Sedimentary and Diagenetic Characteristics of Lacustrine Fine-Grained Hybrid Rock in Paleogene Formation in Dongying Sag
-
摘要: 东营凹陷古近系湖相细粒混合沉积岩相类型、沉积环境和成岩演化等方面有待深入研究,利用岩心观察、薄片、X衍射和碳氧同位素等分析手段,明确了细粒混积岩相类型和沉积成岩特征.研究认为:岩石矿物组分和古生物含量的纵向变化较好地反映了沉积环境的变化和混合沉积成因过程,可作为细粒沉积层序四级界面识别标志.泥晶和亮晶方解石经历过显著的碳氧同位素分馏,证实了混积岩中泥晶方解石主要隶属于与甲烷细菌活动生成生物气有关的碳酸盐,透镜状和纹层状亮晶方解石纹层源自脉体方解石充填微裂缝,微裂缝和方解石脉集中形成于早期次干气-生油阶段.阐述了从生烃增压、微裂缝形成、有机质热演化排出有机酸、溶蚀泥晶方解石、方解石重结晶和脉体形成,直至影响临近砂体胶结作用的整个同生演化过程,对中深层页岩油气成藏研究具有重要指导意义.Abstract: It needs further study on Paleogene lacustrine fine-grained hybrid sedimentary lithofacies type, carbonate isotopic fractionation mechanism and diagenetic evolution in Dongying sag. By core observation, thin section, X-ray diffraction, carbon and oxygen isotopes and other analytical methods, it is considered to be a fine-grained in-situ mixed sedimentary rock, which can be divided into four types of lithofacies:felsic fine-grained hybrid rock and clayey fine-grained hybrid rock, carbonate fine-grained and clayey felsic fine-grained hybrid rock. The analysis of "genetic control layer" shows that the vertical changes of rock mineral composition and paleontological content reflect the supply of source, paleoclimate fluctuation and sedimentary process, which can be used as the identification mark of sequence boundary. Carbon and oxygen isotopic analysis shows that micrite calcite mainly belongs to carbonate related to biogenic gas generated by methane bacteria activity, lenticular and lamellar sparry calcite layers belong to the phenomenon of microcracks being filled by calcite veins, the general buried depth of microcracks and calcite vein formation are the early secondary dry gas generation stage, and sandstone calcite cement is closely related to the generation of mixed vein body. It is further revealed the isotopic fractionation mechanism of micrite and sparry calcite in migmatite, and the whole coevolution process from hydrocarbon generation pressurization, microfracture formation, organic matter thermal evolution to organic acid expulsion, dissolution micrite calcite and calcite recrystallization to calcite vein, which has important guiding significance for the study of shale oil and gas accumulation in middle and deep oil reservoir.
-
Key words:
- shale /
- hybrid rock /
- isotopic /
- calcite /
- dolomite /
- coevolution /
- Dongying sag /
- sedimentation
-
图 6 牛页1井混积岩中的方解石重结晶特征
a(单偏光)和b(正交偏光).牛页1-3 297.24 m-似缝合线构造, 滑移双晶表明方解石的充填顺序为顶底面结晶, 脉体轴线为流体通道中心; c(单偏光)和d(正交偏光).牛页1-3 464.35 m-方解石脉具有典型的亮晶示顶底构造(顶为显微晶方解石, 底部显微晶-泥晶方解石集合体,混杂泥质和有机质); e(单偏光)和f(正交偏光).牛页1-3 459.65 m-方解石成脉的过程中将沥青质捕获包裹; g(单偏光)和h(正交偏光).牛页1-3 483.02 m-生物体腔内外结晶差异, 体腔内生长空间充裕,晶型更规则, 晶体更洁净
Fig. 6. Characteristics of recrystallization of calcite in hybrid rock of well Niuye 1
图 7 东营凹陷页岩成岩序列与微观储集空间演化
据文献Mastalerz et al.(2013)、张顺(2018)修改
Fig. 7. Diagenetic sequence and micro reservoir spatial evolution of shale in Dongying sag
表 1 东营凹陷沙三段下亚段-沙四段上亚段纯上次亚段泥页岩岩石类型统计
Table 1. Statistics of shale rock types in Es3下 and Es4上 Formation in Dongying sag
