Geochemical Characteristics and Metallogenic Significance of Lower Permian Shuangqiaozi Formation in Taiping Mountains, Heilongjiang Province
-
摘要: 太平岭成矿带是黑龙江省重要的铜金多金属成矿带,矿床类型主要为中温热液脉型,也发育斑岩型、浅成低温热液型和岩浆熔离型.区内广泛发育的下二叠统双桥子组(P1s)由泥质岩、粉砂岩及砂岩夹多层中酸性火山岩等组成.地层中Au、P、Fe等元素含量较高,近年来,在东宁县及穆棱市境内相继发现了陆角岭、五道沟-二十三公里等小型金矿床,金矿体均呈脉状产于P1s中,但品位较低,直接影响到下一步找矿决策.在野外调查的基础上,利用岩石地球化学、X射线粉晶衍射以及有机碳分析等手段,对该地层岩石类型、沉积物源以及Au等成矿元素来源进行了分析,结果表明:岩石主量元素含量稳定,与PAAS相比,轻度亏损Al2O3、P2O5、CaO和MnO2,中度亏损Na2O、MgO、TiO2和Fe2O3;微量元素除了Zn外,其他元素含量都较低;稀土元素总量与北美页岩相当,轻重稀土元素分异略低于北美页岩;主要矿物为粘土矿物(伊利石、绿泥石)和石英,另有不等量的钠长石、少量的碳酸盐矿物和黄铁矿,岩石TOC含量为0.22%~2.52%,平均值为1.10%;岩石中Au的含量与TOC和粘土矿物含量之间没有相关性.认为区内P1s为碳质砂板岩,沉积物主要来源于石英质沉积岩的风化产物,少量来源于镁铁质和长英质火成岩,沉积于近岸环境,地层中高含量的金并不是成岩之后由流体携带而来并被岩石中富含的有机物或粘土矿物所吸附,而是同样来源于陆源风化产物,指示该区产于P1s中的金矿并非层控型金矿床,而是受断层控制的热液脉型金矿床.Abstract: The metallogenic belt in the Taiping Mountains is one of the most important copper-gold polymetallic metallogenic belts in Heilongjiang Province,in which mesothermal hydrothermal vein dominates,followed by porphyry,epithermal and magmatic type deposits. The Lower Permian Shuangqiaozi Formation (P1s) is widely developed in this region,and is composed of pelite,siltstone,and sandstone,with multiple layers of intermediate-felsic volcanic rocks. The contents of Au,P,and Fe are relatively high in this stratum. In recent years,small scale gold deposits such as Lujiaoling,Wudaogou-23 Gongli have been found in Dongning County and Muleng City. The gold ore bodies are developed in P1s as veins,but the grade of gold is low,which directly affects the next step of exploration. Based on field investigations,in this paper it uses rock geochemistry,X-ray powder diffraction,and organic carbon analysis to determine the rock types,sedimentary sources,and sources of ore-forming elements such as Au. The contents of major elements display small variations. Compared with PAAS,the rocks are slightly depleted in Al2O3,P2O5,CaO,and MnO2,and moderately depleted in Na2O,MgO,TiO2,and Fe2O3. All trace elements except Zn yield lower contents. The total amount of rare earth elements is equivalent to that of North American shale,and the differentiation of light and heavy rare earth elements is slightly lower than that of North American shale. The rocks are dominated by clay minerals (illite,chlorite) and quartz,with various amounts of albite and minor carbonate minerals and pyrite. The TOC contents of the rock range from 0.22% to 2.52%,with an average of 1.10%. There is no correlation between the contents of Au and TOC and clay minerals. It is suggested that P1s in the area is composed of carbonaceous slate,and the sediments were mainly derived from the weathering products of quartzose sedimentary rocks,with a small amount derived from femic igneous rocks. The deposition environment is near-shore. The high contents of gold in the stratum were not brought by the fluids after diagenesis and adsorbed by the rich organic compounds or clay minerals,but derived from terrigenous weathering products. This indicates that the gold deposits developed in P1s in this area are not stratabound gold deposits,but hydrothermal vein type deposits controlled by faults.
