Earthquake-Induced Soft-Sediment Deformation Structures in Middle Holocene of Xuru Co Area in Tibet and Its Geological Significance
-
摘要: 湖相沉积古地震研究是对地表破裂古地震研究的重要补充.通过详细的野外地质调查,在西藏许如错地区全新统湖相地层内新发现大量地震触发软沉积物变形构造(震积岩),层内发育液化脉、液化曲卷变形、液化角砾岩、液化水压构造、滴状体与锥状体、砾石丘、负载构造和火焰构造等软沉积变形标志,还发育同震断层、震裂缝和同震褶皱等同震构造标志.根据软沉积变形标志与震级之间的关系,结合历史地震统计液化颗粒范围,通过C14和光释光年龄测定,推测古地震事件发生在±7.5 ka,MS>7.5级;填补了该区历史地震的空缺,为恢复青藏高原南北向地堑地震活动历史及迁移规律提供了素材.震积岩中见大量砾石液化现象,这对现阶段以砂土-粉砂土研究为主的砂土液化调查工作提出了新挑战.Abstract: The lacustrine paleo-seismic study is an important supplement to the research of a complete paleo-seismic sequence. A large number of earthquake-induced soft-sediment deformation structures (seismites) were newly discovered in the Holocene lacustrine deposits in Xuru Co area by detailed field geological survey. Soft-sediment deformation markers mainly include liquefied vein,liquefied convolute,liquefied breccia,hydraulic structure,liqufied droplets and cusps,conglomerate mound,load structure and flance structure. The syn-seismic structure deformation markers were also developed including syn-seismic fault,seismic fissure,and syn-fold. Based on the empirical statistical relation between the earthquake magnitude and soft-sediment deformation markers,combining historical earthquake statistics with the range of liquefied particles,it is suggested that the maximum magnitude may exceed 7.5. The C14 and OSL dating results for samples suggest that the age of the paleoearthquake is around 7.5 ka. The work fills the gap of historical earthquakes in the area,and provides material for restoring the history and migration law of earthquakes in the NS-trending grabens of the Tibetan Plateau. A large amount of gravel liquefaction was found in seismite,which poses a new challenge to the investigation of sand liquefaction,which is dominated by sand and silt.
-
Key words:
- seismite /
- paleoearthquake /
- Holocene /
- gravel liquefaction /
- Xuru Co graben /
- stratigraphy
-
图 1 研究区构造背景图(a、b)和地质简图(c)
图b据曹圣华等(2009).图a:ALT.阿尔金断裂;SKS.昆仑断裂;JSR.金沙江缝合带;JLF.鲜水河断裂;BNS.班公湖-怒江缝合带;YZS.雅鲁藏布江缝合带;MCT.主中央逆冲断裂;MBT.主边界逆冲断裂.图b:Q.第四系;N.中新世碱性火山岩;E3.渐新世日贡拉组;E1-2.林子宗群火山岩;K-J.侏罗-白垩纪地层;C-P.石炭-二叠纪地层;γK1.早白垩世花岗岩;γK2.晚白垩世花岗岩;γE.古近纪花岗岩.图c:1.全新世冲积物;2.全新世湖积物;3.全新世洪冲积物;4.全新世沼积物;5.晚更新世湖积物;6.晚更新世洪冲积物;7.上新世洁居纳卓组;8.中新世布嘎寺组;9.古新世年波组;10.古新世典中组;11.中新世花岗斑岩;12.古新世流纹斑岩;13.古新世二长花岗岩;14.地质界线;15.断层;16.震积岩出露点及编号
Fig. 1. Tectonic setting (a, b) and geological map of the study area (c)
表 1 地震引发的软沉积变形构造特征与震级
Table 1. Possible range of the earthquake magnitude related to the observed soft-sediment deformation structures
软沉积变形构造 主要触发因素 里氏震级 本区识别 液化变形 微褶皱、碟状构造、混积层 微震 3~5 微褶皱 液化脉 负载作用或地震活动 5~6 液化脉 球-枕构造 负载作用或地震活动 6~8 负载构造 包卷构造、火焰状构造 负载作用或地震活动 6~8 火焰构造 板刺构造和直立紧闭褶皱 地震活动 6~8 脆性变形 砂(砾岩)墙 地震活动 5~8 砾岩墙 震裂角砾岩 地震活动 7~8 同震断层 注:据Berra and Felletti (2011)修改. -
[1] Adamiec, G., Aitken, M.J., 1998. Dose-Rate Conversion Factors:Update. Ancient TL, 16(2):37-50. [2] Atkinson, J. M., Heritage, J., 1984. Structures of Social Action. Cambridge University Press, Cambridge. [3] Berra, F., Felletti, F., 2011. Syndepositional Tectonics Recorded by Soft-Sediment Deformation and Liquefaction Structures (Continental Lower Permian Sediments, Southern Alps, Northern Italy):Stratigraphic Significance. Sedimentary Geology, 235(3-4):249-263. https://doi.org/10.1016/j.sedgeo.2010.08.006 [4] Cao, S.H., Li, D.W., Yu, Z.Z., et al., 2009. Characteristics and Mechanism of the Dangra Yun Co and Xuru Co NS-Trending Graben in the Gangdese, Tibet. Earth Science, 34(6):914-920 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200906005 [5] Du, Y.S., 2011. Discussion about Studies of Earthquake Event Deposit in China. Journal of Palaeogeography, 13(6):581-590 