Preliminary Definition of Li Isotope Compositions on Surficial Environmental Processes Associated with Archean Seawater
-
摘要: 研究试图利用Li同位素地球化学对太古代海水相关的表生环境过程进行初步的限定.通过对来自南非Kaapvaal克拉通的海相碳酸盐岩样品进行Li同位素分析,发现在3.0~2.9 Ga期间形成的碳酸盐岩δ7Li值为~+1‰,而在2.6~2.5 Ga期间,碳酸盐岩δ7Li值达到7‰~10‰.经过反演计算得到对应时代的海水Li同位素组成分别为~+12‰和~+20‰,均明显低于现代海水值(~+31‰),但是2.6~2.5 Ga期间的海水δ7Li值要比3.0~2.9 Ga时高出8‰.作为大陆硅酸岩风化的有效示踪剂,太古代海水较低的Li同位素组成表明当时的地表风化以源岩溶解为主,次生矿物形成极少,在3.0~2.5 Ga期间,海水整体温度下降以及次生矿物形成增加可能共同导致了海水δ7Li值的升高.通过对太古代碳酸盐岩的Li同位素研究能够有效反演古海水的Li同位素组成,并为了解太古代表生风化过程对海水的影响提供了新的信息.Abstract: In this study it attempts to use the Li isotope geochemistry to preliminarily limit the surficial environmental processes associated with Archean seawater. It performed Li isotope analysis on marine carbonate samples from the Kaapvaal craton in South Africa and finds that the carbonate shows light Li compositions of~+1‰ during the period of 3.0-2.9 Ga, and increase of +7‰ to +10‰ during the period of 2.6-2.5 Ga. Through inversion calculation, the Li isotope compositions of seawater in the two periods are~+12‰ and~+ 20‰, respectively, which are significantly lower than modern seawater (~+31‰). However, the δ7Li value of seawater during 2.6-2.5 Ga is more than 8‰ higher than that at 3.0-2.9 Ga. As an effective tracer for continental weathering of silicate rocks, Archean seawater shows relatively low δ7Li values, which indicates that the surficial weathering at that age was dominated by the dissolution of source rocks, and secondary minerals were rarely formed. During 3.0-2.5 Ga, the decrease in the overall temperature of the seawater and the increase in the formation of secondary minerals may jointly lead to an increase in the seawater δ7Li value during Late Archean. The study of Li isotopes of Archean carbonate can effectively invert the Li isotopic composition of paleoseawater, and provide new information for understanding the surficial environmental processes related to the Archean seawater.
-
Key words:
- Archean /
- carbonate /
- seawater /
- Li isotope /
- geochemistry
-
图 1 Kaapvaal克拉通简图与样品位置(改自Frimmel et al., 2005)
Fig. 1. Simplified map of Kaapvaal craton and sample regions (modified from Frimmel et al., 2005)
图 4 现代海水和太古代海水的Li同位素组成模型
Fig. 4. Li isotope composition models of modern and archean seawater
图 5 海水δ7Li值的变化趋势
据Misra and Froelich(2012);von Strandmann et al.(2013, 2017);Sun et al.(2018)
Fig. 5. Variation trend of δ7Li in seawater
表 1 碳酸盐中Li同位素和元素含量分析结果
Table 1. Analysis results of Li isotope and elemental contents in carbonate
样品号 Li/Ca (μmol/mol) Ca/Mg (mol/mol) Fe/Ca (mmol/mol) Mn/Ca (mmol/mol) Al/(Ca+Mg) (μmol/mol) Li含量(10-6) δ7Li (‰) 2SD Nsuze-1 Ns-1 2.54 2.04 73.99 11.14 0.93 0.6 1.1 0.1 Ns-2 3.19 1.79 88.16 11.77 1.74 0.8 0.4 0.3 Ns-3 2.93 1.85 74.66 9.82 1.01 0.7 0.9 0.1 Ns-4 2.79 1.88 73.25 9.48 1.10 0.7 0.9 0.0 Ns-4’ 2.92 1.87 74.28 9.59 1.09 0.7 1.1 0.1 Ns-5 2.00 1.93 70.88 9.38 0.72 0.5 0.6 0.2 Ns-6 2.03 1.97 60.08 8.01 0.52 0.5 1.0 0.0 Ns-7 2.08 1.96 64.99 8.78 0.71 0.5 0.5 0.0 Ns-8 4.19 1.89 79.31 10.69 2.27 1.0 1.5 0.1 Ns-9 2.86 1.87 81.17 