• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏拉萨地块西段狮泉河地区晚侏罗世花岗岩年代学、地球化学与岩石成因

    李勇 张士贞 李奋其 秦雅东

    李勇, 张士贞, 李奋其, 秦雅东, 2020. 西藏拉萨地块西段狮泉河地区晚侏罗世花岗岩年代学、地球化学与岩石成因. 地球科学, 45(8): 2846-2856. doi: 10.3799/dqkx.2020.102
    引用本文: 李勇, 张士贞, 李奋其, 秦雅东, 2020. 西藏拉萨地块西段狮泉河地区晚侏罗世花岗岩年代学、地球化学与岩石成因. 地球科学, 45(8): 2846-2856. doi: 10.3799/dqkx.2020.102
    Li Yong, Zhang Shizhen, Li Fenqi, Qin Yadong, 2020. Geochronology, Geochemistry and Petrogenesis of Late Jurassic Granitoids in Shiquanhe Area, Western Lhasa Block, Tibet. Earth Science, 45(8): 2846-2856. doi: 10.3799/dqkx.2020.102
    Citation: Li Yong, Zhang Shizhen, Li Fenqi, Qin Yadong, 2020. Geochronology, Geochemistry and Petrogenesis of Late Jurassic Granitoids in Shiquanhe Area, Western Lhasa Block, Tibet. Earth Science, 45(8): 2846-2856. doi: 10.3799/dqkx.2020.102

    西藏拉萨地块西段狮泉河地区晚侏罗世花岗岩年代学、地球化学与岩石成因

    doi: 10.3799/dqkx.2020.102
    基金项目: 

    国家自然科学基金项目 41773026

    中国地质调查局项目 DD20160015-31

    中国地质调查局项目 DD20190053

    详细信息
      作者简介:

      李勇(1984-), 男, 工程师, 主要从事青藏高原区域地质调查和研究.ORCID:0000-0003-2511-2669.E-mail:liy9907@126.com

    • 中图分类号: P581

    Geochronology, Geochemistry and Petrogenesis of Late Jurassic Granitoids in Shiquanhe Area, Western Lhasa Block, Tibet

    • 摘要: 目前关于拉萨地块西段狮泉河地区中生代岩浆岩的报道相对较少,限制了对该地区中生代岩浆作用的认识.对狮泉河地区石英闪长岩和闪长质包体的锆石U-Pb年龄、岩石学特征与元素地球化学进行了研究.结果显示,寄主石英闪长岩的年龄为161.1±1.7 Ma,闪长质包体的年龄为159.8±1.6 Ma和157.0±1.3 Ma,两者为同期形成.寄主石英闪长岩为I型准铝质中钾-高钾钙碱性系列岩石,具有富集大离子亲石元素、亏损高场强元素的特征.闪长质包体为准铝质中钾-高钾钙碱性系列岩石.岩石学、地球化学特征研究表明,该套岩石可能与中侏罗世班公湖-怒江特提斯洋南向俯冲有关,班公湖-怒江特提斯洋南向俯冲引起幔源物质发生熔融,上涌的幔源岩浆与拉萨地块古老基底重熔形成的酸性岩浆混合,形成了含闪长质包体的晚侏罗世岩体.

       

    • 图  1  青藏高原南部构造单元划分(a)及研究区地质简图(b)

      底图据李勇等(2018)修改. SXG.狮泉河-许如错-工布江达断裂;THS.吉隆-定日-岗巴-错那断裂

      Fig.  1.  Tectonic framework of southern Tibetan Plateau (a) and simplified geological map of Shiquanhe area (b)

      图  2  狮泉河地区样品野外(a)及镜下(b~d)照片

      Q.石英;Pl.斜长石;Hb.角闪石;Bt.黑云母;Ap.磷灰石

      Fig.  2.  Field outcrop image (a) and micrographs (b-d) of Shiquanhe granitoid samples

      图  3  石英闪长岩和闪长质包体样品的锆石阴极发光图像、测点及年龄

      Fig.  3.  CL images, analyzed spots and ages of zircons from quartz diorite and dioritic enclaves

      图  4  锆石U-Pb谐和图及加权平均年龄

      Fig.  4.  Zircon U-Pb concordia diagrams and weighted mean age of samples

      图  5  狮泉河地区侵入岩TAS(a)、SiO2-K2O(b)和A/NK-A/CNK(c)图解

      Fig.  5.  TAS (a), SiO2-K2O (b) and A/NK-A/CNK (c) diagrams of the Shiquanhe intrusive rocks

      图  6  狮泉河地区岩石样品的球粒陨石标准化稀土元素配分图(a)和原始地幔标准化微量元素蛛网图(b)

