• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    CMIP5模式对长江和黄河流域极端气温指标的模拟与预估

    李佳瑞 牛自耕 冯岚 姚瑞 陈鑫鑫

    李佳瑞, 牛自耕, 冯岚, 姚瑞, 陈鑫鑫, 2020. CMIP5模式对长江和黄河流域极端气温指标的模拟与预估. 地球科学, 45(6): 1887-1904. doi: 10.3799/dqkx.2020.116
    引用本文: 李佳瑞, 牛自耕, 冯岚, 姚瑞, 陈鑫鑫, 2020. CMIP5模式对长江和黄河流域极端气温指标的模拟与预估. 地球科学, 45(6): 1887-1904. doi: 10.3799/dqkx.2020.116
    Li Jiarui, Niu Zigeng, Feng Lan, Yao Rui, Chen Xinxin, 2020. Simulation and Prediction of Extreme Temperature Indices in Yangtze and Yellow River Basins by CMIP5 Models. Earth Science, 45(6): 1887-1904. doi: 10.3799/dqkx.2020.116
    Citation: Li Jiarui, Niu Zigeng, Feng Lan, Yao Rui, Chen Xinxin, 2020. Simulation and Prediction of Extreme Temperature Indices in Yangtze and Yellow River Basins by CMIP5 Models. Earth Science, 45(6): 1887-1904. doi: 10.3799/dqkx.2020.116

    CMIP5模式对长江和黄河流域极端气温指标的模拟与预估

    doi: 10.3799/dqkx.2020.116
    基金项目: 

    国家自然科学基金项目 41975044

    国家自然科学基金项目 41601044

    中国地质大学(武汉)地学长江计划重点项目 CUGCJ1704

    详细信息
      作者简介:

      李佳瑞(1995-), 女, 在读硕士, 主要从事极端气候研究

      通讯作者:

      冯岚

    • 中图分类号: K903

    Simulation and Prediction of Extreme Temperature Indices in Yangtze and Yellow River Basins by CMIP5 Models

    • 摘要: 为研究长江和黄河流域极端气温的变化特征,对耦合模式比较计划第5阶段22个大气环流模式数据进行精度评估、Delta降尺度并计算16个极端气温指标,采用可靠性集合平均方法对两流域历史和未来的极端气温进行预估.结果表明:除四川盆地外,两流域的观测值与REA(ensemble reliability average)值在空间上具有较好一致性;未来三个时期(2020s、2050s、2080s),典型浓度路径(Representative Concentration Pathways,RCP)4.5情景下指标变化趋势依次递减,RCP8.5情景下变化趋势逐渐递增;RCP4.5和RCP8.5情景下指标年际变化在21世纪40年代之前是相似的,但之后变化趋势差异增加;两流域的大多数指标呈现上升趋势,冬季趋势相较于其他季节更显著;两流域之间冷极端指标的差异大于暖极端指标.总的来说,两流域的暖极端事件将更加严重.

       

    • 图  1  长江和黄河流域地理位置

      Fig.  1.  The geographical map of the Yangtze and Yellow River basins

      图  2  1961—2005年长江和黄河流域TG、TX和TN多年均值空间分布模拟结果

      Fig.  2.  Taylor diagrams for the spatial distribution of TG, TX and TN multi-year averages in the 1961 to 2005 over the Yangtze and Yellow River basins

      图  3  2000—2005年CMIP5模式模拟的长江和黄河流域极端气温指标标准化RMSEs的色度图

      Fig.  3.  The "portrait" diagram of relative RMSEs of extreme temperature indices simulated by the CMIP5 models with respect to the observation in the 2000 to 2005 climatologies over the Yangtze and Yellow River basins

      图  4  1961—1990年长江和黄河流域16个极端气温指标的观测值空间分布

      图中左上角为图例的指标名称和单位(下图同)

      Fig.  4.  Spatial distribution of 16 extreme temperature indices for the observations in the 1961 to 1990 climatologies over the Yangtze and Yellow River basins

      图  5  1961—1990年长江和黄河流域16个极端气温指标的REA值和观测值的偏差空间分布

      Fig.  5.  Bias between REA results and observations of 16 extreme temperature indices in the 1961 to 1990 climatologies over the Yangtze and Yellow River basins

