• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析

    张森琦 李旭峰 宋健 文冬光 李志伟 黎敦朋 程正璞 付雷 张林友 冯庆达 杨涛 牛兆轩

    张森琦, 李旭峰, 宋健, 文冬光, 李志伟, 黎敦朋, 程正璞, 付雷, 张林友, 冯庆达, 杨涛, 牛兆轩, 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析. 地球科学, 46(4): 1416-1436. doi: 10.3799/dqkx.2020.094
    引用本文: 张森琦, 李旭峰, 宋健, 文冬光, 李志伟, 黎敦朋, 程正璞, 付雷, 张林友, 冯庆达, 杨涛, 牛兆轩, 2021. 共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析. 地球科学, 46(4): 1416-1436. doi: 10.3799/dqkx.2020.094
    Zhang Senqi, Li Xufeng, Song Jian, Wen Dongguang, Li Zhiwei, Li Dunpeng, Cheng Zhengpu, Fu Lei, Zhang Linyou, Feng Qingda, Yang Tao, Niu Zhaoxuan, 2021. Analysis on Geophysical Evidence for Existence of Partial Melting Layer in Crust and Regional Heat Source Mechanism for Hot Dry Rock Resources of Gonghe Basin. Earth Science, 46(4): 1416-1436. doi: 10.3799/dqkx.2020.094
    Citation: Zhang Senqi, Li Xufeng, Song Jian, Wen Dongguang, Li Zhiwei, Li Dunpeng, Cheng Zhengpu, Fu Lei, Zhang Linyou, Feng Qingda, Yang Tao, Niu Zhaoxuan, 2021. Analysis on Geophysical Evidence for Existence of Partial Melting Layer in Crust and Regional Heat Source Mechanism for Hot Dry Rock Resources of Gonghe Basin. Earth Science, 46(4): 1416-1436. doi: 10.3799/dqkx.2020.094

    共和盆地壳内部分熔融层存在的地球物理证据与干热岩资源区域性热源分析

    doi: 10.3799/dqkx.2020.094
    基金项目: 

    国家重点研发计划项目 2018YFB1501801

    中国地质调查局地质调查项目 DD20190131

    详细信息
      作者简介:

      张森琦(1962-), 男, 教授级高级工程师, 主要从事地热地质调查评价与研究工作.ORCID: 0000-0002-4243-5972.E-mail: senqizhang@126.com

      通讯作者:

      宋健, E-mail: songjian5596@126.com

    • 中图分类号: P314;P548

    Analysis on Geophysical Evidence for Existence of Partial Melting Layer in Crust and Regional Heat Source Mechanism for Hot Dry Rock Resources of Gonghe Basin

    • 摘要: 新生代以来,共和盆地及其周缘造山带无火山、岩浆活动,印支期隐伏花岗岩体岩浆余热与放射性元素衰变生热等难以构成共和盆地干热岩资源的主要热源,而共和盆地又为一高温地热异常盆地.目前已基本探明了共和县恰卜恰与贵德县热水泉干热岩体2处,圈定出干热岩勘查目标靶区16处.区域重力和区域航磁调查、区域天然地震成像、盆地尺度天然地震背景噪声层析成像勘查,以及超高分辨率重力异常、电阻率与Rayleigh波群相速度线性反演结果均表明共和盆地下伏发育有壳内部分熔融层,进而构成地处板内环境、高热流区共和盆地干热岩资源的区域性热源.盆地尺度MT勘查结果表明,共和盆地西盆地壳内部分熔融层埋深15~35 km,东西向长约41 km,南北向宽约34 km,厚度2~12 km.综合分析认为,该部分熔融层熔融程度最高可达4%~7%,15 km深处温度约为574℃,主体位于贵南南山推覆体系与共和准推覆体系深部主拆离滑脱推覆界面之下,兴海大型复合推覆体系主拆离滑脱推覆界面之上.挽近地质时期深构相、多层次、近水平展布的韧性拆离滑脱推覆构造界面的连续动态剪切摩擦生热,可能是部分熔融层形成的主要因素.

       

    • 图  1  共和盆地及周缘造山带区域地质图与隐伏干热岩勘查开发目标靶区分布

      1.地层代号;2.燕山期侵入岩;3.印支期侵入岩;4.前印支期侵入岩;5.地质界线;6.区域性断裂和一般断裂;7.地质(红)与地球物理(紫)推断的隐伏断裂;8.推覆构造/ 飞来峰;9.断层位移方向;10.温泉;11.地热及石油勘探孔;12.干热岩开发目标靶区;13.干热岩勘查目标靶区;14.MT勘查线

      Fig.  1.  Regional geological map and target areas of concealed hot dry rock exploration and development within the Gonghe basin and its surrounding orogenic belt

      图  2  共和盆地DSS剖面速度模型

      Jia et al.(2019)修改

      Fig.  2.  Velocity model along the DSS profile of Gonghe basin

      图  3  共和盆地及周缘主要第四纪断裂系统

      F1.青海南山南缘断裂;F2.贵南南山南缘断裂;F3.哇洪山-温泉断裂;F4.哇玉香卡-贵南隐伏断裂;F5.沙沟断裂;F6.新街断裂;F7.多禾茂断裂;F8.东昆南断裂;F9.马沁-文都弧形断裂.黑、红色实三角形所在盘为逆断层上盘;半箭头指示所在盘滑移方向.图a据袁道阳等(2004);图b据张国伟等(2004);图c据Craddock et al.(2014)修改