-
图 1 东北地区区域地质图
据黑龙江省地质调查研究总院,2007.黑龙江1∶25万牡丹江市、绥芬河市幅区调报告.1.船底山组;2.富锦组;3.宝泉灵组;4.海浪组;5.松木河组西格木段;6.猴石沟组;7.东山组;8.城子河组;9.绥芬河组;10.罗圈站组;11.南村组;12.俯冲增生杂岩;13.红山组;14.高压‒超高压变质带;15.杨木岩组;16.洞子沟组;17.亮子川组;18.双桥子组;19.红叶桥组;20.平阳镇组;21.早白垩世花岗斑岩;22.早白垩世石英闪长岩;23.晚三叠世‒早侏罗世花岗斑岩;24.晚三叠世‒早侏罗世二长花岗岩;25.晚三叠世‒早侏罗世正长花岗岩;26.晚三叠世‒早侏罗世花岗闪长岩;27.晚三叠世‒早侏罗世石英闪长岩;28.晚三叠世‒早侏罗世闪长岩;29.地堑构造;30.地质界线;31.实测、推测断层;32.岩相界线;33.角度不整合界线;34.韧性剪切带;35.金矿;36.铜矿
Fig. 1. Regional geological map of Northeast China
图 6 双桥子组碳质板岩稀土元素北美页岩标准化配分模式
NASC数据来源于Haskin et al.(1968)
Fig. 6. PAAS-normalized REE patterns of carbonaceous slate for the study samples
图 10 碳质板岩lg(SiO2/Al2O3)-lg((CaO+Na2O)/K2O)图解
Fig. 10. Bivariate lg(SiO2/Al2O3) versus lg((CaO+Na2O)/K2O) sedimentary environment discrimination diagram
图 11 碳质板岩SiO2-Al2O3图解
Fig. 11. Bivariate SiO2 versus Al2O3 sedimentary environment discrimination diagram
表 1 研究区双桥子组(P1s)碳质板岩有机碳(TOC)含量分析
Table 1. The analytic data of total organic carbon (TOC) for the study samples
样品号 TOC(%) 样品号 TOC(%) 样品号 TOC(%) 样品号 TOC(%) EZK7201-3-1 0.45 WZK0902-1-30 0.58 EZK7401-2-2 1.88 LZK110-3-2-6 0.87 EZK7201-3-2 0.37 WZK0902-1-31 0.48 EZK7401-2-3 1.25 LZK110-3-2-7 0.62 EZK7201-3-3 0.98 WZK0902-1-33 0.95 EZK7401-2-4 1.05 LZK110-3-2-8 0.96 EZK7201-3-4 0.91 WZK0902-1-35 0.55 EZK7401-2-5 1.26 LZK110-3-2-9 1.49 EZK7201-4-1 1.16 WZK0902-1-37 1.01 EZK7401-2-6 2.07 LZK110-3-2-10 1.12 EZK7201-4-2 1.97 WZK0902-1-39 2.00 EZK7401-2-7 1.36 LZK110-3-2-11 1.14 EZK7201-4-3 1.27 WZK0902-1-41 1.88 EZK7401-2-8 1.71 LZK110-3-2-12 2.50 EZK7201-4-4 0.57 WZK0902-1-43 1.15 EZK7401-2-9 2.00 LZK110-3-2-13 1.93 EZK7502-2-2 0.62 WZK0902-1-44 0.93 WZK0902-1-1 0.44 LZK110-3-2-14 1.12 EZK7502-2-3 1.19 WZK0902-1-46 1.51 WZK0902-1-3 0.74 LZK110-3-2-15 1.56 EZK7502-2-4 0.43 WZK0902-1-47 2.36 WZK0902-1-4 0.60 LZK110-3-2-16 1.44 EZK7502-2-6 0.72 WZK0902-1-49 1.15 WZK0902-1-5 0.63 LZK110-3-2-17 0.80 EZK7502-2-7 0.25 WZK0902-1-51 1.08 WZK0902-1-7 1.16 LZK110-3-2-18 1.38 EZK7502-2-8 0.30 WZK0902-1-53 2.26 WZK0902-1-8 0.22 LZK110-3-2-19 1.07 EZK7502-2-10 0.79 WZK0902-1-54 1.41 WZK0902-1-9 0.35 LZK110-3-2-20 1.12 EZK7502-2-11 1.01 WZK0902-1-55 2.52 WZK0902-1-11 0.73 LZK110-3-2-21 0.83 EZK7502-2-13 0.32 WZK0902-1-57 2.31 WZK0902-1-14 0.35 LZK110-3-2-22 1.27 EZK7502-2-14 0.99 WZK0902-1-59 1.88 WZK0902-1-15 0.72 LZK110-3-2-23 1.05 EZK7502-2-15 0.30 WZK0902-1-60 1.61 WZK0902-1-17 0.71 LZK110-3-2-24 1.44 EZK7502-2-16 0.53 WZK0902-1-62 0.93 WZK0902-1-19 0.84 LZK110-3-2-26 1.73 EZK7502-2-17 0.61 LZK110-3-2-1 0.95 WZK0902-1-20 0.33 LZK110-3-2-27 1.46 EZK7502-2-18 0.45 LZK110-3-2-2 0.98 WZK0902-1-22 0.90 LZK110-3-2-28 1.26 EZK7502-2-19 1.35 LZK110-3-2-3 1.10 WZK0902-1-24 1.60 LZK110-3-2-29 1.17 EZK7502-2-20 1.55 LZK110-3-2-4 1.09 WZK0902-1-26 1.13 LZK110-3-2-30 1.22 EZK7502-2-21 1.30 LZK110-3-2-5 0.83 WZK0902-1-28 1.37 LZK110-3-2-31 0.62 EZK7502-2-22 1.32 EZK7401-2-1 0.85 表 2 双桥子组碳质板岩粉晶衍射分析结果(%)
Table 2. The analytic data of powder diffraction for the study samples (%)
