Composition, Age and Polarity of Gongpoquan Arc and Its Tectonic Significance in Beishan Orogen
-
摘要: 公婆泉岩浆弧近东西向展布于北山造山带牛圈子-洗肠井蛇绿混杂岩带北侧的公婆泉-石板井-小黄山一带,其物质组成、不同岩石组合的形成时代及其空间展布规律对于研究北山造山带早古生代地质构造演化具有十分重要的意义.在对三十余幅1:5万区调填图数据研究分析的基础上,明确了公婆泉岩浆弧主要由510~470 Ma的辉长岩-闪长岩侵入岩组合和玄武岩、470~430 Ma片麻状英云闪长岩-花岗闪长岩和少量的闪长岩-石英闪长岩组合及大面积分布的安山岩、430~410 Ma正长花岗岩-二长花岗岩组合等3期较强的构造岩浆作用组成.结合区域地质认识以及上述岩石组合的地球化学资料提出,3期岩浆作用分别形成于早期俯冲、主俯冲期和后碰撞期3个不同的构造演化阶段.其中主俯冲期的花岗岩组合的空间展布,具有由南向北的分布规律,物质提出指示了月牙山-洗肠井洋具有往北俯冲的极性.Abstract: Gongpoquan arc extends nearly east-west in Gongpoquan-Shibanjing-Xiaohuangshan area on the north side of Niuquanzi-Xichangjing ophiolite mèlange belt in Beishan orogen. Its material composition, formation age of different rocks and spatial distribution pattern are very important for studying the Early Paleozoic tectonic evolution of Beishan orogen. Based on the study and analysis of data from more than 30 pieces of 1:50 000 regional geological mapping, It's made clear that the Gongpoquan arc is mainly composed of three stages of strong tectono-magmatism, which are gabbro-diorite assemblages and basalts of 510-470 Ma, gneissic tonalites-granodiorite assemblages and a small amount of diorite-quartz diorite assemblages as well as large-scale andesite of 470-430 Ma, syenogranite-monzogranite assemblage of 430-410 Ma.Combined with the regional geological knowledge and the geochemical data of the above rock assemblages, they were formed in three different stages of tectonic evolution:initial subduction, main subduction and post collision periods. The spatial distribution of granite assemblages in the main subduction period has a distribution pattern from south to north. The variations of lithology indicates that the Yueyashan-Xichangjing Ocean has a polarity of northward subduction.
-
Key words:
- Gongpoquan arc /
- Early Paleozoic /
- island arc accretion /
- subduction /
- Beishan orogen /
- tectonics
-
图 1 北山造山带东段构造位置简图(改自Li et al., 2019)
Fig. 1. Simplified tectonic location map for the eastern section of Beishan orogen(modified from Li et al., 2019)
图 6 公婆泉岩浆弧早中奥陶世侵入岩稀土元素球粒陨石标准化配分模式图和原始地幔标准化微量元素蛛网图(球粒陨石标准化值、原始地幔标准化值据Sun and McDonough, 1989)
Fig. 6. Chondrite-normalized rare earth element patterns and primitive mantle-normalized trace element spider diagrams of the intrusive rocks in the Gongpoquan magmatic arc(modified from Sun and McDonough, 1989)
图 9 公婆泉岩浆弧花岗岩类的主量元素图解
a. Q’-ANOR图解:Q’=Q×100/(Q+Or+Ab+An), ANOR=An×100/(Or+An); b. (Na2O+K2O)-SiO2图; c. A/CNK-A/NK图解; d. K2O-SiO2图; e. A/NK-A/CNK图; f. FeOT/(FeOT+MgO)(图底据Frost et al., 2001); IAG.岛弧花岗岩类; CAG.大陆弧花岗岩类; CCG.大陆碰撞花岗岩类; PCG.后碰撞花岗岩; POG.后造山花岗岩类; RRG.与裂谷有关的花岗岩类