      图  6  1961—1990年长江和黄河流域(分别为黑色和红色矩形盒)11个极端气温指标的季节均值盒须图

      在每个矩形盒中,中心水平线表示中位数,底边和顶边分别对应第25个和第75个分位数.异常值标为“+”.多模式集合结果标为“▲”,观测结果标为“▼”;数值的指标名称和单位见图上方

      Fig.  6.  Box-and-whisker plots for the seasonal average of 11 extreme temperature indices from 1961 to 1990 over the Yangtze and Yellow River basins (black and red, respectively) on the basis of 14 GCMs

      图  7  在RCP4.5和RCP8.5情景下,长江和黄河流域绝对指标REA值模拟的30年时期(2020s、2050s、2080s)趋势预测的空间分布

      黑点表示趋势在95%的显著性水平上显著

      Fig.  7.  Spatial distribution of the predicted trends in the absolute indices for REA results for 30-year periods on the 2020s, 2050s, and 2080s under RCP4.5 and RCP8.5 (1st and 2nd rows, respectively) over the Yangtze and Yellow River basins

      图  8  在RCP4.5和RCP8.5情景下,长江和黄河流域百分位指标REA值模拟的30年时期(2020s、2050s、2080s)趋势预测的空间分布

      黑点表示趋势在95%的显著性水平上显著

      Fig.  8.  Spatial distribution of the predicted trends in the percentile indices for REA results for 30-year periods on the 2020s, 2050s and 2080s under RCP4.5 and RCP8.5 (1st and 2nd rows, respectively) over the Yangtze and Yellow River basins

      图  9  在RCP4.5和RCP8.5情景下,长江和黄河流域阈值指标REA值模拟的30年时期(2020s、2050s、2080s)趋势预测的空间分布

      黑点表示趋势在95%的显著性水平上显著

      Fig.  9.  Spatial distribution of the predicted trends in the threshold indices for REA results for 30-year periods on the 2020s, 2050s and 2080s under RCP4.5 and RCP8.5 (1st and 2nd rows, respectively) over the Yangtze and Yellow River basins

      图  10  在RCP4.5和RCP8.5情景下,长江和黄河流域持续时间指标和范围指标的REA值模拟的30年时期(2020s、2050s、2080s)趋势预测的空间分布

      黑点表示趋势在95%的显著性水平上显著

      Fig.  10.  Spatial distribution of the predicted trends in the duration indices and range indices for REA results for 30-year periods on the 2020s, 2050s and 2080s under RCP4.5 and RCP8.5 (1st and 2nd rows, respectively) over the Yangtze and Yellow River basins

      图  11  长江和黄河流域16个极端气温指标REA值的每年区域平均距平值(相对于参考期1961—1990年).在历史时期、RCP4.5和RCP8.5情景下,长江流域结果分别表示为黑色、橙色和红色,黄河流域结果分别表示为灰色、绿色和蓝色.时间序列使用11年滑动平均处理

      Fig.  11.  The annual regional mean anomalies of 16 extreme temperature indices simulated by REA results for history, RCP4.5 and RCP8.5 (black, orange, red for the Yangtze River basin, and gray, green, blue for the Yellow River basin) relative to the reference period 1961 to 1990. Time series are smoothed using an 11 year running mean filter

      图  12  2006—2100年长江和黄河流域(分别为黑色和红色矩形盒)11个极端气温指标的季节趋势预测盒须图

      在每个矩形盒中,中心水平线表示中位数,底边和顶边分别对应第25个和第75个分位数.异常值标为“+”.多模式集合结果标为“▲”; 数值的指标名称和单位见图上方

      Fig.  12.  Box-and-whisker plots for the seasonal predicted trend of 11 extreme temperature indices from 2006 to 2100 for RCP4.5 and RCP8.5 over the Yangtze and Yellow River basins (black and red, respectively), which are based on 14 GCMs ensemble

