Ore-Bearing Granite Age and Genesis of Diguo Large-Scale Graphite Deposit in Leiwuqi-Zuogong Metallogenic Belt, Eastern Tibet
-
摘要: 藏东类乌齐-左贡成矿带石墨矿近年来取得重大找矿进展,新发现以地果为代表的3处大型石墨矿床,然而地果石墨矿床的成矿地质背景、矿床成因及成矿机制尚不清楚,制约了该成矿带内石墨矿找矿潜力的评价.对地果石墨矿床开展了详细的野外调查、锆石U-Pb测年、碳同位素分析和扫描电镜等研究.锆石U-Pb测年结果显示,含矿二长花岗岩成岩年龄为239.1±1.8 Ma,其捕获锆石的年龄集中于早石炭世(347~326 Ma);碳同位素δ13C值揭示石墨中的碳为有机成因.地果石墨矿床主要受控于含碳地层与中三叠世岩浆的侵入活动,矿床成因属于岩浆混染型和接触变质型共生的复合类型;含矿二长花岗岩侵位时限近似代表了石墨矿成矿时代,为中三叠世.区域成矿地质条件表明,类乌齐-左贡成矿带具有较好的石墨矿找矿潜力,中三叠世侵入岩与卡贡组含碳地层的交接部位是取得石墨矿找矿突破的关键地段.Abstract: In recent years,great progress has been made in the exploration of graphite deposits from Leiwuqi-Zuogong metallogenic belt,Tibet. The Diguo graphite deposit is one of the three large-scale graphite deposits which have been discovered recently. However,the geological background,genetic type and mineralization mechanism are still not clear,which has restricted the resources potential assessment of the metallogenic belt. Field geological survey,zircon U-Pb,carbon isotope analysis,and scanning electron microscopy (SEM) have been done for the Diguo deposit. Zircon U-Pb dating results show that the age of the ore-bearing monzogranite is 239.1 ±1.8 Ma,and the ages of the inherit zircon are concentrated in the Early Carboniferous (347-326 Ma). The carbon δ13C isotopic values reveal the organic origin of the carbon in the ore. This study shows that Diguo graphite deposit was constrained by both carbonous strata and the Middle Triassic intrusions,and belongs to the complex type which is the mix of magmatic type and contact metamorphic type. The emplacement time of the ore-bearing monzogranite represents the mineralization age of the graphite deposit approximately,which is the Middle Triassic. The regional metallogenic conditions show that the Leiwuqi-Zuogong metallogenic belt has a good exploration potential for the graphite deposits,the connection zone between the Middle Triassic intrusion and the carbonous Kagong stratum might be the key areas of the prospecting breakthrough.
-
Key words:
- Leiwuqi-Zuogong metallogenic belt /
- zircon U-Pb age /
- magmatic mix /
- deposit genesis /
- Diguo graphite deposit /
- Tibet /
- geochronology
-
图 1 西藏地果石墨矿床区域地质简图
a.区域地质略图;b.大地构造位置示意图;c.成矿区带划分示意图. F1.角斗断裂; F2.马查脚断裂; F3.舍拉断裂; F4.卡贡-盐井断裂; F5.达特断裂; F6.日江断裂; F7.山然作姆断裂; F8.蒙巴断裂; F9.马怕卡断裂; F10.交布瑞断裂; F11.扎西错-亚隆断裂. V5.昌都地块; V6.北澜沧江结合带; VI3.左贡地块; VI4.班公湖-怒江结合带; VII1.冈底斯弧盆系.II3-5.昌都-兰坪成矿带; II3-6.类乌齐-左贡成矿带; III1-1.班公湖-怒江成矿带; III1-2.那曲-比如成矿带; III1-3.班戈-腾冲成矿带
Fig. 1. Regional geological map of the Diguo graphite deposit, Tibet
表 1 西藏地果石墨矿床III、IV、V、VII矿体特征
Table 1. Characteristics of III、IV、V、VII ore-bodies from the Diguo graphite deposit, Tibet
矿体编号 形态 长(m) 宽(m) 倾向 倾角 赋矿岩石 矿石构造 固定碳平均含量(%) Ⅲ 月牙状 370 25~45 南西 42° 二长花岗岩,局部碳质板岩 斑杂状、浸染状,局部块状 13.52 Ⅳ 透镜状 280 35~50 南西 43° 碳质板岩 块状 47.67 Ⅴ 透镜状 85 8~20 北东 39° 碳质板岩 块状 31.28 Ⅶ 透镜状 100 3~15 南西 35° 碳质板岩 块状 19.91 表 2 西藏地果石墨矿床二长花岗岩锆石测年结果