样品编号 伊利石 绿泥石 石英 钾长石 钠长石 白云石 方解石 黄铁矿 样品编号 伊利石 绿泥石 石英 钾长石 钠长石 白云石 方解石 黄铁矿 EZK7201-3-3 44 15 34 3 3 1 LZK110-3-2-30 44 25 28 3 EZK7201-3-4 43 21 32 3 1 LZK110-3-2-31 52 6 38 4 EZK7201-4-3 44 16 32 7 1 WZK0902-1-4 42 29 24 5 EZK7201-4-4 45 11 38 5 1 WZK0902-1-5 49 5 37 7 1 1 EZK7401-2-1 51 14 31 2 1 1 WZK0902-1-7 42 8 40 9 1 EZK7401-2-2 51 20 27 2 WZK0902-1-8 35 7 46 3 8 1 EZK7401-2-3 41 19 33 6 1 WZK0902-1-9 30 7 40 21 1 1 EZK7401-2-4 43 23 31 2 1 WZK0902-1-14 34 9 41 15 1 EZK7401-2-7 37 26 32 5 WZK0902-1-15 48 2 38 11 1 EZK7401-2-8 38 25 31 6 WZK0902-1-17 55 9 30 5 1 EZK7502-2-8 35 14 41 1 8 1 WZK0902-1-19 55 9 32 4 EZK7502-2-14 53 14 28 3 1 1 WZK0902-1-20 39 13 37 10 1 EZK7502-2-17 22 9 52 15 1 1 WZK0902-1-30 53 9 34 3 1 EZK7502-2-20 44 12 37 5 1 1 WZK0902-1-31 45 8 35 11 1 EZK7502-2-21 44 6 41 7 1 1 WZK0902-1-39 68 4 19 7 1 1 EZK7502-2-22 46 23 26 4 1 WZK0902-1-43 53 8 32 6 1 LZK110-3-2-2 42 12 42 4 WZK0902-1-44 49 4 39 7 1 LZK110-3-2-3 57 11 29 3 WZK0902-1-47 36 26 21 16 1 LZK110-3-2-4 40 15 41 4 WZK0902-1-53 39 36 17 1 7 LZK110-3-2-5 50 18 28 4 WZK0902-1-54 40 28 20 12 LZK110-3-2-6 50 17 30 3 WZK0902-1-55 55 17 14 13 1 LZK110-3-2-28 32 25 38 4 1 WZK0902-1-60 37 27 23 1 11 1 LZK110-3-2-29 51 9 33 6 1 WZK0902-1-62 40 35 20 1 3 1 表 3 碳质板岩成矿元素含量分析结果
Table 3. The analytic data of ore-forming elements for the study samples
样号 Ag Mo As Sb Bi Hg Au 样号 Ag Mo As Sb Bi Hg Au μg/g ng/g μg/g ng/g EZK7201-3-1 0.27 1.35 44.42 8.36 0.12 0.02 4.83 WZK0902-1-28 0.20 1.03 56.45 2.99 0.90 0.01 3.54 EZK7201-3-2 0.19 1.06 73.16 6.32 0.21 0.01 21.59 WZK0902-1-30 0.15 1.39 165.82 2.53 0.41 0.01 21.62 EZK7201-3-3 0.25 2.30 50.95 5.84 0.23 0.02 2.54 WZK0902-1-31 0.09 2.60 608.46 3.33 0.34 0.01 92.26 EZK7201-3-4 0.23 2.72 71.52 5.90 0.43 0.01 2.14 WZK0902-1-33 0.12 1.44 49.82 2.11 0.53 0.01 20.19 EZK7201-4-1 0.60 0.95 647.35 13.00 0.52 0.02 598.70 WZK0902-1-35 0.14 2.48 87.15 2.18 0.24 0.01 5.36 EZK7201-4-2 0.26 1.04 199.63 9.07 0.18 0.01 189.30 WZK0902-1-37 0.13 1.66 37.79 1.72 0.54 0.01 2.47 EZK7201-4-3 0.36 0.83 160.22 6.66 0.11 0.01 35.91 WZK0902-1-39 0.99 1.93 2 516.32 20.56 0.44 0.03 2 203.00 EZK7201-4-4 0.04 0.33 9.11 0.89 0.03 0.01 0.52 WZK0902-1-41 0.57 1.69 1 185.75 6.72 0.26 0.03 118.90 EZK7502-2-2 0.21 2.07 83.91 6.47 0.49 0.02 9.72 WZK0902-1-43 0.40 2.07 445.77 6.07 0.37 0.01 225.90 EZK7502-2-3 0.10 1.10 28.82 3.10 0.43 0.01 1.11 WZK0902-1-44 0.39 1.47 1 776.95 6.62 0.18 0.01 762.90 EZK7502-2-4 0.09 0.70 28.80 3.85 0.42 0.01 1.90 WZK0902-1-46 0.14 1.28 200.34 1.46 0.30 0.01 10.27 EZK7502-2-6 0.57 1.23 145.05 16.26 0.45 0.04 27.78 WZK0902-1-47 0.07 0.95 42.53 1.76 0.26 0.00 0.95 EZK7502-2-7 0.09 0.38 26.97 2.23 0.17 0.00 1.35 WZK0902-1-49 0.21 1.34 891.08 9.01 0.93 0.01 36.78 EZK7502-2-8 0.21 0.94 34.94 4.89 0.51 0.01 5.76 WZK0902-1-51 0.13 1.43 1 293.40 3.87 0.24 0.01 15.19 EZK7502-2-10 0.27 1.42 44.45 7.83 0.53 0.01 4.71 WZK0902-1-53 0.13 1.10 43.49 0.87 0.21 0.00 0.79 EZK7502-2-11 0.10 1.24 36.88 12.87 0.57 0.01 3.93 WZK0902-1-54 0.12 1.38 169.33 1.62 0.53 0.01 12.94 EZK7502-2-13 0.10 0.50 28.92 9.37 0.20 0.00 6.76 WZK0902-1-55 0.25 1.55 183.13 5.25 0.41 0.01 3.67 EZK7502-2-14 0.38 0.77 65.34 11.57 0.46 0.01 23.76 WZK0902-1-57 0.09 1.37 194.29 2.92 0.24 0.00 3.85 EZK7502-2-15 0.88 1.02 3 913.41 75.91 0.29 0.02 2 911.00 WZK0902-1-59 0.11 1.44 