      表  1  CMIP5中22个GCMs具体信息

      Table  1.   List of 22 GCMs used in this study

      序号 模式名称 水平格点数(个) 研究机构 国家
      1 ACCESS1.0 192×145 CSIRO-BOM 澳大利亚
      2 ACCESS1.3 192×145 CSIRO-BOM 澳大利亚
      3 CCSM4 288×192 NCAR 美国
      4 CMCC-CM 480×240 CMCC 意大利
      5 CMCC-CMS 192×96 CMCC 意大利
      6 CNRM-CM5 256×128 CNRM-CERFACS 法国
      7 CSIRO-Mk3.6.0 192×96 CSIRO-QCCCE 澳大利亚
      8 CanESM2 128×64 CCCMA 加拿大
      9 HadGEM2-AO 192×144 NIMR/KMA 韩国/英国
      10 HadGEM2-CC 192×144 MOHC 英国
      11 HadGEM2-ES 192×96 MOHC 英国
      12 IPSL-CM5A-LR 96×96 IPSL 法国
      13 IPSL-CM5A-MR 144×143 IPSL 法国
      14 IPSL-CM5B-LR 96×96 IPSL 法国
      15 MIROC-ESM-CHEM 128×64 MIROC 日本
      16 MIROC-ESM 128×64 MIROC 日本
      17 MIROC5 256× 128 MIROC 日本
      18 MPI-ESM-LR 192×96 MPI-M 德国
      19 MPI-ESM-MR 192×96 MPI-M 德国
      20 MRI-CGCM3 320× 160 MRI 日本
      21 NorESMl-M 144×96 NCC 挪威
      22 INMCM4 180×120 INM 俄罗斯
      下载: 导出CSV

      表  2  1961—2005年长江和黄河流域模拟和观测的年平均时间序列之间的相关系数

      Table  2.   Correlation coefficients between the annual average time series of the simulations and observations from 1961 to 2005 over the Yangtze and Yellow River basins

      模式名称 TG TX TN
      ACCESS1.0 0.680 0.603 0.694
      ACCESS1.3 0.479 0.336 0.466
      CanESM2 0.659 0.490 0.746
      CCSM4 0.484 0.363 0.574
      CMCC-CM 0.390 0.181 0.531
      CMCC-CMS 0.474 0.277 0.599
      CNRM-CM5 0.175 0.014 0.367
      CSIRO-Mk3.6.0 0.386 0.302 0.463
      HadGEM2-AO 0.493 0.479 0.472
      HadGEM2-CC 0.183 0.045 0.314
      HadGEM2-ES 0.526 0.393 0.559
      INM-CM4 0.186 0.156 0.227
      IPSL-CM5A-LR 0.535 0.344 0.614
      IPSL-CM5A-MR 0.371 0.164 0.543
      IPSL-CM5B-LR 0.378 0.273 0.460
      MIROC5 0.277 0.051 0.454
      MIROC-ESM 0.247 0.115 0.291
      MIROC-ESM-CHEM 0.322 0.167 0.471
      MPI-ESM-LR 0.596 0.432 0.669
      MPI-ESM-MR 0.539 0.396 0.630
      MRI-CGCM3 0.224 0.074 0.350
      NorESM1-M 0.326 0.134 0.422
      下载: 导出CSV