Table 2. Zircon U-Pb dating results of monzogranite from the Diguo graphite deposit, Tibet
测点号 含量(10-6) Th/U 同位素比值 年龄(Ma) 232Th 238U 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ DG-NL1-001 433 798 0.54 0.275 7 0.008 3 0.038 0 0.000 4 247 6.6 240 2.8 DG-NL1-002 285 332 0.86 0.410 9 0.014 4 0.053 7 0.000 7 350 10.4 337 4.5 DG-NL1-003 261 627 0.42 0.251 3 0.007 2 0.037 7 0.000 4 228 5.9 238 2.8 DG-NL1-004 170 431 0.39 0.249 9 0.007 8 0.037 7 0.000 5 226 6.4 239 2.9 DG-NL1-005 140 241 0.58 0.372 0 0.017 7 0.053 9 0.000 7 321 13.1 339 4.5 DG-NL1-006 108 267 0.41 0.251 8 0.010 0 0.037 6 0.000 6 228 8.1 238 3.5 DG-NL1-007 540 746 0.72 0.399 4 0.007 5 0.052 6 0.000 6 341 5.5 330 3.5 DG-NL1-008 93.8 232 0.40 0.264 6 0.010 6 0.037 5 0.000 7 238 8.5 237 4.3 DG-NL1-009 99.1 318 0.31 0.283 0 0.009 8 0.037 8 0.000 6 253 7.8 239 3.7 DG-NL1-010 476 859 0.55 0.272 1 0.006 5 0.037 6 0.000 4 244 5.2 238 2.8 DG-NL1-011 259 636 0.41 0.281 4 0.007 9 0.037 7 0.000 5 252 6.3 239 2.9 DG-NL1-013 308 551 0.56 0.408 0 0.011 5 0.054 5 0.000 7 347 8.3 342 4.0 DG-NL1-014 285 350 0.81 0.422 2 0.014 8 0.054 2 0.000 7 358 10.6 341 4.5 DG-NL1-015 95.8 298 0.32 0.290 4 0.012 1 0.038 6 0.000 5 259 9.5 244 3.4 DG-NL1-016 122 257 0.47 0.292 9 0.013 5 0.037 6 0.000 7 261 10.6 238 4.5 DG-NL1-017 291 534 0.55 0.426 8 0.012 0 0.055 4 0.000 8 361 8.5 347 4.6 DG-NL1-018 302 493 0.61 0.425 7 0.012 8 0.055 3 0.000 8 360 9.1 347 4.7 DG-NL1-019 288.8 236.3 1.22 4.353 7 0.090 0 0.299 2 0.004 3 1704 17.1 1722 21.1 DG-NL1-021 288 589 0.49 0.276 0 0.007 5 0.037 9 0.000 5 247 6.0 240 3.1 DG-NL1-022 381 677 0.56 0.396 4 0.010 7 0.054 0 0.000 6 339 7.7 339 4.0 DG-NL1-023 407 660 0.62 0.287 0 0.008 0 0.037 8 0.000 4 256 6.3 239 2.7 DG-NL1-024 127 265 0.48 0.395 2 0.015 4 0.051 9 0.000 8 338 11.2 326 4.9 表 3 西藏地果、青果、纽多矿床特征对比
Table 3. Feature comparison of Diguo, Qingguo, Niuduo graphite deposits, Tibet
矿床 地果 青果 纽多 成矿带 类乌齐-左贡成矿带 类乌齐-左贡成矿带 类乌齐-左贡成矿带 大地构造位置 北澜沧江弧盆系 北澜沧江弧盆系 北澜沧江弧盆系 区域控矿构造 澜沧江深大断裂 澜沧江深大断裂 澜沧江深大断裂 地层 下石炭统卡贡组(C1kg) 下石炭统卡贡组(C1kg) 下石炭统卡贡组(C1kg) 含矿岩石 二长花岗岩、碳质板岩 二长花岗岩 二长花岗岩、碳质板岩 含矿岩体U-Pb年龄 239.1±1.8 Ma 244.7±1.3 Ma 243.6±1.4 Ma 矿体地质特征 矿体长80~500 m、宽10~130 m,固定碳含量10.75%~47.67% 矿体长180~600 m、宽65~200 m,固定碳含量2.75%~10.92% 矿体长80~370 m,宽16~35 m,固定碳含量14.4%~27.63% 矿石结构、构造 鳞片变晶结构,球状、豆状、浸染状、块状构造 鳞片变晶结构,球状、角砾状、豆状、浸染状构造 鳞片变晶结构,球状、豆状、浸染状、块状构造 蚀变特征 绢云母化、泥化、褐铁矿化、硅化等 绢云母化、泥化、褐铁矿化、硅化、电气石化等 硅化、重晶石化、电气石化 石墨δ13C均值 -19.2‰ -15.3‰ -18.1‰ 矿床规模 大型 大型 大型 成因 岩浆混染型+接触变质型 岩浆混染型 岩浆混染型+接触变质型 资料来源 本文 樊炳良等(2018) -
[1] Ai, J., Lü, X. B., Li, Z.W., et al., 2018. A Super-Large Graphite Deposit Discovered in Granite Rocks at Huangyangshan, Xinjiang, China. China Geology, 1(1):164-166. https://doi.org/10.31035/cg2018016 [2] Bai, J.K., Chen, J.L., Peng, S.X., 2018. Geochronology and Geochemistry of Ore-bearing Intrusions from Huangyangshan Magmatic Hydrothermal Graphite Deposit in Qitai County, Xinjiang. Acta Petrologica Sinica, 34(8):2327-2340 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201808009 [3] Deng, J., Zhang, J., Wang, Q.F., 2018. Research Advances of Composite Metallogenic System and Deep Driving Mechanism in the Tethys, SW China. Acta Petrologica Sinica, 34(5):1229-1238 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201805001 [4] Fan, B.L., Bai, T., Feng, D.X., et al., 2018. Zircon U-Pb Age and Genesis of Niuduo Biotite Monzogranite in East Tibet. Geological Bulletin of China, 37(7):1226-1235 (in Chinese with English abstract). [5] Guo, N., Chen, J.P., Tang, J.X., 2008. Remote Sensing Information Extraction of Mineralizing Anomaly in the Dongdashan Area of Eastern Tibet. Geology and Prospecting, 44(4):69-73 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt200804013 [6] Lei, W.Y., Shi, G.H., Liu, Y.X., 2013. Research Progress on Trace Element Characteristics of Zircons of Different Origins. Earth Science Frontiers, 20(4):273-284 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201304023 [7] Li, C., Wang, D.H., Zhao, H., et al., 2015. Minerogenetic Regularity of Graphite Deposits in China. Mineral Deposits, 34(6):1223-1236 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201506011 [8] Li, F.C., Hou, M.L., Luan, R.J., et al., 2016. Optimization of Analytical Conditions for LA-ICP-MS and Its Application to Zircon U-Pb Dating. Rock and Mineral Analysis, 35(1):17-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201601005 [9] Li, K.Y., Chen, Y.J., She, Z.B., et al., 2018. Carbon Isotope Compositions and Geochemical Characteristics of the Zhangshe Graphite Deposit of the Jingshan Group, Jiaobei. Earth Science Frontiers, 25(5):19-33 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201805002 [10] Lin, B., Chen, Y.C., Tang, J.X., et al., 2018. Geology, Alteration and Mineralization of Tiegelongnan Giant Cu(Au, Ag) Deposit, Tibet. Mineral Deposits, 37(5):917-939 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201805002 [11] Lin, B., Chen, Y. C., Tang, J. X., et al., 2017a. 40Ar/39Ar and Rb-Sr Ages of the Tiegelongnan Porphyry Cu-(Au) Deposit in the Bangong Co-Nujiang Metallogenic Belt of Tibet, China:Implication for Generation of Super-Large Deposit. Acta Geologica Sinica (English Edition), 91(2):602-616. https://doi.org/10.1111/1755-6724.13120 [12] Lin, B., Tang, J. X., Chen, Y. C., et al., 2017b. Geochronology and Genesis of the Tiegelongnan Porphyry Cu(Au) Deposit in Tibet:Evidence from U-Pb, Re-Os Dating and Hf, S, and H-O Isotopes. Resource Geology, 67(1):1-21. https://doi.org/10.1111/rge.12113 [13] Lin, B., Tang, J. X., Chen, Y. C., et al., 2019. Geology and Geochronology of Naruo Large Porphyry-Breccia Cu Deposit in the Duolong District, Tibet. Gondwana Research, 66:168-182. https://doi.org/10.1016/j.gr.2018.07.009 [14] Lin, B., Wang, L.Q., Tang, J.X., et al., 2017. Zircon U-Pb Geochronology of Ore-Bearing Porphyries in Baomai Deposit, Yulong Copper Belt, Tibet. Earth Science, 42(9):1454-1471 