• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    陡倾坡外弱面控制的斜坡滑移-剪损变形破坏模式

    周洪福 符文熹 叶飞 陈正峰

    周洪福, 符文熹, 叶飞, 陈正峰, 2021. 陡倾坡外弱面控制的斜坡滑移-剪损变形破坏模式. 地球科学, 46(4): 1437-1446. doi: 10.3799/dqkx.2020.097
    引用本文: 周洪福, 符文熹, 叶飞, 陈正峰, 2021. 陡倾坡外弱面控制的斜坡滑移-剪损变形破坏模式. 地球科学, 46(4): 1437-1446. doi: 10.3799/dqkx.2020.097
    Zhou Hongfu, Fu Wenxi, Ye Fei, Chen Zhengfeng, 2021. Study on Sliding-Shearing Deformation and Failure Mode of Rock Slope with Steep Weak Structural Plane. Earth Science, 46(4): 1437-1446. doi: 10.3799/dqkx.2020.097
    Citation: Zhou Hongfu, Fu Wenxi, Ye Fei, Chen Zhengfeng, 2021. Study on Sliding-Shearing Deformation and Failure Mode of Rock Slope with Steep Weak Structural Plane. Earth Science, 46(4): 1437-1446. doi: 10.3799/dqkx.2020.097

    陡倾坡外弱面控制的斜坡滑移-剪损变形破坏模式

    doi: 10.3799/dqkx.2020.097
    基金项目: 

    四川省重点研发项目 2020YFS0296

    第二次青藏高原综合科学考察研究资助 2019QZKK0904

    中国地质调查局地质调查项目 DD20160272

    中国地质调查局地质调查项目 DD20211379

    详细信息
      作者简介:

      周洪福(1980-), 男, 博士, 教授级高工, 硕士生导师, 主要从事工程地质和地质灾害调查研究工作.ORCID: 0000-0001-5798-9153.E-mail: zhf800726@163.com

    • 中图分类号: P642

    Study on Sliding-Shearing Deformation and Failure Mode of Rock Slope with Steep Weak Structural Plane

    • 摘要: 斜坡变形破坏和稳定性分析是各类工程建设中高度关注的问题.采用实例调查、理论分析、数值计算等技术方法,以雅砻江某水电工程坝址区右岸顺层岩质斜坡为例,研究总结了斜坡发育滑移-剪损变形破坏的成因机理、发育特征以及与弱面倾角和发育深度的关系.研究表明,滑移-剪损变形破坏通常发育在力学性能相对较差的薄层、互层状结构的顺层岩质斜坡或斜坡强-弱风化带内.斜坡发育滑移-剪损变形破坏与陡倾坡外弱面的倾角和发育位置密切相关.倾角在45°~65°之间或距斜坡表部水平距离小于80 m的弱面对斜坡发育滑移-剪损变形破坏的影响控制作用明显,并且弱面距斜坡表部水平距离比弱面倾角对斜坡发育滑移-剪损变形破坏的影响控制作用更强.研究成果可补充完善岩质斜坡变形破坏类型,具有重要的工程意义和实践价值.

       

    • 图  1  顺层斜坡浅表部发育的滑移-剪损变形破坏模式(a)和陡倾坡外断层控制的斜坡滑移-剪损变形破坏模式(b)

      Fig.  1.  Sliding-shearing deformation and failure modes of bedding slope (a) and rock slope with steep fault (b)

      图  2  雅砻江某水电站坝址区右岸工程地质平面

      Fig.  2.  The right bank engineering geological ichnography of a hydropower station on Yalongjiang River

      图  3  斜坡滑移-剪损变形破坏成因机制分析

      Fig.  3.  Sketch map of formation mechanism of sliding-shearing deformation and failure mode

      图  4  数值计算结果显示斜坡中下部出现剪损面

      Fig.  4.  Sliding-shearing plane in slope bottom

      图  5  弱面不同倾角工况下的数值计算模型

      Fig.  5.  FEM model of different dips of weak structural plane

      图  6  弱面不同倾角条件下斜坡剪应变增量

      a. 结构面倾角50°;b. 结构面倾角55°; c. 结构面倾角60°; d. 结构面倾角65°; e. 结构面倾角70°; f. 结构面倾角75°

      Fig.  6.  Maximum shear strain of different dips of weak structural plane

      图  7  弱面不同发育深度条件下斜坡剪应变增量(弱面倾角50°)

      a. 距坡表水平距离20 m; b. 距坡表水平距离40 m; c. 距坡表水平距离60 m; d. 距坡表水平距离80 m; e. 距坡表水平距离100 m; f. 距坡表水平距离120 m; g. 距坡表水平距离140 m; h. 距坡表水平距离160 m; i. 距坡表水平距离180 m