岩石类型分类 具体岩性 沙三段下亚段样品数量及百分比 沙四段上亚段纯上次亚段样品数量及百分比 泥岩 灰质泥岩、含灰质泥岩、泥岩为主,其次为白云质泥岩、含白云质灰质泥岩、含灰质白云质泥岩、粉砂质泥岩、含粉砂质泥岩、含粉砂质灰质泥岩、碳酸盐质泥岩、含碳酸盐质泥岩、含黄铁矿含灰质泥岩等 275(64%) 242(40%) 灰岩 泥质灰岩和含泥质灰岩为主,其次为含白云质泥质灰岩、含泥质含白云质灰岩、粉砂质灰岩、含泥质粉砂质灰岩、含粉砂质泥质灰岩、含砂质泥质灰岩、灰岩、泥质含介屑灰岩、泥质含粒屑灰岩等 126(29%) 307(50%) 白云岩 泥质白云岩、含泥质白云岩、灰质白云岩及含灰质白云岩为主,其次有白云岩、含灰质泥质白云岩、含泥质灰质白云岩、含黄铁矿泥质白云岩等、含黄铁矿粉砂质白云岩、含粉砂质泥质白云岩等 18(4%) 43(7%) 粉砂/砂岩 泥质粉砂岩为主,其次为含白云质泥质粉砂岩、灰质细粉砂岩、泥质细粉砂岩、含泥质含碳酸盐质极细砂岩、含泥质含白云质粉砂岩等 3(1%) 13(2%) 其他 泥质碳酸盐岩为主,个别含泥质碳酸盐岩、煤岩 10(2%) 6(1%) 合计 432 611 表 2 牛页1和樊页1井混积岩碳氧同位素数据
Table 2. Carbon and oxygen isotope data of hybrid rock in wells Niuye 1 and Fanye 1
井号 深度(m) 岩性 层段 δ18OPDB(‰) δ13CPDB(‰) Z T1(℃) T2(℃) 方解石类型 NY1 3 331.79 混积岩 Es4上 -8.7 2.6 128.29 86.28 62.02 泥晶方解石 NY1 3 329.30 混积岩 Es4上 -8.8 3.4 129.88 87.64 63.10 泥晶方解石 NY1 3 330.15 混积岩 Es4上 -8.9 2.1 127.17 89.01 64.19 泥晶方解石 NY1 3 316.00 混积岩 Es4上 -8.4 4.3 131.92 82.28 58.86 泥晶方解石 NY1 3 296.06 混积岩 Es4上 -8.6 3.3 129.78 84.93 60.95 泥晶方解石 NY1 3 458.60 混积岩 Es4上 -12.3 4.3 129.98 144.06 109.72 亮晶方解石 NY1 3 414.23 混积岩 Es4上 -12.7 2.8 126.71 151.60 116.14 亮晶方解石 NY1 3 414.56 混积岩 Es4上 -13.2 3.9 128.71 161.34 124.48 亮晶方解石 FY1 3 401.30 混积岩 Es4上 -11.5 3.2 128.13 129.65 97.55 泥晶方解石 FY1 3 401.20 混积岩 Es4上 -11.4 4.8 131.45 127.91 96.09 泥晶方解石 FY1 3 425.93 混积岩 Es4上 -9.6 4.1 130.92 99.02 72.24 泥晶方解石 FY1 3 331.26 混积岩 Es4上 -11.6 3.4 128.49 131.40 99.02 亮晶方解石 FY1 3 412.14 混积岩 Es4上 -5.7 6.5 137.77 51.99 36.13 亮晶方解石 FY1 3 377.05 混积岩 Es4上 -13.0 4.2 129.43 157.40 121.10 亮晶方解石 FY1 3 378.75 混积岩 Es4上 -11.9 3.9 129.36 136.74 103.52 亮晶方解石 注:样品分析在中石化页岩油气勘探开发重点实验室(胜利)完成,仪器为MAT251同位素质谱仪,测试手段和测试条件执行标准为SY/T 5238-2008.测试精度及误差范围碳同位素≤±0.2‰,氧同位素≤±0.3‰. -
[1] Anderson, R. Y., 1986. The Varve Microcosm:Propagator of Cyclic Bedding.Paleoceanography, 1(4):373-382. https://doi.org/10.1029/pa001i004p00373 doi: 10.1029/PA001i004p00373 [2] Anderson, R. Y., Dean, W. E., 1988. Lacustrine Varve Formation through Time.Palaeogeography, Palaeoclimatology, Palaeoecology, 62(1-4):215-235. https://doi.org/10.1016/0031-0182(88)90055-7 [3] Bai, C.Y., Yu, B. S., Liu, H. M., et al., 2018. The Genesis and Evolution of Carbonate Minerals in Shale Oil Formations from Dongying Depression, Bohai Bay Basin, China.International Journal of Coal Geology, 189:8-26. https://doi.org/10.1016/j.coal.2018.02.008 [4] Cao, Y.C., Xu, T.Y., Wang, Y.Z., et al., 2009. The Origin of Reservoir Overpressure and Its Implication in Hydrocarbon Accumulation in the Paleogene of Dongying Depression. Journal of Southwest Petroleum Institute, 31(3):34-389(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnsyxyxb200903008 [5] Chen, S.Y., Zhang, S., Wang, Y.S., et al., 2016. Lithofacies Types and Reservoirs of Paleogene Fine-Grained Sedimentary Rocks in Dongying Sag, Bohai Bay Basin. Petroleum Exploration and Development, 43(2):198-208(in Chinese with English abstract). http://www.researchgate.net/publication/301573464_Lithofacies_types_and_reservoirs_of_Paleogene_fine-grained_sedimentary_rocks_Dongying_Sag_Bohai_Bay_Basin_China [6] Friedman, I., O'Neil, J.R., 1977.Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. In: Michael, F., ed., Data of Geochemistry.U. S. Department of the Interior, Washington D.C., KK1-KK12. [7] Fritz, P., Smith, D.G.W., 1970.The Isotopic Composition of Secondary Dolomites.Geochimica et Cosmochimica Acta, 34(11):1161-1173. https://doi.org/10.1016/0016-7037(70)90056-6 [8] Guo, H.L., Wang, D.R., 1999. Stable Isotopic Composition and Origin Analysis of the Carbonate Cements within Sandstone Reservoirs of Tarim Oilgas Bearing Area. Petroleum Exploration and Development, 26(3):31-32(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901060857 [9] Guo, X.W., He, S., Song, G.Q., et al., 2011. Evidences of Overpressure Caused by Oil Generation in Dongying Depression. Earth Science, 36(6):1085-1094(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201106013 [10] Hao, Y.Q., Song, G.Q., Zhou, G.Q., et al., 2016. Influence of Petrological Characteristics on Fracability of the Paleogene Shale, Jiyang Depression. Petroleum Geology and Experiment, 38(4):489-495(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201604011 [11] He, S., Song, G.Q., Wang, Y.S., et al., 2012. Distribution and Major Control Factors of the Present-Day Large-Scale Overpressured System in Dongying Depression. Earth Science, 37(5):1029-1042(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201205015 [12] Holmes, C.W., 1983.Carbonate and Siliciclastic Deposits on Slope and Abyssal Floor Adjacent to Southwestern Florida Platform:Abstract.AAPG Bulletin, 67(3):484-485. https://doi.org/10.1306/03b5b146-16d1-11d7-8645000102c1865d doi: 10.1306/03b5b146-16d1-11d7-8645000102c1865d [13] Jiang, Z.X., Liang, C., Wu, J., et al., 2013.Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Acta Petrolei Sinica, 34(6):1031-1039(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201306001 [14] Keith, M.L., Weber, J.N., 1964.Carbon and Oxygen Isotopic Composition of Selected Limestones and Fossils. Geochimica et Cosmochimica Acta, 28(10-11):1787-1816. https://doi.org/10.1016/0016-7037(64)90022-5 [15] Larsen, C.P.S., MacDonald, G.M., 1993.Lake Morphometry, Sediment Mixing and the Selection of Sites for Fine Resolution Palaeoecological Studies.Quaternary Science Reviews, 12(9):781-792. https://doi.org/10.1016/0277-3791(93)90017-g doi: 10.1016/0277-3791(93)90017-G [16] Li, S.P., Qiu, N.S., 2003. Studying the Paleo-Geotemperature of Sedimentary Basin by the Use of Apatite Fission Track Analysis:An Example from Dongying Depression. Journal of Southwest Petroleum University (Science & Technology Edition), 25(4):4-8(in Chinese with English abstract). [17] Li, Z.M., Zheng, L.J., Jiang, Q.G., et al., 2018.Simulation of Hydrocarbon Generation and Expulsion for Lacustrine Organic-Rich Argillaceous Dolomite and Its Implications for Shale Oil Exploration. Earth Science, 43(2):566-576(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201802017 [18] Liang, C., Cao, Y.C., Jiang, Z. X., et al., 2017. Shale Oil Potential of Lacustrine