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201709002 [15] Lin, B., Wang, L. Q., Tang, J. X., et al., 2018. Geology, Geochronology, Geochemical Characteristics and Origin of Baomai Porphyry Cu (Mo) Deposit, Yulong Belt, Tibet. Ore Geology Reviews, 92:186-204. https://doi.org/10.1016/j.oregeorev.2017.10.025 [16] Liu, J., Zhu, X.P., Li, W.C., et al., 2019. Molybdenite Re-Os Dating of the Larong Porphyry W-Mo Deposit in Eastern Tibet and Its Geological Significance. Acta Geologica Sinica, 93(7):1708-1719 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201907011 [17] Liu, S.B., Yang, M.Z., Wu, H.E., et al., 2011. Metallogenic Model of Graphite Deposit from Sujiquan, Eastern Junggaer. Xinjiang Geology, 29(2):178-182 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XJDI201102013.htm [18] Ludwig, K. R., 2000. User's Manual for Isoplot/Ex 3.75: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [19] Mo, R.J., Liu, S.B., Huang, C.R., et al., 1989. Geology of China Graphite Deposit. China Building Industry Press, Beijing (in Chinese). [20] Tang, J.X., 2019. Mineral Resources Base Investigation and Research Status of the Tibet Plateau and Its Adjacent Major Metallogenic Belts. Acta Petrologica Sinica, 35(3):617-624 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.01 [21] Tang, J.X., Zhang, L., Li, Z.J., et al., 2006a. Porphyry Copper Deposit Controlled by Structural Nose Trap:Yulong Porphyry Copper Deposit in Eastern Tibet. Mineral Deposits, 25(6):652-662 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ200606001.htm [22] Tang, J.X., Zhong, K.H., Liu, Z.C., et al., 2006b. Intracontinent Orogen and Metallogenesis in Himalayan Epoch:Changdu Large Composite Basin, Eastern Tibet. Acta Geologica Sinica, 80(9):1364-1376 (in Chinese with English abstract). http://www.researchgate.net/publication/282766815_Intracontinent_orogen_and_metallogenesis_in_Himalayan_epoch_Changdu_large_composite_basin_eastern_Tibet [23] Wang, B.D., Wang, L.Q., Wang, D.B., et al., 2018. Tectonic Evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang Area, Southwestern China. Earth Science, 43(8):2527-2550 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808001 [24] Wang, D.B., Luo, L., Wang, B.D., et al., 2018. Timing and Tectonic Affinity of the Tuanliangzi Formation in the Lancangjiang Tectonic Belt in the Western Yunnan Province, China. Earth Science, 43(8):2551-2570 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201808002 [25] Yan, L.Y., Gao, S.X., Sun, L., et al., 2018. Metallogenic Characteristics and Metallogenic Factors of Regional Metamorphic Graphite Deposit in China. China Non-Metallic Mining Industry, (3):21-24, 28 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LGFK201803010.htm [26] Zhang, X.L., Fan, W.J., Li, Z.W., et al., 2017. The Discovery of a Superlarge Magmatic Graphite Deposit in Huangyangshan Area, Qitai County, Xinjiang. Geology in China, 44(5):1033-1034 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201705018 [27] Zhong, K.H., Tang, J.X., Liu, Z.C., et al., 2006. Mesozoic-Cenozoic Intracontinental Rifting of Changdu-Simao Tectonic Zone in East Margin of Qinghai-Tibet, WS China. Acta Geologica Sinica, 80(9):1295-1311 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609007 [28] 白建科, 陈隽璐, 彭素霞, 2018.