11.42 1.30 0.8 0.8 0.3 Transvaal-1 Tr-1-1 1.14 1.89 34.51 33.68 0.08 0.3 7.3 0.1 Tr-1-2 1.23 1.95 30.07 33.13 0.14 0.4 7.7 0.0 Tr-1-3 1.30 1.96 32.25 33.56 0.12 0.3 6.7 0.1 Tr-1-4 1.13 1.90 24.49 32.52 0.19 0.4 7.3 0.6 Tr-1-4 1.67 1.86 23.72 32.25 0.05 0.4 7.4 0.2 Tr-1-5 1.03 1.91 33.40 34.37 0.02 0.3 7.3 0.2 Tr-1-6 1.35 1.88 32.96 34.81 0.05 0.4 7.0 0.3 Tr-1-7 1.24 1.88 34.02 34.56 0.02 0.4 6.9 0.1 Tr-1-8 1.46 1.91 31.95 34.56 0.06 0.4 7.0 0.0 Tr-1-9 1.42 1.98 50.46 35.93 0.09 0.4 6.6 0.3 Tr-1-10 1.32 1.86 32.40 33.44 0.07 0.4 7.0 0.2 Transvaal-2 Tr-2-1 2.40 1.91 35.92 44.03 0.18 0.6 10.2 0.2 Tr-2-2 2.82 1.90 31.17 42.10 0.11 0.7 10.0 0.1 Tr-2-3 2.29 1.86 33.40 42.81 0.09 0.7 9.1 0.1 Tr-2-4 3.23 1.92 28.51 41.78 0.08 0.8 9.5 0.0 Tr-2-4 3.45 1.94 28.52 41.46 0.09 1.0 9.2 0.2 Tr-2-5 3.18 1.94 45.53 49.54 0.22 0.9 9.8 0.0 -
[1] Allwood, A.C., Walter, M.R., Burch, I.W., et al., 2007.3.43 Billion-Year-Old Stromatolite Reef from the Pilbara Craton of Western Australia: Ecosystem-Scale Insights to Early Life on Earth. Precambrian Research, 158(3-4): 198-227. https://doi.org/10.1016/j.precamres.2007.04.013 [2] Berner, R.A., 1997. The Rise of Plants and Their Effect on Weathering and Atmospheric CO2. Science, 276(5312): 544-546. https://doi.org/10.1126/science.276.5312.544 [3] Bouchez, J., Gaillardet, J., von Blanckenburg, F., 2014. Weathering Intensity in Lowland River Basins: From the Andes to the Amazon Mouth. Procedia Earth and Planetary Science, 10: 280-286. https://doi.org/10.1016/j.proeps.2014.08.063 [4] Canfield, D.E., 2005. The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33(1): 1-36. https://doi.org/10.1146/annurev.earth.33.092203.122711 [5] Chan, L.H., Edmond, J.M., Thompson, G., et al., 1992. Lithium Isotopic Composition of Submarine Basalts: Implications for the Lithium Cycle in the Oceans. Earth and Planetary Science Letters, 108(1-3): 151-160. https://doi.org/10.1016/0012-821x(92)90067-6 doi: 10.1016/0012-821X(92)90067-6 [6] Chen, F., Zhu, X.Q., 1985. Evolution of Archean Seawater pH and Its Relationship with Mineralization. Acta Sedimentologica Sinica, 3(4): 4-18(in Chinese with English abstract). [7] Cohen, A.S., Coe, A.L., Harding, S.M., et al., 2004. Osmium Isotope Evidence for the Regulation of Atmospheric CO2 by Continental Weathering. Geology, 32(2): 157-160. https://doi.org/10.1130/g20158.1 doi: 10.1130/G20158.1 [8] Dellinger, M., Joshua, W.A., Paris, G., et al., 2018. The Li Isotope Composition of Marine Biogenic Carbonates: Patterns and Mechanisms. Geochimica et Cosmochimica Acta, 236: 315-335. https://doi.org/10.1016/j.gca.2018.03.014 [9] Evans, D.A., Beukes, N.J., Kirschvink, J.L., 1997. Low-Latitude Glaciation in the Palaeoproterozoic Era. Nature, 386: 262-266. https://doi.org/10.1038/386262a0 [10] Fang, Q., Hong, H.L., Zhao, L.L., et al., 2018. Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes. Earth Science, 43(3): 753-769(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201803009.htm [11] Frimmel, H.E., Groves, D.I., Kirk, J., et al., 2005. The Formation and Preservation of the Witwatersr and Goldfields, the World's Largest Gold Province. Society of Economic Geologists. 