752.12 1.73 0.39 0.00 3.64 EZK7502-2-16 0.66 0.89 1 697.05 67.02 0.33 0.02 725.30 WZK0902-1-60 0.10 1.13 144.71 0.41 0.14 0.00 1.70 EZK7502-2-17 0.52 1.30 699.60 24.73 0.20 0.02 202.40 WZK0902-1-62 0.33 0.69 26.89 1.87 0.58 0.01 2.84 EZK7502-2-18 0.07 0.81 212.15 0.99 0.10 0.01 3.70 LZK110-3-2-1 0.06 1.45 28.22 1.11 0.26 0.01 2.44 EZK7502-2-19 0.35 1.09 801.85 27.78 0.61 0.02 232.20 LZK110-3-2-2 0.04 0.92 35.40 0.61 0.14 0.01 3.41 EZK7502-2-20 0.15 0.68 40.42 7.19 0.19 0.01 9.70 LZK110-3-2-3 0.06 0.80 61.56 1.08 0.27 0.02 2.05 EZK7502-2-21 0.17 0.67 119.12 2.99 0.21 0.01 44.14 LZK110-3-2-4 0.05 0.83 80.79 1.00 0.33 0.02 7.90 EZK7502-2-22 0.18 1.38 161.79 8.98 0.58 0.10 3.39 LZK110-3-2-5 0.05 1.17 53.80 1.12 0.42 0.01 1.71 EZK7401-2-1 0.73 1.01 119.56 5.16 0.49 0.01 341.10 LZK110-3-2-6 0.04 2.37 26.48 0.56 0.56 0.01 1.23 EZK7401-2-2 0.18 0.86 76.16 6.61 0.25 0.01 8.07 LZK110-3-2-7 0.06 0.65 43.78 1.06 0.41 0.02 1.92 EZK7401-2-3 0.37 1.45 75.42 10.21 0.59 0.01 44.48 LZK110-3-2-8 0.04 1.24 52.39 0.31 0.18 0.01 1.52 EZK7401-2-4 0.11 0.80 99.17 6.97 0.21 0.01 99.79 LZK110-3-2-9 0.19 0.89 48.18 0.49 0.42 0.01 0.77 EZK7401-2-5 0.79 1.26 805.07 16.28 0.41 0.02 160.90 LZK110-3-2-10 0.07 0.56 35.08 0.46 0.20 0.01 0.74 EZK7401-2-6 0.18 0.96 96.03 3.35 0.25 0.02 9.00 LZK110-3-2-11 0.11 1.78 39.13 0.56 0.26 0.01 1.49 EZK7401-2-7 0.17 0.56 151.48 3.90 0.36 0.02 51.30 LZK110-3-2-12 0.31 1.61 18.39 0.35 2.16 0.01 1.64 EZK7401-2-8 0.26 1.02 26.11 2.01 0.49 0.01 1.90 LZK110-3-2-13 0.08 1.35 53.62 0.26 0.24 0.01 0.84 EZK7401-2-9 0.19 0.73 39.41 0.61 0.25 0.01 4.90 LZK110-3-2-14 0.05 1.25 45.52 0.40 0.13 0.01 3.53 WZK0902-1-1 0.18 0.59 1 161.85 6.11 0.52 0.01 177.40 LZK110-3-2-15 0.05 1.61 55.34 0.58 0.16 0.02 0.97 WZK0902-1-3 0.04 1.41 23.66 1.73 0.27 0.01 1.60 LZK110-3-2-16 0.06 1.37 36.56 0.43 0.16 0.01 0.69 WZK0902-1-4 0.26 0.73 198.32 2.42 1.19 0.01 9.66 LZK110-3-2-17 0.17 1.07 57.77 0.79 0.31 0.01 1.09 WZK0902-1-5 0.66 1.43 2 644.91 20.38 0.38 0.04 1 262.00 LZK110-3-2-18 0.04 0.89 32.49 0.39 0.13 0.01 0.48 WZK0902-1-7 0.42 1.47 1 205.04 11.49 0.35 0.02 271.40 LZK110-3-2-19 0.12 0.94 56.06 0.50 0.25 0.01 1.01 WZK0902-1-8 0.43 0.71 2 195.58 15.78 0.32 0.02 433.50 LZK110-3-2-20 0.07 1.37 31.22 0.39 0.12 0.01 0.44 WZK0902-1-9 0.36 3.16 1 698.57 10.46 0.38 0.02 211.00 LZK110-3-2-21 0.28 0.53 40.47 0.94 0.62 0.03 3.36 WZK0902-1-11 0.14 1.12 56.80 1.99 0.35 0.01 10.52 LZK110-3-2-22 0.06 0.89 43.16 0.43 0.25 0.00 4.70 WZK0902-1-14 0.10 0.80 33.95 1.90 0.36 0.01 4.00 LZK110-3-2-23 0.22 2.28 109.87 1.06 0.69 0.02 5.79 WZK0902-1-15 0.41 1.87 2 424.06 20.33 0.29 0.03 658.10 LZK110-3-2-24 0.10 1.03 79.72 0.67 0.32 0.01 1.40 WZK0902-1-17 0.25 1.41 943.60 5.88 0.47 0.01 107.60 LZK110-3-2-26 0.14 1.06 73.15 0.78 0.33 0.01 1.55 WZK0902-1-19 0.17 1.28 1 401.50 6.68 0.43 0.01 154.50 LZK110-3-2-27 1.05 1.05 44.08 0.55 1.26 0.02 0.71 WZK0902-1-20 0.13 0.99 64.59 2.44 0.35 0.01 12.90 LZK110-3-2-28 0.26 1.01 54.75 0.73 0.56 0.01 0.71 WZK0902-1-22 0.16 1.86 79.13 3.52 0.56 0.01 23.01 LZK110-3-2-29 0.25 2.16 56.51 1.82 0.63 0.01 8.02 WZK0902-1-24 0.13 1.31 76.62 2.18 0.53 0.01 26.65 LZK110-3-2-30 0.40 0.67 59.27 0.54 0.97 0.01 2.99 WZK0902-1-26 0.18 2.42 63.47 1.88 0.70 0.01 6.15 LZK110-3-2-31 0.10 1.26 45.30 0.36 0.33 0.01 2.65 表 4 碳质板岩成矿元素相关系数矩阵