新疆奇台县黄羊山岩浆热液型石墨矿床含矿岩体年代学与地球化学特征.岩石学报, 34(8):2327-2340. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201808009 [29] 邓军, 张静, 王庆飞, 2018.中国西南特提斯典型复合成矿系统及其深部驱动机制研究进展.岩石学报, 34(5):1229-1238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201805001 [30] 樊炳良, 白涛, 冯德新, 等, 2018.藏东纽多黑云母二长花岗岩锆石U-Pb年龄及成因.地质通报, 37(7):1226-1235. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201807007 [31] 郭娜, 陈建平, 唐菊兴, 2008.藏东东达山地区遥感找矿地质异常提取方法研究.地质与勘探, 44(4):69-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt200804013 [32] 雷玮琰, 施光海, 刘迎新, 2013.不同成因锆石的微量元素特征研究进展.地学前缘, 20(4):273-284. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201304023 [33] 李超, 王登红, 赵鸿, 等, 2015.中国石墨矿床成矿规律概要.矿床地质, 34(6):1223-1236. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201506011 [34] 李凤春, 侯明兰, 栾日坚, 等, 2016.电感耦合等离子体质谱仪与激光器联用测量条件优化及其在锆石U-Pb定年中的应用.岩矿测试, 35(1):17-23. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ykcs201601005 [35] 李凯月, 陈衍景, 佘振兵, 等, 2018.胶北荆山群张舍石墨矿碳同位素特征及其地质意义.地学前缘, 25(5):19-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201805002 [36] 林彬, 陈毓川, 唐菊兴, 等, 2018.西藏铁格隆南超大型铜(金、银)矿床地质、蚀变与矿化.矿床地质, 37(5):917-939. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201805002 [37] 林彬, 王立强, 唐菊兴, 等, 2017.西藏玉龙铜矿带包买矿床含矿斑岩锆石U-Pb年代学.地球科学, 42(9):1454-1471. doi: 10.3799/dqkx.2017.517 [38] 刘俊, 祝向平, 李文昌, 等, 2019.藏东拉荣斑岩钨钼矿床辉钼矿Re-Os定年及地质意义.地质学报, 93(7):1708-1719. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201907011 [39] 刘松柏, 杨梅珍, 吴洪恩, 等, 2011.新疆苏吉泉球状石墨矿床成矿模式.新疆地质, 29(2):178-182. http://www.cnki.com.cn/Article/CJFDTotal-XJDI201102013.htm [40] 莫如爵, 刘绍斌, 黄翠蓉, 等, 1989.中国石墨矿床地质.北京:中国建筑工业出版社. [41] 唐菊兴, 2019.青藏高原及邻区重要成矿带矿产资源基地调查与研究进展.岩石学报, 35(3):617-624. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201903001 [42] 唐菊兴, 张丽, 李志军, 等, 2006a.西藏玉龙铜矿床:鼻状构造圈闭控制的特大型矿床.矿床地质, 25(6):652-662. http://www.cqvip.com/Main/Detail.aspx?id=23602948 [43] 唐菊兴, 钟康惠, 刘肇昌, 等, 2006b.藏东缘昌都大型复合盆地喜马拉雅期陆内造山与成矿作用.地质学报, 80(9):1364-1376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609012 [44] 王保弟, 王立全, 王冬兵, 等, 2018.三江昌宁-孟连带原-古特提斯构造演化.地球科学, 43(8):2527-2550. doi: 10.3799/dqkx.2018.160 [45] 王冬兵, 罗亮, 王保弟, 等, 2018.滇西澜沧江构造带景谷地区团梁子岩组的时代与构造属性.地球科学, 43(8):2551-2570. doi: 10.3799/dqkx.2018.274 [46] 颜玲亚, 高树学, 孙莉, 等, 2018.我国区域变质型石墨矿成矿特征及成矿要素.中国非金属矿工业导刊, (3):21-24, 28. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgfjskgydk201803009 [47] 张小林, 樊文军, 李作武, 等, 2017.新疆奇台县黄羊山发现超大型晶质石墨矿床.中国地质, 44(5):1033-1034. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201705018 [48] 钟康惠, 唐菊兴, 刘肇昌, 等, 2006.青藏东缘昌都-思茅构造带中新生代陆内裂谷作用.地质学报, 80(9):1295-1311. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200609007