100: 769-797. https://doi.org/10.5382/av100.23 http://www.researchgate.net/publication/336543164_The_Formation_and_Preservation_of_the_Witwatersrand_Goldfields_the_World's_Largest_Gold_Province [12] Gou, L.F., Jin, Z.D., He, M.Y., 2017. Using Lithium Isotopes Traces Continental Weathering: Progresses and Challenges. Journal of Earth Environment, 8(2): 89-102(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQHJ201702001.htm [13] Gouldey, J.C., Saltzman, M.R., Young, S.A., et al., 2010. Strontium and Carbon Isotope Stratigraphy of the Llandovery (Early Silurian): Implications for Tectonics and Weathering. Palaeogeography, Palaeoclimatology, Palaeoecology, 296(3-4): 264-275. https://doi.org/10.1016/j.palaeo.2010.05.035 [14] Gumsley, A., Olsson, J., Söderlund, U., et al., 2015. Precise U-Pb Baddeleyite Age Dating of the Usushwana Complex, Southern Africa-Implications for the Mesoarchaean Magmatic and Sedimentological Evolution of the Pongola Supergroup, Kaapvaal Craton. Precambrian Research, 267: 174-185. https://doi.org/10.1016/j.precamres.2015.06.010 [15] Haqq-Misra, J.D., Domagal-Goldman, S.D., Kasting, P.J., et al., 2008. A Revised, Hazy Methane Greenhouse for the Archean Earth. Astrobiology, 8(6): 1127-1137. https://doi.org/10.1089/ast.2007.0197 [16] Hegner, E., Kröner, A., Hunt, P., 1994. A Precise U-Pb Zircon Age for the Archaean Pongola Supergroup Volcanics in Swaziland. Journal of African Earth Sciences, 18(4): 339-341. https://doi.org/10.1016/0899-5362(94)90072-8 [17] Hessler, A.M., Lowe, D.R., 2006. Weathering and Sediment Generation in the Archean: An Integrated Study of the Evolution of Siliciclastic Sedimentary Rocks of the 3.2 Ga Moodies Group, Barberton Greenstone Belt, South Africa. Precambrian Research, 151(3-4): 185-210. https://doi.org/10.1016/j.precamres.2006.08.008 [18] Huang, L.M., Shao, M.A., Jia, X.X., et al., 2016. A Review of the Methods and Controls of Soil Weathering Rates. Advances in Earth Science, 31(10): 1021-1031(in Chinese with English abstract). http://www.researchgate.net/publication/315830466_A_review_of_the_methods_and_controls_of_soil_weathering_rates [19] Li, D.Y., Xiao, Y.L., Wang, Y.Y., et al., 2019. Mg-Li-Fe-Cr Isotopic Fractionation during Subduction. Earth Science, 44(12): 4081-4085(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912016.htm [20] Li, G.J., West, A.J., 2014. Evolution of Cenozoic Seawater Lithium Isotopes: Coupling of Global Denudation Regime and Shifting Seawater Sinks. Earth and Planetary Science Letters, 401: 284-293. https://doi.org/10.1016/j.epsl.2014.06.011 [21] Lin, J., Liu, Y.S., Hu, Z.C., et al., 2019. Accurate Measurement of Lithium Isotopes in Eleven Carbonate Reference Materials by MC-ICP-MS with Soft Extraction Mode and 1012 Ω Resistor High-Gain Faraday Amplifiers. Geostandards and Geoanalytical Research, 43(2): 277-289. https://doi.org/10.1111/ggr.12260 [22] Luo, G.M., Ono, S., Beukes, N.J., et al., 2016. Rapid Oxygenation