      Fig.  7.  Maximum shear strain of different horizontal distances to slope surface of weak structural plane

      图  8  斜坡最大总位移与SRF关系

      Fig.  8.  Relation curve of maximum total displacement and strength reduction factor

      图  9  弱面倾角与斜坡SRF关系(a)和弱面距坡表水平距离与SRF关系(b)

      Fig.  9.  Relation curves of weak structural plane dip and strength reduction factor (a) and horizontal displacement to slope surface of weak structural plane and strength reduction factor (b)

      表  1  数值模型材料参数

      Table  1.   Calculation parameters of FEM model

      材料名称 E(GPa) γ(MN·m-3) C(MPa) Φ(°) T(MPa) μ
      强风化岩体 3.5 0.025 0.80 39 0.05 0.24
      弱风化岩体 10.0 0.026 1.20 47 0.60 0.22
      微风化岩体 15.0 0.027 1.80 55 1.20 0.20
      软弱结构面 1.0 0.022 0.15 25 0.00 0.30
      注:E.变形模量; γ.密度; C.内聚力; φ.内摩擦角; T.抗拉强度; μ.泊松比.
      下载: 导出CSV
    • [1] Fan, G., Zhang, J.J., Fu, X., et al., 2016. Energy Identification Method for Dynamic Failure Mode of Bedding Rock Slope with Soft Strata. Chinese Journal of Geotechnical Engineering, 38(5): 959-966(in Chinese with English abstract). http://www.cqvip.com/QK/95758X/20165/668830753.html
      [2] Ge, X.R., Ren, J.X., Li, C.G., et al., 2003.3D-FEM Analysis of Deep Sliding Stability of 3# Dam Foundation of Left Power House of the Three Gorges Project. Chinese Journal of Geotechnical Engineering, 25(4): 389-394(in Chinese with English abstract). http://www.cgejournal.com/EN/volumn/volumn_1282_abs.shtml
      [3] Huang, R.Q., Zhao, S.J., Song, X.B., et al., 2005. The Formation and Mechanism Analysis of Tiantai Landslide, Xuanhan County, Sichuan Province. Hydrogeology and Engineering Geology, 32(1): 13-15(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swdzgcdz200501003
      [4] Lian, Z.Y., Han, G.C., Kong, X.J., 2001. Stability Analysis of Excavation by Strength Reduction FEM. Chinese Journal of Geotechnical Engineering, 23(4): 407-411(in Chinese with English abstract).
      [5] Ren, G.M., Xia, M., Zeng, Q., et al., 2015. Characteristics and Formation Mechanism of Typical Sliding-Toppling Landslides in Bailong River Trunk Streams of Gansu, China. Journal of Chengdu University of Technology (Sci. & Technol. Ed. ), 42(1): 18-25(in Chinese with English abstract). http://www.researchgate.net/publication/283020545_Characteristics_and_formation_mechanism_of_typical_sliding-toppling_landslides_in_bailong_river_trunk_streams_of_Gansu_China
      [6] Song, G.F., Du, J.M., Ke, J., et al., 2019. Stability Limit Analysis of Bedding Rock Slopes Based on Pseudo-Dynamic Method. China Earthquake Engineering Journal, 41(4): 931-938(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_china-earthquake-engineering-journal_thesis/0201272756214.html
      [7] Tamotsu, M., Ka-Ghing, S., 1992. Finite Element Slope Stability Analysis by Shear Strength Reduction Technique. Solis and Foundations, 32(1): 59-70. https://doi.org/10.3208/sandf1972.32.59
      [8] Tian, F., 2014. Study on Slide-Shear Deformation and Failure Mode of Steep Bedding Rock Slope. Yangtze River, 45(S1): 57-59, 67(in Chinese).
      [9] Wang, S.H., Zhu, C.J., Zhang, Z.S., et, al., 2019. Stability Analysis of Multi-Slip Surface of Slope Based on Dynamic Strength Reduction DDA Method. Journal of China Coal Society, 44(4): 1084-1091(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_journal-china-coal-society_thesis/0201270785338.html