Fig. 9. Major element diagrams of the granitoids in the Gongpoquan magmatic arc
图 10 公婆泉岩浆弧闪长岩和花岗岩类稀土元素球粒陨石标准化配分模式图和原始地幔标准化微量元素蛛网图(球粒陨石标准化值、原始地幔标准化值据Sun and McDonough, 1989)
Fig. 10. Chondrite-normalized rare earth element patterns and primitive mantle-normoalized trace elemets spider diagrams of the diorite and granitoids in the Gongpoquan magmatic arc(modified from Sun and McDonough, 1989)
表 1 研究区公婆泉岩浆弧侵入岩锆石U-Pb年龄统计
Table 1. Zircon U-Pb ages of the Gongpoquan magmatic arc intrusive rocks in the study area
序号 位置 岩性 样品号 GPS点(东经,北纬) 加权年龄 1 西林陶乐 辉长岩 TW0161 98°05′27″, 41°59′26″ 498.9±2.4Ma 2 西林陶乐 二长辉长岩 TW2634 98°01′05″, 42°00′01″ 470.7±4.3Ma 3 小黄山 角闪闪长岩 TW3891 99°21′44″, 41°30′20″ 472±1Ma 4 小黄山 橄榄岩 TWD51 99°22′24″, 41°31′33″ 472.1±4.4Ma 5 阿民乌素 变质辉长岩 P11TW1 98°34′05″, 41°45′16″ 462.5±3.2Ma 6 西林陶乐 片麻状石英二长闪长岩 TW2571 98°40′12″, 41°44′00″ 463.7±4.9Ma 7 西林陶乐 片麻状花岗闪长岩 PM04TW2 98°25′29″, 41°48′16″ 471.7±2.2Ma 8 西林陶乐 片麻状闪长岩 TL01TW2 98°01′43″, 41°58′53″ 456±2Ma 9 西林陶乐 片麻状石英闪长岩 PM01TW1 98°22′30″, 41°46′57″ 456.2±2.1Ma 10 西林陶乐 片麻状石英闪长岩 TL01TW1 98°04′43″, 41°43′26″ 464.4±2.1 Ma 11 西林陶乐 片麻状黑云二长花岗岩 TL01TW3 98°01′43″, 41°58′16″ 446.4±3.8Ma 12 西林陶乐 片麻状斑状黑云二长花岗岩 TL12TW1 98°21′12″, 41°53′02″ 433±2Ma 13 标山 片麻状英云闪长岩 D2630TW1 98°43′20″, 41°41′54″ 453±12Ma 14 标山 片麻状花岗闪长岩 D2621TW1 98°49′48″, 41°46′44″ 444±12Ma 15 标山 片麻状黑云二长花岗岩 D2719TW1 98°56′34″, 41°49′57″ 441.2±1.8Ma 16 标山 片麻状正长花岗岩 D2654TW1 98°40′46″, 41°47′05″ 442.7±3.6Ma 17 标山 片麻状正长花岗岩 D2710TW1 98°56′41″, 41°47′09″ 441.1±3.3Ma 18 二龙包西 花岗闪长岩 TW4 99°21′09″, 41°21′33″ 465.8±5.4Ma 19 二龙包西 斑状二长花岗岩 TW2 99°13′33″, 41°05′54″ 434.0±3.5Ma 20 二龙包西 粒斑状二长花岗岩 TW21 99°11′10″, 41°06′08″ 432.3±3.3Ma 21 风雷山 片麻状黑云二长花岗岩 TW6009 99°01′53″, 41°46′13″ 461.5±1.5Ma 22 风雷山 片麻状黑云二长花岗岩 TW6130 99°00′33″, 41°52′27″ 465.8±2.5Ma 23 风雷山 片麻状黑云石英闪长岩 TW6121 99°03′30″, 41°51′12″ 436.1±1.5Ma 24 小黄山南东 片麻状花岗闪长岩 P7TW2 99°27′57″, 41°29′07″ 442.4±1.5Ma 25 萤石矿南西 片麻状含斑黑云二长花岗岩 TW12 99°25′02″, 41°20′38″ 442.8±3.5Ma 26 东七一山北 片麻状闪长岩 TK145 99°36′52″, 41°27′34″ 453.1±1.9 Ma 27 白帽子山 片麻状花岗闪长岩 P14N22-1 99°35′41″, 41°36′37″ 451±1Ma 28 微波山南西 片麻状二长花岗岩 TK15-12 99°36′10″, 41°39′41″ 436.2±2.0Ma 29 微波山南东 片麻状斑状正长花岗岩 P20N37-2 99°38′56″, 41°40′30″ 450.3±2.2Ma 30 基东 片麻状英云闪长岩 JDTW12 97°47′31″, 41°32′54″ 452.5±3.2Ma 31 基东 片麻状二长花岗岩 PM02TW2 97°52′23″, 41°58′23″ 456.3±3.5Ma 32 基东 片麻状花岗闪长岩 PM02TW1 97°52′25″, 41°57′30″ 436.65±0.94Ma 33 基东 片麻状花岗闪长岩 PM13TW1 97°52′53″, 41°54′45″ 435.3±2.6Ma 34 基东 片麻状花岗闪长岩 PM13TW4 97°58′21″, 41°51′38″ 435.7±4.6Ma 35 旱山 粒斑状二长花岗岩 TW5 99°26′12″, 41°47′00″ 413.5±1.4Ma 36 旱山 粒斑状二长花岗岩 P3TW1 99°34′10″, 41°38′38″ 420.7±1.4Ma 37 旱山 二长花岗岩 TW6 99°06′55″, 41°42′18″ 415.0±1.1Ma 38 旱山 正长花岗岩 