Black Shale in the Eocene Dongying Depression:Implications for Geochemistry and Reservoir Characteristics. AAPG Bulletin, 101(11):1835-1858. https://doi.org/10.1306/01251715249 [19] Liu, H.M., Sun, S.Y., Cao, Y.C., et al., 2017. Lithofacies Characteristics and Distribution Model of Fine-Grained Sedimentary Rock in the Lower Es3 Member, Dongying Sag. Petroleum Geology and Recovery Efficiency, 24(1):1-10(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201701001 [20] Liu, H.M., Zhang, S., Song, G.Q., et al., 2017. A Discussion on the Origin of Shale Reservoir Inter-Laminar Fractures in the Shahejie Formation of Paleogene, Dongying Depression.Journal of Earth Science, 28(6):1064-1077. https://doi.org/10.1007/s12583-016-0946-3 [21] Loucks, R.G., Ruppel, S. C., 2007. Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4):579-601. https://doi.org/10.1306/11020606059 [22] Ma, Y.Q., Du, X.B., Liu, H.M., et al., 2017. Characteristics, Depositional Processes, and Evolution of Shale Lithofaceis of the Upper Submember of Es4 in the Dongying Depression. Earth Science, 42(7):1195-1208(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707015 [23] Mack, G.H., Cole, D.R., Giordano, T.H., 1991. Paleoclimatic-Controls on Stable Oxygen and Carbon Isotopes in Caliche of the ABO Formation (Permian), South-Central New Mexico, USA.SEPM Journal of Sedimentary Research, 61(4):458-472.https://doi.org/10.1306/d426773a-2b26-11d7-8648000102c1865d http://www.researchgate.net/publication/285832618_Paleoclimatic_controls_on_stable_oxygen_and_carbon_isotopes_in_caliche_of_the_Abo_Formation_Permian_south-central_New_Mexico_USA [24] Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient:Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10):1621-1643. https://doi.org/10.1306/04011312194Isotopes [25] Mount, J.F., 1984. Mixing of Siliciclastic and Carbonate Sediments in Shallow Shelf Environments. Geology, 12(7):432. https://doi.org/10.1130/0091-7613(1984)12432:mosacs>2.0.co; 2 doi: 10.1130/0091-7613(1984)12<432:MOSACS>2.0.CO;2 [26] Mount, J.F., 1985. Mixed Siliciclastic and Carbonate Sediments:A Proposed First-Order Textural and Compositional Classification. Sedimentology, 32(3):435-442. https://doi.org/10.1111/j.1365-3091.1985.tb00522.x [27] Posamentier, H.W., Allen, G.P., 1999.Siliciclastic Sequence Stratigraphy: Concepts and Applications.Concepts in Sedimentology and Paleontology.Society of Economic Paleontologists and Mineralogists(SEPM), Tulsa, 210. [28] Sha, Q.A., 2001. Discussion on Mixing Deposit and Hunji Rock. Journal of Palaeogeography, 3(3):63-66(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200103008 [29] Teng, J.B., 2018. Genesis of Dolomite in Shale Drilled by Well Liye1 in Dongying Sag and Its Significance on Sequence Boundary Indication. Petroleum Geology and Recovery Efficiency, 25(2):1-7, 36(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201802001 [30] Teng, J.B., Liu, H.M., Qiu, L.W., et al., 2019. Control Law of Material Components of Shale Oil Reservoir