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201106001 [6] Du, Y.S., Yu, W.C., 2017. Earthquake-Caused and Non-Earthquake-Caused Soft-Sediment Deformations. Journal of Palaeogeography, 19(1):65-72 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201701006 [7] Gong, Z., Li, H.B., Sun, Z.M., et al., 2013. Middle Jurassic Strike Slip Movement and Fault Scale of the Altyn Tagh Fault System:Evidence from the Soft Sediment Deformation. Acta Petrologica Sinica, 29(6):2233-2250 (in Chinese with English abstract). [8] He, B., Zhu, L.D., Yang, W.G., et al., 2016. Discovery and Geological Significance of the Holocene Seismites in the Jinsha Site in Chengdu, Sichuan. Sedimentary Geology and Tethyan Geology, 36(1):62-69 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201601008 [9] Huang, Y., Hao, J.X., Deng, G.B., et al., 2011. Discovery and Significance of the Seismites in the Neogene Xiaolongtan Formation in Maguan, Yunnan. Sedimentary Geology and Tethyan Geology, 31(4):79-85 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201104012 [10] Jiang, H. C., Zhong, N., Li, Y. H., et al., 2016. Soft Sediment Deformation Structures in the Lixian Lacustrine Sediments, Eastern Tibetan Plateau and Implications for Postglacial Seismic Activity. Sedimentary Geology, 344:123-134. https://doi.org/10.1016/j.sedgeo.2016.06.011 [11] Karlin, R. E., Abella, S. E. B., 1996. A History of Pacific Northwest Earthquakes Recorded in Holocene Sediments from Lake Washington. Journal of Geophysical Research:Solid Earth, 101(B3):6137-6150. https://doi.org/10.1029/95jb01626 [12] Li, Y., Zhong, J.H., Shao, Z.F., et al., 2012. An Overview on the Classification and Genesis of Soft-Sediment Deformation Structure. Geological Review, 58(5):829-838 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201205004 [13] Liang, D.Y., Nie, Z.T., Song, Z.M., 1994. A Re-Study on Seismite and Seismo-Unconformity:Taking Western Sichuan and Western Yunnan as an Example. Earth Science, 19(6):845-850 (in Chinese with English abstract). [14] Liu, H., Li, F.Q., Zhou, F., et al., 2018. Late Paleozoic Earthquake Events in the Nixiong Area and Its Geological Significance, Western Lhasa Block. Earth Science, 43(8):2767-2779 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808017 [15] Liu, Y., Xie, J.F., 1984.Vibration Induced Sand Liquefaction. Seismological Press, Beijing (in Chinese). [16] Maloney, J. M., Noble, P. J., Driscoll, N. W., et al., 2013. Paleoseismic History of the Fallen Leaf Segment of the West Tahoe-Dollar Point Fault Reconstructed from Slide Deposits in the Lake Tahoe Basin, California-Nevada. Geosphere, 9(4):1065-1090. https://doi.org/10.1130/ges00877.1 [17] Montenat, C., Barrier, P., d'Estevou, P.O., et al., 2007. Seismites:An Attempt at Critical Analysis and Classification. Sedimentary Geology, 196(1-4):5-30. https://doi.org/10.1016/j.sedgeo.2006.08.004 [18] Moretti, M., Sabato, L., 2007. Recognition of Trigger Mechanisms for Soft-Sediment Deformation in the Pleistocene Lacustrine Deposits of the SantʻArcangelo Basin (Southern Italy):Seismic Shock vs. Overloading. Sedimentary Geology, 196(1-4):31-45. https://doi.org/10.1016/j.sedgeo.2006.05.012 [19] Obermeier, S. F., 1996. Use of Liquefaction-Induced Features for Paleoseismic Analysis:An Overview of How Seismic Liquefaction Features can be Distinguished from Other Features and How Their Regional Distribution and Properties of Source Sediment can be Used to Infer the Location and Strength of Holocene Paleo-Earthquakes. Engineering Geology, 44(1-4):1-76. https://doi.org/10.1016/s0013-7952(96)00040-3 [20] Owen, G., 1995. Soft-Sediment Deformation in Upper Proterozoic Torridonian