P12TW1 99°12′39″, 41°32′21″ 411.6±1.0Ma 39 千条沟 二长花岗岩 P13N55 99°22′13″, 41°21′46″ 420±21Ma 40 风雷山 黑云花岗闪长岩 TW6015 99°03′00″, 41°54′22″ 428±2Ma 41 1524.6高地 斑状二长花岗岩 TW2 99°13′26″, 41°05′54″ 434.0±3.5Ma 42 1524.6高地 斑状二长花岗岩 TW21 99°11′11″, 41°06′09″ 432.3±3.3Ma 43 1524.6高地 二长花岗岩 TW31 99°10′26″, 41°13′15″ 410.9±2.0Ma 44 标山 蚀变辉长岩 D1319TW1 98°45′36″, 42°01′34″ 400.6±3.6Ma 45 标山 花岗闪长岩 D2733TW1 98°47′27″, 42°04′15″ 397.4±5.7Ma 46 三个井东 二长花岗岩 PM017-2-1 99°03′04″, 41°53′17″ 401.6±5.3Ma 47 小黑山北 二长花岗岩 TW6002 99°05′28″, 41°49′00″ 402.5±1.3Ma 48 公路井 二长花岗岩 TW6030 99°24′55″, 41°48′57″ 402.7±1.6Ma 49 公路井 二长花岗岩 TW6037 99°04′21″, 41°48′40″ 403.5±1.4Ma 50 基东 石英二长岩 PM13TW3 97°58′35″, 41°52′04″ 405.0±3.4Ma 51 基东 斑状正长花岗岩 PM01TW1 97°57′37″, 41°55′08″ 398.15±0.85Ma 52 千条沟 斑状二长花岗岩 P13N31 99°37′32″, 41°30′34″ 400±1Ma 53 千条沟 正长花岗岩 P13N8 99°37′23″, 41°29′18″ 399±3Ma 54 西林陶乐 花岗闪长岩 STW5 98°23′21″, 41°43′23″ 397.8±1.9Ma 55 西林陶乐 含黑云二长花岗岩 STW3 98°22′39″, 41°53′22″ 395.6±4.9Ma 表 2 研究区公婆泉岩浆弧演化期次
Table 2. Evolution stages of the Gongpoquan magmatic arc in the study area
地质时代 公婆泉构造-岩浆岩带 岩石组合 空间分布 构造环境 演化阶段 早古生代 S3/S4 ηγS3(428 Ma)、xβηγS4(420 Ma)、xπηγS4(434 Ma)、ηγS4(415 Ma)、ξγS4(411 Ma) 晚志留世块状二长花岗岩-正长花岗岩组合 旱山、风雷山、1402高地等大面积分布 后碰撞 后碰撞 S1 xνS1、xδS1(430.9 Ma)、xδοS1、xγοS1、zγοS1、xγδοS1、zγδοS1、xγδS1(436.6 Ma、444.0 Ma)、zγδS1、xηγS1(446.3 Ma、441.2 Ma)、zηγS1、zπηγS1(433 Ma)、zξγS1(442.7 Ma、441.1 Ma) 早志留世GG组合(G1G2) 石板井-小黄山一线面状大面积展布 陆缘弧 主俯冲期(成熟弧) 早志留世TTG组合(T1T2) 基东至阿拉格音呼都格地区零星出露 早志留世辉长岩、闪长岩组合 基东东部小面积出露 O3 xδO3(456 Ma)、xδοO3(464.4 Ma、456.2 Ma)、xγδοO3(453.8 Ma、452.5 Ma)、xγδO3、zηγO3(456.3 Ma)、σO3(472 Ma)、υO3(445 Ma/449 Ma) 晚奥陶世TTG(T1G1)+闪长岩组合 西林陶勒南、梧桐井南、石板井北及部嘎顺呼都格一带 主俯冲期 变质橄榄岩+变质细粒辉长岩组合 小黄山构造带断续分布 弧后伸展 弧后拉张 O2 xνO2、MνO2(462.5 Ma)、ηγβO2(461.5 Ma)、 中奥陶世基性侵入岩 石板井构造带带断续分布 O1 zηνO1(470.7 Ma)、xηδοO1(463.7 Ma)、xγδO1(471.7 Ma) “变质二长辉长岩-片麻状石英二长闪长岩-片麻状花岗闪长岩”组合 石板井构造带东北部梧桐井一带 初始弧 早期俯冲 -
[1] Ao, S. J., Xiao, W. J., Han, C. M., et al., 2012. Cambrian to Early Silurian Ophiolite and Accretionary Processes in the Beishan Collage, NW China:Implications for the Architecture of the Southern Altaids. Geological Magazine, 149(4):606-625. https://doi.org/10.1017/s0016756811000884 [2] Ao, S. J., Xiao, W. J., Windley, B. F., et al., 2016. Paleozoic Accretionary Orogenesis in the Eastern Beishan Orogen:Constraints from Zircon U-Pb and 40Ar/39Ar Geochronology. Gondwana Research, 30:224-235. [3] Condie, K. C., 1989. Geochemical Changes in Basalts and Andesites across the Archean-Proterozoic Boundary:Identification and Significance. Lithos, 23(1/2):1-18. https://doi.org/10.1016/0024-4937(89)90020-0 [4] Cleven, N. R., Lin, S. F., Xiao, W. J., 2015. The Hongliuhe