on Oil-Bearing Characteristics in Jiyang Depression. Petroleum Geology and Recovery Efficiency, 26(1):80-87(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201901010 [31] Tirsgaard, H., 1996. Cyclic Sedimentation of Carbonate and Siliciclastic Deposits on a Late Precambrian Ramp:The Elisabeth Bjerg Formation (Eleonore Bay Supergroup), East Greenland.SEPM Journal of Sedimentary Research, 66(4):699-712. https://doi.org/10.1306/d42683e7-2b26-11d7-8648000102c1865d [32] Wang, G.M., 2012. Laminae Combination and Genetic Classification of Eogene Shale in Jiyang Depression. Journal of Jilin University (Earth Science Edition), 42(3):666-671, 680(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201203009 [33] Wang, G.M., Ren, Y.J., Zhong, J.H., et al., 2005. Genetic Analysis on Lamellar Calcite Veins in Paleogene Black Shale of the Jiyang Depression. Acta Geologica Sinica, 79(6):834-838(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200506012 [34] Wang, Y.Z., Cao, Y.C., Xi, K.L., et al., 2013. A Recovery Method for Porosity Evolution of Clastic Reservoirs with Geological Time:A Case Study from the Upper Submember of Es4 in the Dongying Depression, Jiyang Subbasin. Acta Petrolei Sinica, 34(6):1100-1111(in Chinese with English abstract). [35] Xie, X.N., Ye, M.S., Xu, C.G., et al., 2018.High Quality Reservoirs Characteristics and Forming Mechanisms of Mixed Siliciclastic-Carbonate Sediments in the Bozhong Sag, Bohai Bay Basin. Earth Science, 43(10):3526-3539(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201810015 [36] Xu, J., Tao, H.F, Chen, K., et al., 2019. Evolutionary Characteristics of Pore Structure for Over-Matured Shales in Semi-Closed Thermal Simulation Experiment. Earth Science, 44(11):3736-3748(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201911013 [37] Yang, C.Q., Sha, Q.A., 1990. Sedimentary Environment of the Middle Devonian Qujing Formation, Qujing, Yunnan Province:A Kind of Mixing Sedimentation of Terrigenous Clastics and Carbonate. Acta Sedimentologica Sinica, 8(2):59-66(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB199002008.htm [38] Yang, X.C., 1985.Study on the Geothermal Field of Jiyang Depression.Journal of the East China University of Petroleum, 30(1):14-25(in Chinese). [39] Zhang, S.P., 2008. Analysis of Underground Diagenetic Environment Favorable for Oil and Gas Storage:A Case Study of Well RD1, Dongying Sag, Bohai Bay Basin. Petroleum Geology and Experiment, 30(1):11-15(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD200801002.htm [40] Zhang, S., 2018.Diagenesis and Mechanism of Shale Reservoir Pore Increase and Reduction in Dongying Sag. Journal of China University of Mining & Technology, 47(3):562-578(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGKD201803012.htm [41] Zhang, X.F., Lu, X.C., Zhang, L.Y., et al., 2013. Diagenesis of Source Rocks and Sandstones of Shahejie Formation and Their Petroleum Geological Significance in the Niuzhuang Sub-Sag, Shengli Oilfield. Geological Review, 59(2):287-299(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201302011 [42] 操应长, 徐涛玉, 王艳忠, 等, 2009.