Table 4. Correlation coefficient matrix of ore-forming elements for the study samples
Ag Mo As Sb Bi Hg Au Ag 1 Mo 0.06 1 As 0.59 0.15 1 Sb 0.60 -0.01 0.72 1 Bi 0.26 0.10 -0.06 -0.05 1 Hg 0.33 0.10 0.27 0.25 0.10 1 Au 0.64 0.06 0.84 0.75 -0.05 0.24 1 表 5 碳质板岩化学成分特征参数对比
Table 5. Characteristic of element concentration ratios of carbonaceous slate for the study samples
指标 特征区间及相应指示意义 矿区 五道沟 陆角岭 二十三公里 Al/(Al+Fe+Mn) < 0.35,存在热水的注入 > 0.5,来自陆源 0.66~0.78,平均值为0.71 0.55~0.83,平均值为0.72 0.67~0.79,平均值为0.72 SiO2/Al2O3 ≤3.6,完全由陆源提供 > 3.6,生物或热水作用的补充 2.14~4.88,平均值为3.68 2.71~6.61,平均值为3.73 3.71~5.85,平均值为4.55 Si/(Si+Al+Fe) < 0.9,更接近碎屑物源区 0.9~1,主要物源为生物硅 0.56~0.76,平均值为0.69 0.64~0.76,平均值为0.70 0.70~0.79,平均值为0.74 Al2O3/(Al2O3+Fe2O3) 0.1~0.4,洋脊海岭环境 0.4~0.7,远洋深海环境 0.75~0.94,平均值为0.86 0.78~0.95,平均值为0.85 0.75~0.94,平均值为0.86 0.83~0.97,平均值为0.91 MnO/TiO2 < 0.2,近岸浅海陆架内 > 0.5,靠近海沟和深海环境中 0~0.29,平均值为0.12 0.06~0.42,平均值为0.15 0.04~0.77,平均值为0.16 -
[1] Akarish, A.I.M., El-Gohary, A.M., 2008. Petrography and Geochemistry of Lower Paleozoic Sandstones, East Sinai, Egypt: Implications for Provenance and Tectonic Setting. Journal of African Earth Sciences, 52: 43-54. doi: 10.1016/j.jafrearsci.2008.04.002 [2] Alvarez, N.O., Roser, B.P., 2007. Geochemistry of Black Shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia: Source Weathering, Provenance and Tectonic Setting. Journal of South American Earth Sciences, 23 (4): 271-289. doi: 10.1016/j.jsames.2007.02.003 [3] Bau, M., 1996. Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems: Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect. Contribution to Mineralogy and Petrology, 123: 323-333. https://doi.org/10.1007/s004100050159. [4] Brownlw, E.C., 1979. Geochemisty. Prentie-Hal, New Jersey. [5] Cullers, R.L., 2000. The Geochemistry of Shales, Siltstones and Sandstones of Pennsylvanian-Permian Age, Colorado, USA: Implications for Provenance and Metamorphic Studies. Lithos, 51: 181-203. doi: 10.1016/S0024-4937(99)00063-8 [6] Dey, S., Rai, A.K., Chaki, A., 2009. Palaeoweathering, Composition and Tectonics of Provenance of the Proterozoic Intracratonic Kaladgi-Badami Basin, Karnataka, Southern India: Evidence from Sandstone Petrography and Geochemistry. Journal of Asian Earth Sciences, 34 (6): 703-715. doi: 10.1016/j.jseaes.2008.10.003 [7] Disnar, J.R., Sureau, J.F., 1990. Organic Matter in Ore Genesis: Progress and Perspectives. Organic Geochemistry, 16(1-3): 577-599. doi: 10.1016/0146-6380(90)90072-8 [8] Fang, Y., He, M.C., Ding, Z.J., et al., 2020. Ore- Forming Fluid Characteristics and Genesis of the Wudaogou Gold Deposit in Dongning County, Heilongjiang Province. Geoscience, 34(2): 254-265 (in Chinese with English abstract). [9] Floyd, P.A., Winchesrer, J.A., Park, R.G., 1989. Geochemistry and Tectonic Setting of Lewisian Clastic Metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research, 45(1-3): 203-214. doi: 10.1016/0301-9268(89)90040-5 [10] Fralick, P.W., Kronberg, B.I., 1997. Geochemical