      Fig.  6.  Chondrite-normalized REE pattern (a) and primitive mantle normalized trace element spider diagram (b) for the Shiquanhe granitoid samples

      图  7  狮泉河地区寄主石英闪长岩与闪长质包体哈克图解

      Fig.  7.  Harker diagrams of quartz diorite and dioritic enclaves in the Shiquanhe area

      图  8  狮泉河地区寄主石英闪长岩与闪长质包体La/Sm-La(a)和Ni-Cr(b)图解

      Fig.  8.  Diagrams of La/Sm-La (a) and Ni-Cr (b) of quartz diorite and dioritic enclaves in the Shiquanhe area

    • [1] Cao, M. J., Qin, K. Z., Li, G. M., et al., 2016. Tectono-Magmatic Evolution of Late Jurassic to Early Cretaceous Granitoids in the West Central Lhasa Subterrane, Tibet. Gondwana Research, 39:386-400. https://doi.org/10.1016/j.gr.2016.01.006
      [2] Chappell, B.W., 1999. Aluminium Saturation in I- and S-Type Granites and the Characterization of Fractionated Haplogranites. Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3
      [3] Chappell, B. W., Wyborn, D., 2012. Origin of Enclaves in S-Type Granites of the Lachlan Fold Belt. Lithos, 154:235-247. https://doi.org/10.1016/j.lithos.2012.07.012
      [4] Cheng, Y. B., Spandler, C., Mao, J. W., et al., 2012. Granite, Gabbro and Mafic Microgranular Enclaves in the Gejiu Area, Yunnan Province, China:A Case of Two-Stage Mixing of Crust- and Mantle-Derived Magmas. Contributions to Mineralogy and Petrology, 164(4):659-676. https://doi.org/10.1007/s00410-012-0766-0
      [5] Chu, M. F., Chung, S. L., Song, B., et al., 2006. Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 34(9):745-748. https://doi.org/10.1130/g22725.1
      [6] Collins, W. J., Richards, S. W., 2008. Geodynamic Significance of S-Type Granites in Circum-Pacific Orogens. Geology, 36(7):559-562. https://doi.org/10.1130/g24658a.1
      [7] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B:Atomic Spectroscopy, 78:50-57. https://doi.org/10.1016/j.sab.2012.09.007
      [8] Ji, W. Q., Wu, F. Y., Chung, S. L., et al., 2009. Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 262(3-4):229-245. https://doi.org/10.1016/j.chemgeo.2009.01.020
      [9] Jiang, X., Zhao, Z.D., Zhu, D.C., et al., 2010. Zircon U-Pb Geochronology and Hf Isotopic Geochemistry of Jiangba, Bangba, and Xiongba Granitoids in Western Gangdese, Tibet. Acta Petrologica Sinica, 26(7):2155-2164 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201007018.htm
      [10] Johnston, S., Gehrels, G., Valencia, V., et al., 2009. Small-Volume U-Pb Zircon Geochronology by Laser Ablation-Multicollector-ICP-MS. Chemical Geology, 259(3-4):218-229. https://doi.org/10.1016/j.chemgeo.2008.11.004
      [11] Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7-8):917-933. https://doi.org/10.1130/b26033.1
      [12] Li, X.B., Wang, B.D., Liu, H., et al., 2015. The Late Jurassic High-Mg Andesites in the Daru Tso Area, Tibet:Evidence for the Subduction of the Bangong Co-Nujiang River Oceanic Lithosphere. Geological Bulletin of China, 34(Z1):251-261 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD2015Z1003.htm
      [13] Li, Y., Zhang, S.Z., Li, F.Q., et al., 2018. Zircon U-Pb Ages and Implications of the Dianzhong Formation in Chazi Area, Middle Lhasa Block, Tibet. Earth Science, 43(8):2755-2766 (in Chinese with English abstract).
      [14] Liu, C.D., Mo, X.X., Luo, Z.H., et al., 2004. Mixing Events between the Crust- and Mantle-Derived Magmas in Eastern Kunlun:Evidence from Zircon SHRIMP Chronology. Chinese Science Bulletin, 49(6):596-602 (in Chinese). doi: 10.1360/csb2004-47-6-596
      [15] Liu, M., Zhao, Z.D., Guan, Q., et al., 2011. Tracing Magma Mixing Genesis of the Middle Early-Jurassic Host Granites and Enclaves in Nyainrong Microcontinent, Tibet from Zircon LA-ICP-MS U-Pb Dating and Hf Isotopes. Acta Petrologica Sinica, 27(7):1931-1937 (in Chinese with English abstract).
      [16] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082