东营凹陷古近系储层超压成因及其成藏意义.西南石油大学学报, 31(3):34-38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xnsyxyxb200903008 [43] 陈世悦, 张顺, 王永诗, 等, 2016.渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征.石油勘探与开发, 43(2):198-208. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201602005 [44] 郭宏莉, 王大锐, 1999.塔里木油气区砂岩储集层碳酸盐胶结物的同位素组成与成因分析.石油勘探与开发, 26(3):31-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199901060857 [45] 郭小文, 何生, 宋国奇, 等, 2011.东营凹陷生油增压成因证据.地球科学, 36(6):1085-1094. http://www.earth-science.net/article/id/2184 [46] 郝运轻, 宋国奇, 周广清, 等, 2016.济阳坳陷古近系泥页岩岩石学特征对可压性的影响.石油实验地质, 38(4):489-495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201604011 [47] 何生, 宋国奇, 王永诗, 等, 2012.东营凹陷现今大规模超压系统整体分布特征及主控因素.地球科学, 37(5):1029-1042. http://www.earth-science.net/article/id/2307 [48] 姜在兴, 梁超, 吴靖, 等, 2013.含油气细粒沉积岩研究的几个问题.石油学报, 34(6):1031-1039. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201306001 [49] 李善鹏, 邱楠生, 2003.磷灰石裂变径迹方法研究沉积盆地古地温——以东营凹陷为例.西南石油大学学报(自然科学版), 25(4):4-8. http://www.cqvip.com/QK/93402X/20034/8378278.html [50] 李志明, 郑伦举, 蒋启贵, 等, 2018.湖相富有机质泥质白云岩生排烃模拟及其对页岩油勘探的启示.地球科学, 43(2):566-576. doi: 10.3799/dqkx.2018.025 [51] 刘惠民, 孙善勇, 操应长, 等, 2017.东营凹陷沙三段下亚段细粒沉积岩岩相特征及其分布模式.油气地质与采收率, 24(1):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201701001 [52] 马义权, 杜学斌, 刘惠民, 等, 2017.东营凹陷沙四上亚段陆相页岩岩相特征、成因及演化.地球科学, 42(7):1195-1208. doi: 10.3799/dqkx.2017.097 [53] 沙庆安, 2001.混合沉积和混积岩的讨论.古地理学报, 3(3):63-66. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200103008 [54] 滕建彬, 2018.东营凹陷利页1井泥页岩中白云石成因及层序界面意义.油气地质与采收率, 25(2):1-7, 36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201802001 [55] 滕建彬, 刘惠民, 邱隆伟, 等, 2019.济阳坳陷页岩油储层物质组分对含油性的控制规律.油气地质与采收率, 26(1):80-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqdzycsl201901010 [56] 王大锐, 2000.油气稳定同位素地球化学.北京:石油工业出版社, 123-145. [57] 王冠民, 2012.济阳坳陷古近系页岩的纹层组合及成因分类.吉林大学学报(地球科学版), 42(3):666-671, 680. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201203009 [58] 王冠民, 任拥军, 钟建华, 等, 2005.济阳坳陷古近系黑色页岩中纹层状方解石脉的成因探讨.地质学报, 79(6):834-838. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200506012 [59] 王艳忠, 操应长, 葸克来, 等, 2013.碎屑岩储层地质历史时期孔隙度演化恢复方法:以济阳坳陷东营凹陷沙河街组四段上亚段为例.石油学报, 34(6):1100-1111. [60] 解习农, 叶茂松, 徐长贵, 等, 2018.渤海湾盆地渤中凹陷混积岩优质储层特征及成因机理.地球科学, 43(10):3526-3539. doi: 10.3799/dqkx.2018.277 [61] 徐洁, 陶辉飞, 陈科, 等, 2019.过成熟页岩在半封闭热模拟实验中孔隙结构的演化特征.地球科学, 44(11):3736-3748. doi: 10.3799/dqkx.2019.218 [62] 杨朝青, 沙庆安, 1990.云南曲靖中泥盆统曲靖组的沉积环境一种陆源碎屑.沉积学报, 8(2):59-66. http://www.cqvip.com/QK/95994X/19902/221837.html [63] 杨绪充, 1985.试论济阳坳陷的地温场.华东石油学院学报, 30(1):14-25. [64] 张守鹏, 2008.有利于油气保存的地下成岩环境分析:以渤海湾盆地东营凹陷RD1井为例.石油实验地质, 30(1):11-15. http://d.wanfangdata.com.cn/Periodical/sysydz200801003 [65] 张顺, 2018.东营凹陷页岩储层成岩作用及增孔和减孔机制.中国矿业大学学报, 47(3):562-578. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkydxxb201803012 [66] 张雪芬, 陆现彩, 张林晔, 等, 2013.胜利油区牛庄洼陷沙河街组烃源岩和砂岩的协同成岩作用及其石油地质意义.地质论评, 59(2):287-299. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201302011