Fold-and-Thrust Belt:Evidence of Terminal Collision and Suture-Reactivation after the Early Permian in the Beishan Orogenic Collage, Northwest China. Gondwana Research, 27(2):796-810. [5] Frost, B. R., Barnes, C. G., Collins, W. J., et al., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033 [6] Gertisser, R., Keller, J., 2003. Trace Element and Sr, Nd, Pb and O Isotope Variations in Medium-K and High-K Volcanic Rocks from Merapi Volcano, Central Java, Indonesia:Evidence for the Involvement of Subducted Sediments in Sunda Arc Magma Genesis. Journal of Petrology, 44(3):457-489. https://doi.org/10.1093/petrology/44.3.457 [7] Hou, Q.Y., Wang, Z., Liu, J.B., et al., 2012. Geochemistry Characteristics and SHRIMP Dating of Yueyashan Ophiolite in Beishan Orogen. Geoscience, 26(5):1008-1018(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201205022 [8] Jahn, B. M., Litvinovsky, B. A., Zanvilevich, A. N., et al., 2009. Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt:Evolution, Petrogenesis and Tectonic Significance. Lithos, 113(3/4):521-539. https://doi.org/10.1016/j.lithos.2009.06.015 [9] Jahn, B. M., Windley, B., Natal'in, B., et al., 2004. Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 23(5):599-603. https://doi.org/10.1016/s1367-9120(03)00124-x [10] Khain, E. V., Bibikova, E. V., Kröner, A., et al., 2002. The Most Ancient Ophiolite of the Central Asian Fold Belt:U-Pb and Pb-Pb Zircon Ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and Geodynamic Implications. Earth and Planetary Science Letters, 199(3/4):311-325. https://doi.org/10.1016/s0012-821x(02)00587-3 [11] Kröner, A., Kovach, V., Belousova, E., et al., 2014. Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 25(1):103-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=83a8a4ef1e806cace325036a0ba8568d [12] Kröner, A., Windley, B.F., Badarch, G., et al., 2007. Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. In: Hatcher Jr., R.D., Carlson, M.P., McBride, J.H., eds., The 4-D Framework of the Continental Crust-Integrating Crustal Processes through Time. Geological Society of America, Memoir, 181-209. [13] Lei, R. X., Wu, C. Z., Gu, L. X., et al., 2011. Zircon U-Pb Chronology and Hf Isotope of the Xingxingxia Granodiorite from the Central Tianshan Zone (NW China):Implications for the Tectonic Evolution of the Southern Altaids. Gondwana Research, 20(2/3):582-593. https://doi.org/10.1016/j.gr.2011.02.010 [14] Li, M., Ren, B.F., Teng, X.J., et al., 2018. Geochemical Characteristics, Zircon U-Pb Age and Hf Isotope and Geological Significance of Granitoid in Beishan Orogenic Belt. Earth Science, 