Sandstones (Applecross Formation) at Torridon, Northwest Scotland. SEPM Journal of Sedimentary Research, 65A:495-504. https://doi.org/10.1306/d4268108-2b26-11d7-8648000102c1865d [21] Owen, G., Moretti, M., Alfaro, P., 2011. Recognising Triggers for Soft-Sediment Deformation:Current Understanding and Future Directions. Sedimentary Geology, 235(3-4):133-140. https://doi.org/10.1016/j.sedgeo.2010.12.010 [22] Prescott, J. R., Hutton, J. T., 1994. Cosmic Ray Contributions to Dose Rates for Luminescence and ESR Dating:Large Depths and Long-Term Time Variations. Radiation Measurements, 23(2-3):497-500. https://doi.org/10.1016/1350-4487(94)90086-8 [23] Qiao, X. F., Guo, X. P., 2013. Early Jurassic Soft-Sediment Deformation Interpreted as Seismites in the Wuqia Pull-Apart Basin and the Strike-Slip Talas-Ferghana Fault, Xinjiang, China. Acta Geologica Sinica (English Edition), 87(3):730-737. https://doi.org/10.1111/1755-6724.12084 [24] Qiao, X.F., Guo, X.P., Li, H.B., et al., 2012. Soft-Sediment Deformation in the Late Triassic and the Indosinian Tectonic Movement in Longmenshan. Acta Geologica Sinica, 86(1):132-156 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201201003 [25] Qiao, X.F., Jiang, M., Li, H.B., et al., 2016. Soft-Sediment Deformation Structures and Their Implications for Tectonic Evolution from Mesozoic to Cenozoic in the Longmen Shan. Earth Science Frontiers, 23(6):80-106 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201606007 [26] Qiao, X.F., Li, H.B., 2009. Effect of Earthquake and Ancient Earthquake on Sediments. Journal of Palaeogeography, 11(6):593-610 (in Chinese with English abstract). [27] Rana, N., Bhattacharya, F., Basavaiah, N., et al., 2013. Soft Sediment Deformation Structures and Their Implications for Late Quaternary Seismicity on the South Tibetan Detachment System, Central Himalaya (Uttarakhand), India. Tectonophysics, 592:165-174. https://doi.org/10.1016/j.tecto.2013.02.020 [28] Rodrı́guez-Pascua, M. A., Calvo, J. P., de Vicente, G., et al., 2000. Soft-Sediment Deformation Structures Interpreted as Seismites in Lacustrine Sediments of the Prebetic Zone, SE Spain, and Their Potential Use as Indicators of Earthquake Magnitudes during the Late Miocene. Sedimentary Geology, 135(1-4):117-135. https://doi.org/10.1016/s0037-0738(00)00067-1 [29] Rodrı́guez-Pascua, M.A., de Vicente, G., Calvo, J.P., et al., 2003. Similarities between Recent Seismic Activity and Paleoseismites during the Late Miocene in the External Betic Chain (Spain):Relationship by 'b' Value and the Fractal Dimension. Journal of Structural Geology, 25(5):749-763. https://doi.org/10.1016/s0191-8141(02)00078-0 [30] Scott, B., Price, S., 1988. Earthquake-Induced Structures in Young Sediments. Tectonophysics, 147(1-2):165-170. https://doi.org/10.1016/0040-1951(88)90154-0 [31] Sims, J. D., 1975. Determining Earthquake Recurrence Intervals from Deformational Structures in Young Lacustrine Sediments. Tectonophysics, 29(1-4):141-152. https://doi.org/10.1016/0040-1951(75)90139-0 [32] Tsuchida, H., Hayashi, S., 1972. Estimation of Liquefaction Potential of Sandy Soils. McGraw-Hill, New York. [33] van Daele, M., Moernaut, J., Doom, L., et al., 2015. A Comparison of the Sedimentary Records of the 1960 and 2010 Great Chilean Earthquakes in 17 Lakes:Implications for Quantitative Lacustrine Palaeoseismology. Sedimentology, 62(5):1466-1496. https://doi.org/10.1111/sed.12193 [34] Wang, L.Z., Yao, Y.J., Lin, W.B., et al., 2018. Sediment Waves in the South of South China Sea:Soft Sediment Deformation and Its Triggering Mechanism. Earth Science, 43(10):3462-3470 (in Chinese with English abstract). [35] Wang, P., Zhang, B., Qiu, W. L., et