      表  3  16个ETCCDI极端气温指标的信息

      Table  3.   Information of 16 ETCCDI extreme temperature indices

      分类 指标代码 指标名称 定义 单位
      绝对指标 TXx(+) 日最高气温的最大值 日最高气温的最大值
      TNx(+) 日最低气温的最大值 日最低气温的最大值
      TXn(-) 日最高气温的最小值 日最高气温的最小值
      TNn(-) 日最低气温的最小值 日最低气温的最小值
      百分位指标 TN10*(-) 冷夜温度 某段时间内日最低气温小于1961-1990年该时段内第10个百分位值的平均温度 ℃/day
      TX10*(-) 冷昼温度 某段时间内日最高气温小于1961-1990年该时段内第10个百分位值的平均温度 ℃/day
      TN90*(+) 暖夜温度 某段时间内日最低气温大于1961-1990年该时段内第90个百分位值的平均温度 ℃/day
      TX90*(+) 暖昼温度 某段时间内日最高气温大于1961-1990年该时段内第90个百分位值的平均温度 ℃/day
      阈值指标 FD(-) 霜冻天数 日最低气温小于0 ℃的天数 days
      SU(+) 夏日天数 日最高气温大于25 ℃的天数 days
      ID(-) 冰冻天数 日最高气温小于0 ℃的天数 days
      TR(+) 夏夜天数 日最低气温大于20 ℃的天数 days
      持续时间指标 WSDI(+) 暖期 日最高气温至少连续6天大于1961-1990年第90个百分位值的总天数 days
      CSDI(-) 冷期 日最低气温至少连续6天小于1961-1990年第10个百分位值的总天数 days
      GSL(+) 生长季长度 每年(北半球为1月1日-12月31日,南半球为7月1日-6月30日)日均温至少连续6天大于5 ℃第一次出现与同年7月1日(南半球为1月1日)以后日均温至少连续6天小于5 ℃第一次出现之间的时间间隔 days
      范围指标 DTR 日较差 日最高气温与日最低气温的差值
      注:标有“*”的百分位指标的定义略有变化.带正号的指标是暖指标,带负号的指标是冷指标.
      下载: 导出CSV
    • [1] Aguilar, E., Aziz Barry, A., Brunet, M., et al., 2009.Changes in Temperature and Precipitation Extremes in Western Central Africa, Guinea Conakry, and Zimbabwe, 1955-2006.Journal of Geophysical Research Atmospheres, 114(D2):D02115. https://doi.org/10.1029/2008jd011010
      [2] Chapman, S.C., Watkins, N.W., Stainforth, D.A., 2019.Warming Trends in Summer Heatwaves.Geophysical Research Letters, 46(3):1634-1640. https://doi.org/10.1029/2018gl081004
      [3] Fan, L.J., Fu, C.B., Chen, D.L., 2005.Review on Creating Future Climate Change Scenarios by Statistical Downscaling Techniques.Advances in Earth Science, 20(3):320-329(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200503009
      [4] Feng, R., Yu, R.D., Zheng, H.W., et al., 2018.Spatial and Temporal Variations in Extreme Temperature in Central Asia.International Journal of Climatology, 38:e388-e400. https://doi.org/10.1002/joc.5379
      [5] Fischer, E.M., Knutti, R., 2015.Anthropogenic Contribution to Global Occurrence of Heavy-Precipitation and High-Temperature Extremes.Nature Climate Change, 5(6):560-564. https://doi.org/10.1038/nclimate2617
      [6] Giorgi, F., Hurrell, J.W., Marinucci, M.R., et al., 1997.Elevation Dependency of the Surface Climate Change Signal:A Model Study.Journal of Climate, 10(2):288-296. http://femsle.oxfordjournals.org/lookup/external-ref?access_num=10.1175/1520-0442(1997)0102.0.CO;2&link_type=DOI
      [7] Giorgi, F., Mearns, L.O., 1991.Approaches to the Simulation of Regional Climate Change:A Review.Reviews of Geophysics, 29(2):191-216. https://doi.org/10.1029/90rg02636
      [8] Guo, J.H., Huang, G.H., Wang, X.Q., et al., 2018.Dynamically-Downscaled Projections of Changes in Temperature Extremes over China.Climate Dynamics, 50:1045-1066. https://doi.org/10.1007/s00382-017-3660-7
      [9] Hanson, S., Nicholls, R., Ranger, N., et al., 2011.A Global Ranking of Port Cities with High Exposure to Climate Extremes.Climatic Change, 104(1):89-111. https://doi.org/10.1007/s10584-010-9977-4
      [10] Jones, B., O'Neill, B.C., McDaniel, L., et al., 2015.Future Population Exposure to US Heat Extremes.Nature Climate Change, 5:652-655. https://doi.org/10.1038/nclimate2631
      [11] King, A.D., Karoly, D.J., Henley, B.J., 2017.Australian Climate Extremes at 1.5 ℃ and 2 ℃ of Global Warming.Nature Climate Change, 7:412-416. https://doi.org/10.1038/nclimate3296
      [12] Li, S.S., Yang, S.N., 2015.Changes of Extreme Temperature Events in Beijing during 1960-2014.Scientia Geographica Sinica, 35(12):1640-1647(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201512019