43(12):4856-4650(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201812023 [15] Li, M., Xin, H.T., Ren, B.F., 2019.Petrogenesis and Tectonic Significance of the Late Palaeozoic Granitoids in Hazhu Area, Inner Mongolia. Earth Science, 44(1):328-343(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201901023 [16] Li, M., Xin, H.T., Ren, B.F., et al., 2019. Early-Middle Permian Post-Collisional Granitoids in the Northern Beishan Orogen, Northwestern China:Evidence from U-Pb Ages and Sr-Nd-Hf Isotopes. Canadian Journal of Earth Sciences, 57(6):681-697. https://doi.org/10.1139/cjes-2019-0088 [17] Li, X. H., Chen, Z. G., Liu, D. Y., et al., 2003. Jurassic Gabbro-Granite-Syenite Suites from Southern Jiangxi Province, SE China:Age, Origin, and Tectonic Significance. International Geology Review, 45(10):898-921. https://doi.org/10.2747/0020-6814.45.10.898 [18] Liu, Q., Zhao, G. C., Sun, M., et al., 2015. Ages and Tectonic Implications of Neoproterozoic Ortho- and Paragneisses in the Beishan Orogenic Belt, China. Precambrian Research, 266:551-578. [19] Maniar, P. D., Piccoli, P. M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643. https://doi.org/10.1130/0016-7606(1989)101 < 0635:tdog > 2.3.co; 2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [20] Martin, H., Smithies, R. H., Rapp, R., et al., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid:Relationships and Some Implications for Crustal Evolution. Lithos, 79(1/2):1-24. https://doi.org/10.1016/j.lithos.2004.04.048 [21] Ren, B.F., Ren, Y.W., Niu, W.C., et al., 2019. Zircon U-Pb Ages and Hf Isotope Characteristics of the Volcanic Rocks from Queershan Group in the Hazhudongshan Area of Beishan, Inner Mongolia and Their Geological Significance. 44(1): 298-311 (in Chinese with English abstract). [22] Smithies, R. H., 2000. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 182(1):115-125. https://doi.org/10.1016/s0012-821x(00)00236-3 [23] Song, D.F., Xiao, W.J., Han, C.M., et al., 2013. Geochronological and Geochemical Study of Gneiss-Schist Complexes and Associated Granitoids, Beishan Orogen, Southern Altaids. International Geology Review, 55(14):1705-1727. https://doi.org/10.1080/00206814.2013.792515 [24] Song, D.F., Xiao, W.J., Han, C.M., et al., 2014. Polyphase Deformation of a Paleozoic Forearc-Arc Complex in the Beishan Orogen, NW China. Tectonophysics, 632:224-243. [25] Song, D.F., Xiao, W. J., Windley, B. F., et al., 2015. A Paleozoic Japan-Type Subduction-Accretion System in the Beishan Orogenic Collage, Southern Central Asian Orogenic Belt. Lithos, 224-225:195-213. [26] Stolz, A. J., Jochum, K. P., Spettel, B., et