Discrimination of Clastic Sedimentary Rock Sources. Sedimentary Geology, 113: 111-124. doi: 10.1016/S0037-0738(97)00049-3 [11] Haskin, L.A., Haskin, M.A., Frey, F.A., et al., 1968. Relative and Absolute Terrestrial Abundances of the Rare Earth Elements. Pergamon Press Ltd., Oxford. [12] He, Y.S., Gao, F.H., Xiu, M., 2019. Age, Provenance and Tectonic Setting of Fuxingtun Formation in Zhangguangcai Range. Earth Science, 44(10): 3223-3236 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201910005.htm [13] Jiang, S. Y., Chen, Y. Q., Ling, H. F., et al., 2006. Trace- and Rare-Earth Element Geochemistry and Pb-Pb Dating of Black Shales and Intercalated Ni-Mo-PGE-Au Sulfide Ores in Lower Cambrian Strata, Yangtze Platform, South China. Mineralium Deposita, 41(5): 453-467. https://doi.org/10.1007/s00126-006-0066-6 [14] Kalsbeek, F., Frei, R., 2010. Geochemistry of Precambrian Sedimentary Rocks Used to Solve Stratigraphical Problem: An Example from the Neoproterozoic Volta Basin, Ghana. Precambrian Research, 176: 65-76. doi: 10.1016/j.precamres.2009.10.004 [15] Li, S.R., Gao, Z.M., 1996. Silicalite of Hydrothermal Origin in Lower Cambrian Black Rock Series of South China. Acta Mineralogica Sinica, 16(4): 416-422 (in Chinese with English abstract). [16] Liu, J.J., Liu, Z.J., Yang, Y., et al., 2007. Research on the Organic Geochemistry and Biomarkers of the Large-Scale Barium Metallogenic Belt in the Southern Qinling Mountains, China. J. Mineral Petrol., 27(3): 39-48 (in Chinese with English abstract). [17] Manikyamba, C., Kerrich, R., González-Álvarez, I., et al., 2008. Geochemistry of Paleoproterozoic Black Shales from the Intracontinental Cuddapah Basin, India: Implications for Provenance, Tectonic Setting, and Weathering Intensity. Precambrian Research, 162(3-4): 424-440. doi: 10.1016/j.precamres.2007.10.003 [18] McLennan, S.M., Hemming, S., Mcdaniel, D.K., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. Geological Society America Special Paper, 284: 21-40. http://www.nrcresearchpress.com/servlet/linkout?suffix=refg76/ref76&dbid=16&doi=10.1139%2Fcjes-2013-0144&key=10.1130%2FSPE284-p21 [19] Meng, E., Xu, W.L., Pei, F.P., et al., 2010. Detrital- Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt. Tectonophysics, 485: 42-51. doi: 10.1016/j.tecto.2009.11.015 [20] Mishra, M., Sen, S., 2010. Geological Signatures of Mesoproterozoic Siliciclastic Rocks of the Kaimur Group of the Vindhyan Supergroup, Central India. Chin. J. Geochem., 20: 21-32. http://www.ingentaconnect.com/content/ssam/10009426/2010/00000029/00000001/art00003 [21] Moosavirad, S.M., Janardhana, M.R., Sethumadhav, M.S., 2011. Geochemistry of Lower Jurassic Shales of the Shemshak Formation, Kerman Province, Central Iran: Provenance, Source Weathering and Tectonic Setting. Chemie der Erde, 71: 279-288. doi: 10.1016/j.chemer.2010.10.001 [22] Paikaray, S., Banerjee, S., Mukherji, S., 2008. Geochemistry of Shales from Palaeoproterozoic to Neoproterozoic Vindhyan Supergroup: Implications on Provenance, Tectonics and Paleoweathering. Journal of Asian Earth Sciences, 32: 34-48. doi: 10.1016/j.jseaes.2007.10.002 [23] Ren, J.S., Niu, B.G., Liu, Z.G., 1999. Soft Collision, Superposition Orogeny and Polycyclic Suturing. Earth Science Frontiers, 6(3): 85-93 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY199903010.htm [24] Roser, B.P., Korsch, R.J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. Geology, 94: 635-650. doi: 10.1086/629071 [25] Roser, B.P., Korsch, R.J., 1988. Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology, 67: 119-139. doi: 10.1016/0009-2541(88)90010-1 [26] Sengör, A.M.C., Natal'in, B.A., Burtman, V.S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364: 299-307. https://doi.org/10.1038/364299a0 [27] Spalletti, L.A., Queralt, I., Matheos, S.D., 2008. Sedimentary Petrology and Geochemistry of Siliciclastic Rocks from the Upper Jurassic Tordillo Formation (Neuquen Basin, Western Argentina): Implications for Provenance and Tectonic Setting. Journal of South American Earth Sciences, 25: 440-463. doi: 10.1016/j.jsames.2007.08.005 [28] Tang, K.D., Wang, Y., He, G.Q., et al., 1995. Continental-Margin Structure of Northeast China and Its Adjacent Areas. Acta Geologica Sinica, 69(1): 16-30 (in Chinese with English abstract). [29] Wang, H., Ling, W.L., Duan, R.C., et al., 2012. Os Isotopic Geochemistry of Neoproterozoic-Cambrian Black Shales in Eastern Three Gorges of Yangtze Craton and Its Geological Significance. Earth Science, 37(3): 451-461 (in Chinese with English abstract). [30] Wang, P.W., Chen, Z.H., Jin, Z.J., et al., 2019. Optimizing Parameter"Total Organic Carbon Content"for Shale Oil and Gas Resource Assesment: Taking West Canada Sedimentary Basin Devonian Duvernay Shale as an Example. Earth Science, 44(2): 504-512 (in Chinese with English abstract). [31] Wilde, S.A., Wu, F.Y., Zhang, X.Z., 2003. Late Pan- African Magmatism in Northeastern China: SHRIMP U-Pb Zircon Evidence for Igneous Ages from the Mashan Complex. Precambrian Research, 122: 311-327. doi: 10.1016/S0301-9268(02)00217-6 [32] Wu, F.Y., Yang, J.H., Lo, C.H., et al., 2007. The Heilongjiang Group: A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China. The Island Arc, 16(1): 156-172. doi: 10.1111/j.1440-1738.2007.00564.x [33] Xie, H.Q., Miao, L.C., Chen, F.K., et al., 2008a. Characteristics of the "Mashan Group" and Zircon SHRIMP U-Pb Dating of Granite in Muleng Area, Southeastern Heilongjiang Province, China: Constraint on Crustal Evolution of the Southern most of Jiamusi Massif. Geological Bulletin of China, 27(12): 2127-2137 (in Chinese with English abstract). [34] Xie, H.Q., Zhang, F.C., Miao, L.C., et al., 2008b. Zircon SHRIMP U-Pb Dating of the Amphibolite from "Heilongjiang Group" and the Granite in Mudanjiang Area, NE China, and Its Geological Significance. Acta Petrologica Sinica, 24(6): 1237-1250 (in Chinese with English abstract). [35] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5): 1620-1646 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905017.htm [36] Xu, W.L., Wang, F., Meng, E., et al., 2012. Paleozoic-Early Mesozoic Tectonic Evolution in the Eastern Heilongjiang Province, NE China: Evidence from Igneous Rock Association and U-Pb