      [10] Xu, W.Y., Jiang, T., Zhao, Z.F., et al., 2006.3D Numerical Simulation of Impact of Key Fault and Fault Enhancement on Foundation Rock Mass of Guangzhao High Gravity Dam. Chinese Journal of Rock Mechanics and Engineering, 25(6): 1009-1105(in Chinese with English abstract). http://www.oalib.com/paper/1485565
      [11] Yang, J.H., Dong, J.Y., Liu, H.D., et al., 2011. Study on Deformation and Failure Mode of Slope Controlled by Rock Mass Structure. Journal of China Coal Society, 36(Suppl. 1): 58-62(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB2011S1013.htm
      [12] Zhou, H.F., Nie, D.X., Wang, C.S., 2010. Numerical Analysis of Prevention Measures for the Large Fault Belt Rock Mass in Dam Base of a Hydropower Station. Journal of Chengdu University of Technology (Science & Technology Edition), 37(6): 685-689(in Chinese with English abstract). http://www.researchgate.net/publication/294589127_Numerical_analysis_of_prevention_measures_for_the_large_fault_belt_rock_mass_in_dam_base_of_a_hydropower_station
      [13] Zhou, W., Li, H.B., Liu, Y.Q., et al., 2016. Pseudo-Dynamic Analysis of Anchored Characteristics of Layered Rock Slopes Subjected to Seismic Loads. Chinese Journal of Rock Mechanics and Engineering, 35(A02): 3570-3576(in Chinese with English abstract). http://www.cqvip.com/QK/96026X/2016A02/670914200.html
      [14] 范刚, 张建经, 付晓, 等, 2016. 含软弱夹层顺层岩质边坡动力破坏模式的能量判识方法研究. 岩土工程学报, 38(5): 959-966. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605024.htm
      [15] 葛修润, 任建喜, 李春光, 等, 2003. 三峡左厂3#坝段深层抗滑稳定三维有限元分析. 岩土工程学报, 25(4): 389-394. doi: 10.3321/j.issn:1000-4548.2003.04.001
      [16] 黄润秋, 赵松江, 宋肖兵, 等, 2005. 四川省宣汉县天台乡滑坡形成过程和机制分析. 水文地质工程地质, 32 (1): 13 -15. doi: 10.3969/j.issn.1000-3665.2005.01.003
      [17] 连镇营, 韩国城, 孔宪京, 2001. 强度折减有限元法研究开挖边坡的稳定性. 岩土工程学报, 23(4): 407-411. doi: 10.3321/j.issn:1000-4548.2001.04.005
      [18] 任光明, 夏敏, 曾强, 等, 2015. 白龙江干流典型滑移-倾倒型滑坡的特征及形成机制. 成都理工大学学报(自然科学版), 42(1): 18-25. doi: 10.3969/j.issn.1671-9727.2015.01.03
      [19] 宋桂锋, 杜江梅, 柯鉴, 等, 2019. 基于拟动力法的顺层岩质边坡稳定性极限分析. 地震工程学报, 41(4): 931-938. doi: 10.3969/j.issn.1000-0844.2019.04.931
      [20] 田夫, 2014. 中陡倾顺层边坡滑移-剪损渐进式破坏模式分析. 人民长江, 45(S1): 57-59, 67. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2014S1018.htm
      [21] 王述红, 朱承金, 张紫杉, 等, 2019. 基于动态强度折减DDA法的斜坡多滑面稳定性分析. 煤炭学报, 44(4): 1084-1091. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201904013.htm
      [22] 徐卫亚, 江涛, 赵志峰, 等, 2006. 光照重力坝坝基断层影响及处理的三维数值模拟. 岩石力学与工程学报. 25(6): 1099-1105. doi: 10.3321/j.issn:1000-6915.2006.06.004
      [23] 杨继红, 董金玉, 刘汉东, 等, 2011. 岩体结构控制下的边坡变形破坏模式分析. 煤炭学报, 36(增刊1): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB2011S1013.htm
      [24] 周洪福, 聂德新, 王春山, 2010. 水电工程坝基大规模破碎带处理措施数值分析. 成都理工大学学报(自然科学版), 37(6): 685-689. doi: 10.3969/j.issn.1671-9727.2010.06.015
      [25] 周炜, 李海波, 刘亚群, 等, 2016. 地震作用下顺层岩质边坡锚固特性的拟动力分析. 岩石力学与工程学报, 35(A02): 3570-3576. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2015.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  694
    • HTML全文浏览量:  183
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-05
    • 刊出日期:  2021-04-15

    目录

      /

      返回文章
      返回