al., 2011. Soft-Sediment Deformation Structures from the Diexi Paleo-Dammed Lakes in the Upper Reaches of the Minjiang River, East Tibet. Journal of Asian Earth Sciences, 40(4):865-872. https://doi.org/10.1016/j.jseaes.2010.04.006 [36] Wang, W.M., Yuan, X.M., Chen, L.W., et al., 2011. Liquefaction Characteristic Analysis in Deyang Region in the Wenchuan Earthquake. Earthquake Engineering and Engineering Vibration, 31(2):145-154 (in Chinese with English abstract). [37] Xu, Z.F., Liu, X.Y., Luo, X.C., et al., 2006. Basic Characteristic of the Neogene-Quaternary Graben in the Tangqung Co-Xuru Co Area, Gangdise, Qinghai-Tibet Plateau. Geological Bulletin of China, 25(7):822-826 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200607008 [38] Zhang, J.J., Ding, L, 2003. East-West Extension in Tibetan Plateau and Its Significance to Tectonic Evolution. Chinese Journal of Geology, 38(2):179-189 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200302005 [39] Zhong, N., Jiang, H.C., Liang, L.J., et al., 2017. Paleoearthquake Researches via Soft Sediment Deformation of Load, Ball-and-Pillow Structure:A Review. Geological Review, 63(3):719-738 (in Chinese with English abstract). [40] Zhou, Y., Ji, Y.L., Wan, L., et al., 2011. Characteristics and Geologic Significance of Seismites in the Lower Cretaceous Laiyang Formation in Northeastern Jiaolai Basin in Shandong Province. Journal of Palaeogeography, 13(5):517-528 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201105006 [41] 曹圣华, 李德威, 余忠珍, 等, 2009.西藏冈底斯当惹雍错-许如错南北向地堑的特征及成因.地球科学, 34(6):914-920. http://www.earth-science.net/article/id/1906 [42] 杜远生, 2011.中国地震事件沉积研究的若干问题探讨.古地理学报, 13(6):581-590. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201106001 [43] 杜远生, 余文超, 2017.地震和非地震引发的软沉积物变形.古地理学报, 19(1):65-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201701006 [44] 龚正, 李海兵, 孙知明, 等, 2013.阿尔金断裂带中侏罗世走滑活动及其断裂规模的探讨:来自软沉积物变形的证据.岩石学报, 29(6):2233-2250. [45] 何碧, 朱利东, 杨文光, 等, 2016.成都金沙遗址区全新统震积岩的发现及其地质意义.沉积与特提斯地质, 36(1):62-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201601008 [46] 黄勇, 郝家栩, 邓贵标, 等, 2011.云南马关新近系小龙潭组震积岩的发现及意义.沉积与特提斯地质, 31(4):79-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl201104012 [47] 李勇, 钟建华, 邵珠福, 等, 2012.软沉积变形构造的分类和形成机制研究.地质论评, 58(5):829-838. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201205004 [48] 梁定益, 聂泽同, 宋志敏, 1994.再论震积岩及震积不整合:以川西, 滇西地区为例.地球科学, 19(6):845-850. http://www.earth-science.net/article/id/199 [49] 刘函, 李奋其, 周放, 等, 2018.拉萨地块西段尼雄地区晚古生代地震事件及其地质意义.地球科学, 43(8):2767-2779. doi: 10.3799/dqkx.2018.167 [50] 刘颖, 谢君斐, 1984.沙土震动液化.北京:地震出版社. [51] 乔秀夫, 郭宪璞, 李海兵, 等, 2012.龙门山晚三叠世软沉积物变形与印支期构造运动.地质学报, 86(1):132-156. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201201003 [52] 乔秀夫, 姜枚, 李海兵, 等, 2016.龙门山中、新生界软沉积物变形及构造演化.地学前缘, 23(6):80-106. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201606007 [53] 乔秀夫, 李海兵, 2009.沉积物的地震及古地震效应.古地理学报, 11(6):593-610. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb200906002 [54] 王龙樟, 姚永坚, 林卫兵, 等, 2018.南海南部沉积物波:软变形及其触发机制.地球科学, 43(10):3462-3470. doi: 10.3799/dqkx.2018.303 [55] 王维铭, 袁晓铭, 陈龙伟, 等, 2011.汶川大地震中德阳地区液化特点分析.地震工程与工程振动, 31(2):145-154. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzgcygczd201102021 [56] 徐祖丰, 刘细元, 罗小川, 等, 2006.青藏高原冈底斯当穹错-许如错一带新近纪-第四纪地堑的基本特征.地质通报, 25(7):822-826. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200607008 [57] 张进江, 丁林, 2003.青藏高原东西向伸展及其地质意义.地质科学, 38(2):179-189. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200302005 [58] 钟宁, 蒋汉朝, 梁莲姬, 等, 2017.软沉积物变形中负载、球-枕构造的古地震研究综述.地质论评, 63(3):719-738. [59] 周勇, 纪友亮, 万璐, 等, 2011.山东省胶莱盆地东北部下白垩统莱阳组震积岩特征及地质意义.古地理学报, 13(5):517-528. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdlxb201105006