Study on Sliding-Shearing Deformation and Failure Mode of Rock Slope with Steep Weak Structural Plane
-
摘要: 斜坡变形破坏和稳定性分析是各类工程建设中高度关注的问题.采用实例调查、理论分析、数值计算等技术方法,以雅砻江某水电工程坝址区右岸顺层岩质斜坡为例,研究总结了斜坡发育滑移-剪损变形破坏的成因机理、发育特征以及与弱面倾角和发育深度的关系.研究表明,滑移-剪损变形破坏通常发育在力学性能相对较差的薄层、互层状结构的顺层岩质斜坡或斜坡强-弱风化带内.斜坡发育滑移-剪损变形破坏与陡倾坡外弱面的倾角和发育位置密切相关.倾角在45°~65°之间或距斜坡表部水平距离小于80 m的弱面对斜坡发育滑移-剪损变形破坏的影响控制作用明显,并且弱面距斜坡表部水平距离比弱面倾角对斜坡发育滑移-剪损变形破坏的影响控制作用更强.研究成果可补充完善岩质斜坡变形破坏类型,具有重要的工程意义和实践价值.Abstract: The deformation and stability of rock slope are very important to engineering construction. Taking the right bank bedding rock slope of a hydropower project on Yalongjiang River as an example, in this paper it studies and summarizes the formation mechanism, development characteristics and the relationship with weak structural plane dip and development depth of sliding-shearing deformation and failure mode by in-situ investigation, theoretical analysis and numerical calculation. The research results show that sliding-shearing deformation and failure mode usually occurs in the bedding rock slope with poor mechanical properties or in the strong-weak weathering rock masses. The sliding-shearing deformation and failure of rock mass slope are closely related to the dip and development position of steep weak structural plane. The weak structural plane with 45°-65° dip or horizontal distance of less than 80 m from the slope surface is obviously influence to sliding-shearing deformation and failure of slope, and the influence of the horizontal distance between the weak structural plane and the slope surface is stronger than dip of weak structural plane on sliding-shearing deformation and failure of slope. This study is of great engineering significance and practical value to supplement the deformation and failure types of rock slope.
-
表 1 数值模型材料参数
Table 1. Calculation parameters of FEM model
材料名称 E(GPa) γ(MN·m-3) C(MPa) Φ(°) T(MPa) μ 强风化岩体 3.5 0.025 0.80 39 0.05 0.24 弱风化岩体 10.0 0.026 1.20 47 0.60 0.22 微风化岩体 15.0 0.027 1.80 55 1.20 0.20 软弱结构面 1.0 0.022 0.15 25 0.00 0.30 注:E.变形模量; γ.密度; C.内聚力; φ.内摩擦角; T.抗拉强度; μ.泊松比. -
[1] Fan, G., Zhang, J.J., Fu, X., et al., 2016. Energy Identification Method for Dynamic Failure Mode of Bedding Rock Slope with Soft Strata. Chinese Journal of Geotechnical Engineering, 38(5): 959-966(in Chinese with English abstract). http://www.cqvip.com/QK/95758X/20165/668830753.html [2] Ge, X.R., Ren, J.X., Li, C.G., et al., 2003.3D-FEM Analysis of Deep Sliding Stability of 3# Dam Foundation of Left Power House of the Three Gorges Project. Chinese Journal of Geotechnical Engineering, 25(4): 389-394(in Chinese with English abstract). http://www.cgejournal.com/EN/volumn/volumn_1282_abs.shtml [3] Huang, R.Q., Zhao, S.J., Song, X.B., et al., 2005. The Formation and Mechanism Analysis of Tiantai Landslide, Xuanhan County, Sichuan Province. Hydrogeology and Engineering Geology, 32(1): 13-15(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz200501003 [4] Lian, Z.Y., Han, G.C., Kong, X.J., 2001. Stability Analysis of Excavation by Strength Reduction FEM. Chinese Journal of Geotechnical Engineering, 23(4): 407-411(in Chinese with English abstract). [5] Ren, G.M., Xia, M., Zeng, Q., et al., 2015. Characteristics and Formation Mechanism of Typical Sliding-Toppling Landslides in Bailong River Trunk Streams of Gansu, China. Journal of Chengdu University of Technology (Sci. & Technol. Ed. ), 42(1): 18-25(in Chinese with English abstract). http://www.researchgate.net/publication/283020545_Characteristics_and_formation_mechanism_of_typical_sliding-toppling_landslides_in_bailong_river_trunk_streams_of_Gansu_China [6] Song, G.F., Du, J.M., Ke, J., et al., 2019. Stability Limit Analysis