      [17] Ma, S. W., Meng, Y. K., Xu, Z. Q., et al., 2017. The Discovery of Late Triassic Mylonitic Granite and Geologic Significance in the Middle Gangdese Batholiths, Southern Tibet. Journal of Geodynamics, 104:49-64. https://doi.org/10.1016/j.jog.2016.10.007
      [18] Meng, Y. K., Xu, Z. Q., Santosh, M., et al., 2016. Late Triassic Crustal Growth in Southern Tibet:Evidence from the Gangdese Magmatic Belt. Gondwana Research, 37:449-464. https://doi.org/10.1016/j.gr.2015.10.007
      [19] Mo, X.X., 2019. Magmatism and Deep Geological Process. Earth Science, 44(5):1487-1493 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201905007.htm
      [20] Mo, X. X., Niu, Y. L., Dong, G. C., et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet. Chemical Geology, 250(1-4):49-67. https://doi.org/10.1016/j.chemgeo.2008.02.003
      [21] Mo, X.X., Pan, G.T., 2006. From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectono-Magmatic Events. Earth Science Frontiers, 13(6):43-51 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200606007.htm
      [22] Nima, C.R., Wang, G.C., Dun, D., et al., 2017. Zircon U-Pb Ages, Geochemical Characteristics and Tectonics Implications of Late Jurassic Intermediate Intrusive Rocks in Shiquanhe Area, Western Tibet. Journal of Geomechanics, 23(5):673-685 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZLX201705010.htm
      [23] Niu, Y. L., Zhao, Z. D., Zhu, D. C., et al., 2013. Continental Collision Zones are Primary Sites for Net Continental Crust Growth:A Testable Hypothesis. Earth-Science Reviews, 127:96-110. https://doi.org/10.1016/j.earscirev.2013.09.004
      [24] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract).
      [25] Qi, N.Y., Zhao, Z.D., Tang, Y., et al., 2019. Geochronology, Geochemistry and Petrogenesis of the Late Jurassic-Early Cretaceous Granitoids in Zuozuo, Western Central Lhasa Terrane, Tibet. Acta Petrologica Sinica, 35(2):405-422 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.02.09
      [26] Qu, X.M., Wang, R.J., Xin, H.B., et al., 2009. Geochronology and Geochemistry of Igneous Rocks Related to the Subduction of the Tethys Oceanic Plate along the Bangong Lake Arc Zone, the Western Tibetan Plateau. Geochimica, 38(6):523-535 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX200906005.htm
      [27] Sisson, T. W., Ratajeski, K., Hankins, W. B., et al., 2005. Voluminous Granitic Magmas from Common Basaltic Sources. Contributions to Mineralogy and Petrology, 148(6):635-661. https://doi.org/10.1007/s00410-004-0632-9
      [28] Wang, B.D., Liu, H., Wang, L.Q., et al., 2020. Spatial-Temporal Framework of the Shiquanhe-Laguoco-Yongzhu-Jili Ophiolite Melange Zone, Qinghai-Tibet Plateau and Its Tectonic Evolution. Earth Science, 45(8):2764-2784 (in Chinese with English abstract).
      [29] Wang, D.Z., Xie, L., 2008. Magma Mingling:Evidence from Enclaves. Geological Journal of China Universities, 14(1):16-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX200801004.htm
      [30] Wang, Y., Tang, J. X., Wang, L. Q., et al., 2018. Petrogenesis of Jurassic Granitoids in the West Central Lhasa Subterrane, Tibet, China:The Geji Example. International Geology Review, 60(9):1155-1171. https://doi.org/10.1080/00206814.2017.1375438
      [31] White, A. J. R., Chappell, B. W., Wyborn, D., 1999. Application of the Restite Model to the Deddick Granodiorite and Its Enclaves:A Reinterpretation of the Observations and Data of Maas et al. (1997). Journal of Petrology, 40(3):413-421. https://doi.org/10.1093/petroj/40.3.413
      [32] Wolf, M. B., London, D., 1994. Apatite Dissolution into Peraluminous Haplogranitic Melts:An Experimental Study of Solubilities and Mechanisms. Geochimica et Cosmochimica Acta, 58(19):4127-4145. https://doi.org/10.1016/0016-7037(94)90269-0