      [13] Liu, L.J., Li, C.A., Jie, D.M., et al., 2018.Paleoclimate Recorded by Phytolith in Anguli-Nuur Lake since Mid-Late Holocene.Earth Science, 43(11):4138-4148(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201811029
      [14] Maxwell, S.L., Butt, N., Maron, M., et al., 2019.Conservation Implications of Ecological Responses to Extreme Weather and Climate Events.Diversity and Distributions, 25(4):613-625. https://doi.org/10.1111/ddi.12878
      [15] Panday, P.K., Thibeault, J., Frey, K.E., 2015.Changing Temperature and Precipitation Extremes in the Hindu Kush-Himalayan Region:An Analysis of CMIP3 and CMIP5 Simulations and Projections.International Journal of Climatology, 35(10):3058-3077. https://doi.org/10.1002/joc.4192
      [16] Pepin, N., Bradley, R.S., Diaz, H.F., et al., 2015.Elevation-Dependent Warming in Mountain Regions of the World.Nature Climate Change, 5:424-430. https://doi.org/10.1038/nclimate2563
      [17] Rangwala, I., Miller, J.R., Xu, M., 2009.Warming in the Tibetan Plateau:Possible Influences of the Changes in Surface Water Vapor.Geophysical Research Letters, 36(6). https://doi.org/10.1029/2009gl037245
      [18] Riahi, K., Rao, S., Krey, V., et al., 2011.RCP 8.5:A Scenario of Comparatively High Greenhouse Gas Emissions.Climatic Change, 109(1-2):33-57. https://doi.org/10.1007/s10584-011-0149-y
      [19] Sillmann, J., Kharin, V.V., Zhang, X., et al., 2013a.Climate Extremes Indices in the CMIP5 Multimodel Ensemble:Part 1.Model Evaluation in the Present Climate.Journal of Geophysical Research:Atmospheres, 118(4):1716-1733. https://doi.org/10.1002/jgrd.50203
      [20] Sillmann, J., Kharin, V.V., Zwiers, F.W., et al., 2013b.Climate Extremes Indices in the CMIP5 Multimodel Ensemble:Part 2.Future Climate Projections.Journal of Geophysical Research:Atmospheres, 118(6):2473-2493. https://doi.org/10.1002/jgrd.50188
      [21] Sillmann, J., Roeckner, E., 2008.Indices for Extreme Events in Projections of Anthropogenic Climate Change.Climatic Change, 86(1-2):83-104. https://doi.org/10.1007/s10584-007-9308-6
      [22] Stocker, T., 2014.Climate Change 2013:The Physical Science Basis.Cambridge University Press, Cambridge.
      [23] Stocker, T.F., Qin, D., Plattner, G.K., et al., 2013.IPCC, 2013:Climate Change 2013.Computational Geometry, 18:95-123. http://d.old.wanfangdata.com.cn/Periodical/qhbhyjjz201306007
      [24] Sun, Q.H., Miao, C.Y., Duan, Q.Y., 2015.Projected Changes in Temperature and Precipitation in Ten River Basins over China in 21st Century.International Journal of Climatology, 35(6):1125-1141. https://doi.org/10.1002/joc.4043
      [25] Sun, Q.H., Miao, C.Y., Duan, Q.Y., 2016.Extreme Climate Events and Agricultural Climate Indices in China:CMIP5 Model Evaluation and Projections.International Journal of Climatology, 36(1):43-61. https://doi.org/10.1002/joc.4328
      [26] Taylor, K.E., 2001.Summarizing Multiple Aspects of Model Performance in a Single Diagram.Journal of Geophysical Research:Atmospheres, 106(D7):7183-7192. https://doi.org/10.1029/2000jd900719
      [27] Taylor, K.E., Stouffer, R.J., Meehl, G.A., 2012.An Overview of CMIP5 and the Experiment Design.Bulletin of the American Meteorological Society, 93(4):485-498. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e25af06b6d0b93bec8e211bdc3bbfed0
      [28] Thomson, A.M., Calvin, K.V., Smith, S.J., et al., 2011.RCP4.5:A Pathway for Stabilization of Radiative Forcing by 2100.Climatic Change, 109(1-2):77-94. https://doi.org/10.1007/s10584-011-0151-4
      [29] Wang, Q.X., Fan, X.H., Wang, M.B., 2016.Evidence of High-Elevation Amplification versus Arctic Amplification.Scientific Reports, 6:19219. https://doi.org/10.1038/srep19219
