      [25] 贺纪正, 张丽梅, 2009. 氨氧化微生物生态学与氮循环研究进展. 生态学报, 29(1): 406-415. doi: 10.3321/j.issn:1000-0933.2009.01.049
      [26] 胡敏, 李芳柏, 2014. 土壤微生物铁循环及其环境意义. 土壤学报, 51(4): 683-698. https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201404002.htm
      [27] 柳广飞, 朱佳琪, 于华莉, 等, 2018. 电子穿梭体介导微生物还原铁氧化物的研究进展. 地球科学, 43(增刊1): 157-170. doi: 10.3799/dqkx.2018.590
      [28] 王茹, 郑平, 张萌, 等, 2015. 硝酸盐型厌氧铁氧化菌的种类、分布和特性. 微生物学通报, 42(12): 2448-2456. https://www.cnki.com.cn/Article/CJFDTOTAL-WSWT201512018.htm
      [29] 谢树成, 杨欢, 罗根明, 等, 2012. 地质微生物功能群: 生命与环境相互作用的重要突破口. 科学通报, 57(1): 3-22. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201201005.htm
      [30] 张勋, 陈天虎, 王进, 等, 2018. 铁氧化物对有机质厌氧产甲烷过程的影响及其机制. 地球科学, 43(增刊1): 136-144. doi: 10.3799/dqkx.2018.545
      [31] 赵琳, 2013. 伊乐藻-氮循环菌共同作用对太湖氮循环的影响(硕士学位论文). 南京: 南京大学.
    • 加载中
    图(5)
    计量
    • 文章访问数:  611
    • HTML全文浏览量:  203
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-01-06
    • 刊出日期:  2021-04-15

    目录

      /

      返回文章
      返回