Geochronology of Detrital Zircons. Journal of Jilin University (Earth Science Edition), 42(5): 1378-1389 (in Chinese with English abstract). [37] Zhou, J.B., Shi, A.G., Jing, Y., 2016. Combined NE China Blocks: Tectonic Evolution and Supercontinent Reconstructions. Journal of Jilin University (Earth Science Edition), 46(4): 1042-1055 (in Chinese with English abstract). [38] Zhou, J.B., Wilde, S.A., 2013. The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Orogenic Belt. Gondwana Research, 23: 1365-1377. doi: 10.1016/j.gr.2012.05.012 [39] Zhou, J.B., Wilde, S.A., Zhang, X.Z., 2009. The Onset of Pacific Margin Accretion in NE China: Evidence from the Heilongjiang High-Pressure Metamorphic Belt. Tectonophysics, 478: 230-246. doi: 10.1016/j.tecto.2009.08.009 [40] Zhou, J.B., Wilde, S.A., Zhang, X.Z., et al., 2011. Early Paleozoic Metamorphic Rocks of the Erguna Block in the Great Xing'an Range, NE China: Evidence for the Timing of Magmatic and Metamorphic Events and Their Tectonic Implications. Tectonophysics, 499: 105-117. doi: 10.1016/j.tecto.2010.12.009 [41] Zhu, D.C., Zhu, L.D., Lin, L., et al., 2003. Organic Mineralization of Lead-Zinc Deposits in Devonian System, Xicheng Ore Field. Earth Science, 28(2): 201-208 (in Chinese with English abstract). [42] 方焱, 何谋惷, 丁振举, 等, 2020. 黑龙江省东宁县五道沟金矿成矿流体特征及矿床成因. 现代地质, 34(2): 254-265. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ202002004.htm [43] 何雨思, 高福红, 修铭, 等, 2019. 张广才岭福兴屯组的形成时代、物源及构造背景. 地球科学, 44(10): 3223-3236. doi: 10.3799/dqkx.2019.145 [44] 李胜荣, 高振敏, 1996. 华南下寒武统黑色岩系中的热水成因硅质岩. 矿物学报, 16(4): 416-422. doi: 10.3321/j.issn:1000-4734.1996.04.014 [45] 刘家军, 柳振江, 杨艳, 等, 2007. 南秦岭大型钡成矿带有机地球化学特征与生物标志物研究. 矿物岩石, 27(3): 39-48. doi: 10.3969/j.issn.1001-6872.2007.03.008 [46] 任纪舜, 牛宝贵, 刘志刚, 1999. 软碰撞、叠覆造山和多旋回缝合作用. 地学前缘, 6(3): 85-93. doi: 10.3321/j.issn:1005-2321.1999.03.008 [47] 唐克东, 王莹, 何国琦, 等, 1995. 中国东北及邻区大陆边缘构造. 地质学报, 69(1): 16-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199501001.htm [48] 王浩, 凌文黎, 段瑞春, 等, 2012. 扬子克拉通峡东地区新元古代-寒武纪黑色岩系Os同位素地球化学特征及其地质意义. 地球科学, 37(3): 451-461. http://www.earth-science.net/article/id/2249 [49] 王鹏威, 谌卓恒, 金之钧, 等, 2019. 页岩油气资源评价参数之总有机碳含量的优选: 以西加盆地泥盆系Duvernay页岩为例. 地球科学, 44(2): 504-512. doi: 10.3799/dqkx.2018.191 [50] 颉颃强, 苗来成, 陈福坤, 等, 2008a. 黑龙江东南部穆棱地区"麻山群"的特征及花岗岩锆石SHRIMP U-Pb定年——对佳木斯地块最南缘地壳演化的制约. 地质通报, 27(12): 2127-2137. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200812023.htm [51] 颉颃强, 张福成, 苗来成, 等, 2008b. 东北牡丹江地区"黑龙江群"中斜长角闪岩与花岗岩的锆石SHRIMP U-Pb定年及其地质学意义. 岩石学报, 24(6): 1237-1250. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200806008.htm [52] 许文良, 孙晨阳, 唐杰, 等, 2019. 兴蒙造山带的基底属性与构造演化过程. 地球科学, 44(5): 1620-1646. doi: 10.3799/dqkx.2019.036 [53] 许文良, 王枫, 孟恩, 等, 2012. 黑龙江省东部古生代-早中生代的构造演化: 火成岩组合与碎屑锆石U-Pb年代学证据. 吉林大学学报(地球科学版), 42(5): 1378-1389. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201205012.htm [54] 周建波, 石爱国, 景妍, 2016. 东北地块群: 构造演化与古大陆重建. 吉林大学学报(地球科学版), 46(4): 1042-1055. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201604005.htm [55] 朱弟成, 朱利东, 林丽, 等, 2003. 西成矿田泥盆系铅锌矿床中的有机质成矿作用. 地球科学, 28(2): 201-208. http://www.earth-science.net/article/id/1237 -
dqkxzx-46-5-1537-附表.pdf