      [30] Wilby, R.L., Wigley, T.M.L., 1997.Downscaling General Circulation Model Output:A Review of Methods and Limitations.Progress in Physical Geography:Earth and Environment, 21(4):530-548. https://doi.org/10.1177/030913339702100403
      [31] Xiang, F.F., Wang, L.C., Yao, R., et al., 2018.The Characteristics of Climate Change and Response of Vegetation in Three Gorges Reservoir Area.Earth Science, 43(Suppl.1):42-52(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx2018z1005
      [32] Xu, K., Wu, C.H., Hu, B.X., 2019a.Projected Changes of Temperature Extremes over Nine Major Basins in China Based on the CMIP5 Multimodel Ensembles.Stochastic Environmental Research and Risk Assessment, 33(1):321-339. https://doi.org/10.1007/s00477-018-1569-2
      [33] Xu, K., Xu, B.B., Ju, J.L., et al., 2019b.Projection and Uncertainty of Precipitation Extremes in the CMIP5 Multimodel Ensembles over Nine Major Basins in China.Atmospheric Research, 226:122-137. https://doi.org/10.1016/j.atmosres.2019.04.018
      [34] Xu, Y., Gao, X.J., Giorgi, F., et al., 2018.Projected Changes in Temperature and Precipitation Extremes over China as Measured by 50 yr Return Values and Periods Based on a CMIP5 Ensemble.Advances in Atmospheric Sciences, 35(4):376-388. https://doi.org/10.1007/s00376-017-6269-1
      [35] You, Q.L., Min, J.Z., Fraedrich, K., et al., 2014.Projected Trends in Mean, Maximum, and Minimum Surface Temperature in China from Simulations.Global and Planetary Change, 112:53-63. https://doi.org/10.1016/j.gloplacha.2013.11.006
      [36] Yue, T.X., Zhao, N., Fan, Z.M., et al., 2016.CMIP5 Downscaling and Its Uncertainty in China.Global and Planetary Change, 146:30-37. https://doi.org/10.1016/j.gloplacha.2016.09.003
      [37] Zhang, D.R., Zheng, J., Fan, J.L., et al., 2019.Spatiotemporal Variations of Extreme Temperature Indices in Different Climatic Zones of China over the Past 60 Years.Chinese Journal of Agrometeorology, 40(7):422-434(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgnyqx201907002
      [38] Zhao, F.F., Xu, Z.X., 2007.Comparative Analysis on Downscaled Climate Scenarios for Headwater Catchment of Yellow River Using SDS and Delta Methods.Acta Meteorologica Sinica, 65(4):653-662(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qxxb200704017
      [39] Zhou, B.T., Wen, Q.H., Xu, Y., et al., 2014.Projected Changes in Temperature and Precipitation Extremes in China by the CMIP5 Multimodel Ensembles.Journal of Climate, 27(17):6591-6611. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1fb87ebac6e075b35d5aa4178eb9fc0f
      [40] Zhou, T.J., Yu, R.C., 2006.Twentieth-Century Surface Air Temperature over China and the Globe Simulated by Coupled Climate Models.Journal of Climate, 19(22):5843-5858. https://doi.org/10.1175/jcli3952.1
      [41] 范丽军, 符淙斌, 陈德亮, 2005.统计降尺度法对未来区域气候变化情景预估的研究进展.地球科学进展, 20(3):320-329. http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200503009
      [42] 李双双, 杨赛霓, 2015.1960-2014年北京极端气温事件变化特征.地理科学, 35(12):1640-1647.
      [43] 刘林敬, 李长安, 介冬梅, 等, 2018.中-晚全新世以来安固里淖气候演变的植硅体记录.地球科学, 43(11):4138-4148. doi: 10.3799/dqkx.2018.614
      [44] 向菲菲, 王伦澈, 姚瑞, 等, 2018.三峡库区气候变化特征及其植被响应.地球科学, 43(增刊1):42-52. doi: 10.3799/dqkx.2018.912
      [45] 张大任, 郑静, 范军亮, 等, 2019.近60年中国不同气候区极端温度事件的时空变化特征.中国农业气象, 40(7):422-434. http://d.old.wanfangdata.com.cn/Periodical/zgnyqx201907002
      [46] 赵芳芳, 徐宗学, 2007.统计降尺度方法和Delta方法建立黄河源区气候情景的比较分析.气象学报, 65(4):653-662. http://d.old.wanfangdata.com.cn/Periodical/qxxb200704017
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  1067
    • HTML全文浏览量:  130
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-01-17
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回