al., 1996. Fluid- and Melt-Related Enrichment in the Subarc Mantle:Evidence from Nb/Ta Variations in Island-Arc Basalts. Geology, 24(7):587. https://doi.org/10.1130/0091-7613(1996)024 < 0587:famrei > 2.3.co; 2 doi: 10.1130/0091-7613(1996)024<0587:famrei>2.3.co;2 [27] Sun, M., Yuan, C., Xiao, W. J., et al., 2008. Zircon U-Pb and Hf Isotopic Study of Gneissic Rocks from the Chinese Altai:Progressive Accretionary History in the Early to Middle Palaeozoic. Chemical Geology, 247(3/4):352-383. https://doi.org/10.1016/j.chemgeo.2007.10.026 [28] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [29] Wang, G.Q., Li, X.M., Xu, X.Y., et al., 2016. Geochemistry of Gongpoquan Group in the Beishan Area, Gansu Province:Constraints on Petrogenesis and Tectonic Setting. Acta Geologica Sinica, 90(10):2603-2619 (in Chinese with English abstract). [30] Wang, S.Q., Hu, X.J., Zhao, H.L., 2019.Geochronology of Late Carboniferous Alkaline Granite from Honger Area, Sunidzuoqi, Inner Mongolia. Geological Survey and Research, 42(2):81-85 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201902001 [31] Wang, X. Y., Yuan, C., Zhang, Y. Y., et al., 2018. S-Type Granite from the Gongpoquan Arc in the Beishan Orogenic Collage, Southern Altaids:Implications for the Tectonic Transition. Journal of Asian Earth Sciences, 153:206-222. [32] Wilhem, C., Windley, B. F., Stampfli, G. M., 2012. The Altaids of Central Asia:A Tectonic and Evolutionary Innovative Review. Earth-Science Reviews, 113(3/4):303-341. https://doi.org/10.1016/j.earscirev.2012.04.001 [33] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1):31-47. https://doi.org/10.1144/0016-76492006-022 [34] Woodhead, J., Eggins, S., Gamble, J., 1993. High Field Strength and Transition Element Systematics in Island Arc and Back-Arc Basin Basalts:Evidence for Multi-Phase Melt Extraction and a Depleted Mantle Wedge. Earth and Planetary Science Letters, 114(4):491-504. https://doi.org/10.1016/0012-821x(93)90078-n [35] Xiao, W. J., Mao, Q. G., Windley, B. F., et al., 2010. Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Science, 310(10):1553-1594. https://doi.org/10.2475/10.2010.12 [36] Xiao, W. J., Windley, B. F., Yuan, C., et al., 2009. Paleozoic Multiple Subduction-Accretion Processes of the Southern Altaids. American Journal of Science, 309(3):221-270. https://doi.org/10.2475/03.2009.02 [37] Xie, C.L., Yang, J.G., Wang, L.S., et al., 2009.Disscussion on the Location of Paleozoic Island Arc Zone on the South Margin of Paleo-Asian Ocean in the Beishan Area of Gansu Province. Acta Geologica Sinica, 83(11):1584-1600(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200911004 [38] Yang, F.L., Zou, Y.X., Cao, X., et al., 2017.Zircon LA-ICP-MS U-Pb Dating for the Quartz Diorite in the South Pengboshan of Beishan Area, Inner Mongolia. Geological Survey and Research, 40(2):109-118.