of Earth's Atmosphere 2.33 Billion Years Ago. Science Advances, 2(5): e1600134. https://doi.org/10.1126/sciadv.1600134 [23] Marriott, C.S., Henderson, G.M., Belshaw, N.S., et al., 2004a. Temperature Dependence of δ7Li, δ44Ca and Li/Ca during Growth of Calcium Carbonate. Earth and Planetary Science Letters, 222(2): 615-624. https://doi.org/10.1016/j.epsl.2004.02.031 [24] Marriott, C.S., Henderson, G.M., Crompton, R., et al., 2004b. Effect of Mineralogy, Salinity, and Temperature on Li/Ca and Li Isotope Composition of Calcium Carbonate. Chemical Geology, 212(1-2): 5-15. https://doi.org/10.1016/j.chemgeo.2004.08.002 [25] Misra, S., Froelich, P.N., 2012. Lithium Isotope History of Cenozoic Seawater: Changes in Silicate Weathering and Reverse Weathering. Science, 335(6070): 818-823. https://doi.org/10.1126/science.1214697 [26] Neaman, A., Chorover, J., Brantley, S.L., 2005. Element Mobility Patterns Record Organic Ligands in Soils on Early Earth. Geology, 33(2): 117. https://doi.org/10.1130/g20687.1 doi: 10.1130/G20687.1 [27] Rasmussen, B., Krapež, B., Muhling, J.R., et al., 2015. Precipitation of Iron Silicate Nanoparticles in Early Precambrian Oceans Marks Earth's First Iron Age. Geology, 43(4): 303-306. https://doi.org/10.1130/g36309.1 doi: 10.1130/G36309.1 [28] Robert, F., Chaussidon, M., 2006. A Palaeotemperature Curve for the Precambrian Oceans Based on Silicon Isotopes in Cherts. Nature, 443: 969-972. https://doi.org/10.1038/nature05239 [29] Rogers, J.J.W., Santosh, M., 2003. Supercontinents in Earth History. Gondwana Research, 6(3): 357-368. https://doi.org/10.1016/s1342-937x(05)70993-x doi: 10.1016/S1342-937X(05)70993-X [30] Rudnick, R.L., Tomascak, P.B., Njo, H.B., et al., 2004. Extreme Lithium Isotopic Fractionation during Continental Weathering Revealed in Saprolites from South Carolina. Chemical Geology, 212(1-2): 45-57. https://doi.org/10.1016/j.chemgeo.2004.08.008 [31] Siahi, M., Hofmann, A., Hegner, E., et al., 2016. Sedimentology and Facies Analysis of Mesoarchaean Stromatolitic Carbonate Rocks of the Pongola Supergroup, South Africa. Precambrian Research, 278: 244-264. https://doi.org/10.1016/j.precamres.2016.03.004 [32] Siever, R., 1992. The Silica Cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56(8): 3265-3272. https://doi.org/10.1016/0016-7037(92)90303-z doi: 10.1016/0016-7037(92)90303-Z [33] Soomer, S., Somelar, P., Mänd, K., et al., 2019. High-CO2, Acidic and Oxygen-Starved Weathering at the Fennoscandian Shield at the Archean-Proterozoic Transition. Precambrian Research, 327: 68-80. https://doi.org/10.1016/j.precamres.2019.03.001 [34] Sumner, D.Y., Beukes, N.J., 2006. Sequence Stratigraphic Development of the Neoarchean Transvaal Carbonate Platform, Kaapvaal Craton, South Africa. South African Journal of Geology, 109(1-2): 11-22. https://doi.org/10.2113/gssajg.109.1-2.11 [35] Sun, H., Gao, Y.J., Xiao, Y.L., et al., 2016. Lithium Isotope Fractionation during Incongruent Melting: Constraints from Post-Collisional Leucogranite and Residual Enclaves from Bengbu Uplift, China. Chemical