      [33] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007. Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract).
      [34] Yan, J.J., 2019. Geochronology, Geochemistry and Petrogenesis of Mesozoic Magmatic Rocks in Shiquanhe Area, Tibetan Plateau (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [35] Yan, J.J., Zhao, Z.D., Liu, D., et al., 2017. Geochemistry and Petrogenesis of the Late Jurassic Xuru Tso Batholith in Central Lhasa Terrane, Tibet. Acta Petrologica Sinica, 33(8):2437-2453 (in Chinese with English abstract).
      [36] Zhang, H.F., Xu, W.C., Guo, J.Q., et al., 2007. Indosinian Orogenesis of the Gangdise Terrane:Evidences from Zircon U-Pb Dating and Petrogenesis of Granitoids. Earth Science, 32(2):155-166 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200702001.htm
      [37] Zhou, X., Zheng, J. P., Xiong, Q., et al., 2017. Early Mesozoic Deep-Crust Reworking beneath the Central Lhasa Terrane (South Tibet):Evidence from Intermediate Gneiss Xenoliths in Granites. Lithos, 274-275:225-239. https://doi.org/10.1016/j.lithos.2016.12.035
      [38] Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023
      [39] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      [40] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      [41] 姜昕, 赵志丹, 朱弟成, 等, 2010.西藏冈底斯西部江巴、邦巴和雄巴岩体的锆石U-Pb年代学与Hf同位素地球化学.岩石学报, 26(7):2155-2164. http://d.wanfangdata.com.cn/Periodical_ysxb98201007017.aspx
      [42] 李小波, 王保弟, 刘函, 等, 2015.西藏达如错地区晚侏罗世高镁安山岩:班公湖-怒江洋壳俯冲消减的证据.地质通报, 34(Z1):251-261. http://www.cnki.com.cn/Article/CJFDTotal-ZQYD2015Z1003.htm
      [43] 李勇, 张士贞, 李奋其, 等, 2018.拉萨地块中段查孜地区典中组火山岩锆石U-Pb年龄及地质意义.地球科学, 43(8):2755-2766. doi: 10.3799/dqkx.2018.593
      [44] 刘成东, 莫宣学, 罗照华, 等, 2004.东昆仑壳——幔岩浆混合作用:来自锆石SHRIMP年代学的证据.科学通报, 49(6):596-602. http://www.cqvip.com/QK/94252X/20046/9411408.html
      [45] 刘敏, 赵志丹, 管琪, 等, 2011.西藏聂荣微陆块早侏罗世中期花岗岩及其包体的岩浆混合成因:锆石LA-ICP-MS U-Pb定年和Hf同位素证据.岩石学报, 27(7):1931-1937. http://d.old.wanfangdata.com.cn/Periodical_ysxb98201107002.aspx
      [46] 莫宣学, 2019.岩浆作用与地球深部过程.地球科学, 44(5):1487-1493. doi: 10.3799/dqkx.2019.972
      [47] 莫宣学, 潘桂棠, 2006.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘, 13(6):43-51. http://www.cqvip.com/QK/71135X/201107/23186256.html
      [48] 尼玛次仁, 王国灿, 顿都, 等, 2017.西藏狮泉河地区晚侏罗世中性侵入岩锆石U-Pb年龄、地球化学特征及构造意义.地质力学学报, 23(5):673-685. http://d.wanfangdata.com.cn/Periodical/dzlxxb201705005
      [49] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://www.cqvip.com/QK/71135X/201107/23324705.html
      [50] 齐宁远, 赵志丹, 唐演, 等, 2019.西藏中拉萨地块西段左左乡晚侏罗世-早白垩世花岗岩年代学、地球化学与岩石成因.岩石学报, 35(2):405-422. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=YSXB201902009
      [51] 曲晓明, 王瑞江, 辛洪波, 等, 2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学, 38(6):523-535. http://www.cqvip.com/Main/Detail.aspx?id=31887686
      [52] 王保弟, 刘函, 王立全, 等, 2020.青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化.地球科学, 45(8):2764-2784.
      [53] 王德滋, 谢磊, 2008.岩浆混合作用:来自岩石包体的证据.高校地质学报, 14(1):16-21. http://d.wanfangdata.com.cn/Periodical/gxdzxb200801002
      [54] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. http://d.wanfangdata.com.cn/Periodical/ysxb98200706001
      [55] 闫晶晶, 2019.青藏高原狮泉河地区中生代岩浆岩的年代学、地球化学和岩石成因(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1019140257.htm
      [56] 闫晶晶, 赵志丹, 刘栋, 等, 2017.西藏中拉萨地块晚侏罗世许如错花岗岩地球化学与岩石成因.岩石学报, 33(8):2437-2453. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201708007.htm
      [57] 张宏飞, 徐旺春, 郭建秋, 等, 2007.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据.地球科学, 32(2):155-166. http://www.earth-science.net/article/id/3435
    • dqkx-45-8-2846-Table1.docx
    • 加载中
    图(8)
    计量
    • 文章访问数:  656
    • HTML全文浏览量:  294
    • PDF下载量:  84
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-25
    • 刊出日期:  2020-08-15

    目录

      /

      返回文章
      返回