(in Chinese with English abstract). [39] Yu, J. Y., Guo, L., Li, J. X., et al., 2016. The Petrogenesis of Sodic Granites in the Niujuanzi Area and Constraints on the Paleozoic Tectonic Evolution of the Beishan Region, NW China. Lithos, 256-257:250-268. https://doi.org/10.1016/j.lithos.2016.04.003 [40] Yuan, Y., Zong, K. Q., He, Z. Y., et al., 2015. Geochemical and Geochronological Evidence for a Former Early Neoproterozoic Microcontinent in the South Beishan Orogenic Belt, Southernmost Central Asian Orogenic Belt. Precambrian Research, 266:409-424. [41] Zhang, W., Wu, T. R., Zheng, R. G., et al., 2012. Post-Collisional Southeastern Beishan Granites:Geochemistry, Geochronology, Sr-Nd-Hf Isotopes and Their Implications for Tectonic Evolution. Journal of Asian Earth Sciences, 58:51-63. https://doi.org/10.1016/j.jseaes.2012.07.004 [42] Zhang, Y.Y., Guo, Z.J., 2008. Accurate Constraint on Formation and Emplacement Age of Hongliuhe Ophiolite, Boundary Region between Xinjiang and Gansu Provinces and Its Tectonic Implications. Acta Petrol.Sin. 24:803-809. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200804019 [43] Zuo, G. C., Zhang, S. L., He, G. Q., et al., 1991. Plate Tectonic Characteristics during the Early Paleozoic in Beishan near the Sino-Mongolian Border Region, China. Tectonophysics, 188(3/4):385-392. https://doi.org/10.1016/0040-1951(91)90466-6 [44] 侯青叶, 王忠, 刘金宝, 等, 2012.北山月牙山蛇绿岩地球化学特征及SHRIMP定年.现代地质, 26(5):1008-1018. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz201205022 [45] 李敏, 任邦方, 滕学建, 等, 2018.内蒙古北山造山带花岗岩地球化学、锆石U-Pb年龄和Hf同位素特征及地质意义.地球科学, 43(12):4586-4605. doi: 10.3799/dqkx.2017.598 [46] 李敏, 辛后田, 任邦方, 等, 2019.内蒙古哈珠地区晚古生代花岗岩类成因及其构造意义.地球科学, 44(1):328-343. doi: 10.3799/dqkx.2018.238 [47] 任邦方, 任云伟, 牛文超, 等, 2019.内蒙古北山哈珠东山泥盆系雀儿山群火山岩锆石U-Pb年龄、Hf同位素特征及其地质意义.地球科学, 44(1):298-311. doi: 10.3799/dqkx.2018.356 [48] 王国强, 李向民, 徐学义, 等, 2016.公婆泉群火山岩的地球化学及其对岩石成因和构造环境的制约.地质学报, 90(10):2603-2619. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201610005 [49] 王树庆, 胡晓佳, 赵华雷, 2019.内蒙古苏左旗洪格尔地区新发现晚石炭世碱性花岗岩.地质调查与研究, 42(2):81-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhwjyjjz201902001 [50] 谢春林, 杨建国, 王立社, 等, 2009.甘肃北山地区古亚洲南缘古生代岛弧带位置的讨论.地质学报, 83(11):1584-1600. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200911004 [51] 杨富林, 邹运鑫, 曹霞, 等, 2017.内蒙古北山地区蓬勃山南石英闪长岩LA-ICP-MS锆石U-Pb测年及其意义.地质调查与研究, 40(2):109-118. -
dqkx-45-7-2393-Table1-4.docx