of Bedding Rock Slopes Based on Pseudo-Dynamic Method. China Earthquake Engineering Journal, 41(4): 931-938(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_china-earthquake-engineering-journal_thesis/0201272756214.html [7] Tamotsu, M., Ka-Ghing, S., 1992. Finite Element Slope Stability Analysis by Shear Strength Reduction Technique. Solis and Foundations, 32(1): 59-70. https://doi.org/10.3208/sandf1972.32.59 [8] Tian, F., 2014. Study on Slide-Shear Deformation and Failure Mode of Steep Bedding Rock Slope. Yangtze River, 45(S1): 57-59, 67(in Chinese). [9] Wang, S.H., Zhu, C.J., Zhang, Z.S., et, al., 2019. Stability Analysis of Multi-Slip Surface of Slope Based on Dynamic Strength Reduction DDA Method. Journal of China Coal Society, 44(4): 1084-1091(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-coal-society_thesis/0201270785338.html [10] Xu, W.Y., Jiang, T., Zhao, Z.F., et al., 2006.3D Numerical Simulation of Impact of Key Fault and Fault Enhancement on Foundation Rock Mass of Guangzhao High Gravity Dam. Chinese Journal of Rock Mechanics and Engineering, 25(6): 1009-1105(in Chinese with English abstract). http://www.oalib.com/paper/1485565 [11] Yang, J.H., Dong, J.Y., Liu, H.D., et al., 2011. Study on Deformation and Failure Mode of Slope Controlled by Rock Mass Structure. Journal of China Coal Society, 36(Suppl. 1): 58-62(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB2011S1013.htm [12] Zhou, H.F., Nie, D.X., Wang, C.S., 2010. Numerical Analysis of Prevention Measures for the Large Fault Belt Rock Mass in Dam Base of a Hydropower Station. Journal of Chengdu University of Technology (Science & Technology Edition), 37(6): 685-689(in Chinese with English abstract). http://www.researchgate.net/publication/294589127_Numerical_analysis_of_prevention_measures_for_the_large_fault_belt_rock_mass_in_dam_base_of_a_hydropower_station [13] Zhou, W., Li, H.B., Liu, Y.Q., et al., 2016. Pseudo-Dynamic Analysis of Anchored Characteristics of Layered Rock Slopes Subjected to Seismic Loads. Chinese Journal of Rock Mechanics and Engineering, 35(A02): 3570-3576(in Chinese with English abstract). http://www.cqvip.com/QK/96026X/2016A02/670914200.html [14] 范刚, 张建经, 付晓, 等, 2016. 含软弱夹层顺层岩质边坡动力破坏模式的能量判识方法研究. 岩土工程学报, 38(5): 959-966. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605024.htm [15] 葛修润, 任建喜, 李春光, 等, 2003. 三峡左厂3#坝段深层抗滑稳定三维有限元分析. 岩土工程学报, 25(4): 389-394. doi: 10.3321/j.issn:1000-4548.2003.04.001 [16] 黄润秋, 赵松江, 宋肖兵, 等, 2005. 四川省宣汉县天台乡滑坡形成过程和机制分析. 水文地质工程地质, 32 (1): 13 -15. doi: 10.3969/j.issn.1000-3665.2005.01.003 [17] 连镇营, 韩国城, 孔宪京, 2001. 强度折减有限元法研究开挖边坡的稳定性. 岩土工程学报, 23(4): 407-411. doi: 10.3321/j.issn:1000-4548.2001.04.005 [18] 任光明, 夏敏, 曾强, 等, 2015. 白龙江干流典型滑移-倾倒型滑坡的特征及形成机制. 成都理工大学学报(自然科学版), 42(1): 18-25. doi: 10.3969/j.issn.1671-9727.2015.01.03 [19] 宋桂锋, 杜江梅, 柯鉴, 等, 2019. 基于拟动力法的顺层岩质边坡稳定性极限分析. 地震工程学报, 41(4): 931-938. doi: 10.3969/j.issn.1000-0844.2019.04.931 [20] 田夫, 2014. 中陡倾顺层边坡滑移-剪损渐进式破坏模式分析. 人民长江, 45(S1): 57-59, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2014S1018.htm [21] 王述红, 朱承金, 张紫杉, 等, 2019. 基于动态强度折减DDA法的斜坡多滑面稳定性分析. 煤炭学报, 44(4): 1084-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201904013.htm [22] 徐卫亚, 江涛, 赵志峰, 等, 2006. 光照重力坝坝基断层影响及处理的三维数值模拟. 岩石力学与工程学报. 25(6): 1099-1105. doi: 10.3321/j.issn:1000-6915.2006.06.004 [23] 杨继红, 董金玉, 刘汉东, 等, 2011. 岩体结构控制下的边坡变形破坏模式分析. 煤炭学报, 36(增刊1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2011S1013.htm [24] 周洪福, 聂德新, 王春山, 2010. 水电工程坝基大规模破碎带处理措施数值分析. 成都理工大学学报(自然科学版), 37(6): 685-689. doi: 10.3969/j.issn.1671-9727.2010.06.015 [25] 周炜, 李海波, 刘亚群, 等, 2016. 地震作用下顺层岩质边坡锚固特性的拟动力分析. 岩石力学与工程学报, 35(A02): 3570-3576. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2015.htm