Geology, 439: 71-82. https://doi.org/10.1016/j.chemgeo.2016.06.004 [36] Sun, H., Xiao, Y.L., Gao, Y.J., et al., 2018. Rapid Enhancement of Chemical Weathering Recorded by Extremely Light Seawater Lithium Isotopes at the Permian-Triassic Boundary. Proceedings of the National Academy of Sciences, 115(15): 3782-3787. https://doi.org/10.1073/pnas.1711862115 [37] Taylor, H.L., Duivestein, I.J.K., Farkas, J., et al., 2019. Technical Note: Lithium Isotopes in Dolostone as a Palaeo-Environmental Proxy: An Experimental Approach. Climate of the Past Discussions, 15(2): 635-646. https://doi.org/10.5194/cp-15-635-2019 [38] Teng, F.Z., McDonough, W.F., Rudnick, R.L., et al., 2004. Lithium Isotopic Composition and Concentration of the Upper Continental Crust. Geochimica et Cosmochimica Acta, 68(20): 4167-4178. https://doi.org/10.1016/j.gca.2004.03.031 [39] Tomascak, P.B., 2004. Developments in the Understanding and Application of Lithium Isotopes in the Earth and Planetary Sciences. Reviews in Mineralogy and Geochemistry, 55(1): 153-195. https://doi.org/10.2138/gsrmg.55.1.153 [40] Ushikubo, T., Kita, N.T., Cavosie, A.J., et al., 2008. Lithium in Jack Hills Zircons: Evidence for Extensive Weathering of Earth's Earliest Crust. Earth and Planetary Science Letters, 272(3-4): 666-676. https://doi.org/10.1016/j.epsl.2008.05.032 [41] von Strandmann, P.A.E.P., Desrochers, A., Murphy, M.J., et al., 2017. Global Climate Stabilisation by Chemical Weathering during the Hirnantian Glaciation. Geochemical Perspectives Letters, 3: 230-237. https://doi.org/10.7185/geochemlet.172 http://ora.ox.ac.uk/objects/uuid:93c031fb-e00b-4ac5-b3a6-4323e9f75f42 [42] von Strandmann, P.A.E.P., Jenkyns, H.C., Woodfine, R.G., 2013. Lithium Isotope Evidence for Enhanced Weathering during Oceanic Anoxic Event 2. Nature Geoscience, 6(8): 668-672. https://doi.org/10.1038/ngeo1875 [43] Wang, Q.L., Zhao, Z.Q., Liu, C.Q., et al., 2008. Progress in Geochemical Research of Lithium Isotope during Continental Weathering. Earth Science Frontiers, 15(6): 332-337(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DXQY200806042.htm [44] Zahnle, K., Claire, M., Catling, D., 2006. The Loss of Mass-Independent Fractionation in Sulfur Due to a Palaeoproterozoic Collapse of Atmospheric Methane. Geobiology, 4(4): 271-283. https://doi.org/10.1111/j.1472-4669.2006.00085.x [45] 陈福, 朱笑青, 1985. 太古代海水pH值的演化及其和成矿作用的关系. 沉积学报, 3(4): 4-18. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB198504000.htm [46] 方谦, 洪汉烈, 赵璐璐, 等, 2018. 风化成土过程中自生矿物的气候指示意义. 地球科学, 43(3): 753-769. doi: 10.3799/dqkx.2018.905 [47] 苟龙飞, 金章东, 贺茂勇, 2017. 锂同位素示踪大陆风化: 进展与挑战. 地球环境学报, 8(2): 89-102. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHJ201702001.htm [48] 黄来明, 邵明安, 贾小旭, 等, 2016. 土壤风化速率测定方法及其影响因素研究进展. 地球科学进展, 31(10): 1021-1031. doi: 10.11867/j.issn.1001-8166.2016.10.1021 [49] 李东永, 肖益林, 王洋洋, 等, 2019. 板块俯冲过程中的Mg-Li-Fe-Cr同位素分馏. 地球科学, 44(12): 4081-4085. doi: 10.3799/dqkx.2019.255 [50] 汪齐连, 赵志琦, 刘丛强, 等, 2008. 大陆风化过程的锂同位素地球化学研究进展. 地学前缘, 15(6): 332-337. doi: 10.3321/j.issn:1005-2321.2008.06.039