      Fig.  3.  Main Quaternary fault system of the Gonghe basin and its surrounding area

      图  4  区域NNW向走滑挤隆构造形成机制示意图

      侯康明等(1999)修改

      Fig.  4.  Formation mechanism schematic diagram of the regional NNW strike slip extrusion structure

      图  5  1:100万区域剩余重力异常平面图

      黑实线为剩余异常正等值线,紫色点划线为剩余异常零等值线,黑断线为剩余异常负等值线;数字注记单位为10-5 m/s2. G21等代号为剩余重力异常编号. 图据青海省自然资源厅(1992, 青海东部1:100万区域重力调查报告)

      Fig.  5.  The 1:1 000 000 regional residual gravity anomaly

      图  6  1:100万区域航磁ΔT异常平面图

      实线ΔT正等值线,紫点划线为ΔT零等值线,虚线为ΔT负等值线;数字注记单位为nT.据青海省自然资源厅(1992, 青海东部1:100万区域重力调查报告)

      Fig.  6.  Map of the 1:1 000 000 regional aeromagnetic ΔT anomaly

      图  7  共和-玉树三分量地震台站分布

      图内数字注记为测点号; 据钱辉等(2001)修改

      Fig.  7.  Distribution of three component seismic stations across Gonghe-Yushu

      图  8  共和-玉树接收函数反演的S波波速剖面

      钱辉等(2001)修改

      Fig.  8.  Profile of the S-wave velocity inversed by receiver function across Gonghe-Yushu

      图  9  共和盆地西盆地不同深度天然地震背景噪声层析成像

      a.深度为4 km; b.深度为8 km; c.深度为16 km; d.深度为20 km; e.深度为22 km; f.深度为24 km

      Fig.  9.  Tomographic map of the natural seismic background noise at different depths within the western basin of the Gonghe basin

      图  10  贵德-大通大地电磁测深(MT)剖面

      图中数据为电阻率等值线(单位:Ω·m). 据地质矿产部第一物探综合大队(1993, 青海省贵德-西宁-甘肃省民乐大地电磁测深成果报告)修改

      Fig.  10.  Magnetotelluric sounding profile of the Guide-Datong area

      图  11  共和-塔秀MT勘查L6线二维反演结果

      Fig.  11.  2D inversion result of the MT exploration line L6 of the Gonghe-Taxiu

      图  12  恰卜恰地区干热岩勘探孔深度-温度曲线

      Fig.  12.  Depth-temperature curves of the hot dry rock exploration holes within the Qiabuqia area

      图  13  青海湖南岸下社西-娃彦山南MT勘查L7线二维反演结果

      Fig.  13.  2D inversion result of the MT exploration line L7 across the west of Xiashe to the south of Wayan Mountain in the south bank of the Qinghai Lake

      图  14  区域重力异常与深部层析成像剖面

      a.基于超高分辨率重力数据库的区域重力异常特征; b.电阻率与Rayleigh波群相速度线性反演A-A'剖面; c.电阻率与Rayleigh波群相速度线性反演B-B'剖面.据Gao et al.(2018)修改

      Fig.  14.  Profiles of the regional gravity anomaly and the Vs model from ambient noise tomography

      表  1  L6测线附近主要钻孔地质-地热地质数据统计

      Table  1.   Statistics of the geological and geothermal geological data of the main boreholes near the survey line L6

      钻孔编号 孔深(m) 第四系底界埋深(m) 新近系底界埋深(m) 古近-新近系底界埋深(m) 隐伏花岗岩顶界埋深(m) 近干热岩体顶界温度(℃)/孔深(m) 近孔底温度(℃)/深度(m)
      共参1井 5 026.60 1 076.00 4 005.00 > 5 026.6 > 5 026.6 - 167.00/ 5 026.60
      DR3 2 927.26 607.50 1 340.25 - 1 340.25 150.19/ 2 104.31 180.27/ 2 880.29
      DR2 1 852.38 610.00 1 440.90 - 1 440.90 145.00/ 3 000.00 98.60/ 1 840.00
      下载: 导出CSV
    • [1] Artemieva, I. M., Thybo, H., Jakobsen, K., et al., 2017. Heat Production in Granitic Rocks: Global Analysis Based on a New Data Compilation GRANITE2017. Earth-Science Reviews, 172: 1-26. doi: 10.1016/j.earscirev.2017.07.003
      [2] Bai, J.Q., Mei, L., Yang, M.L., 2006. Geothermal Resources and Crustal Thermal Structure of the Qinghai-Tibet Plateau. Journal of Geomechanics, 12(3): 354-362 (in Chinese with English abstract).
      [3] Beardsmore, G., 2004. The Influence of Basement on Surface Heat Flow in the Cooper Basin. Exploration Geophysics, 35(4): 223-235. https://doi.org/10.1071/eg04223
      [4] Beaumont, C., Jamieson, R. A., Nguyen, M. H., et al., 2001. Himalayan Tectonics Explained by Extrusion of a Low-Viscosity Crustal Channel Coupled to Focused Surface Denudation. Nature, 414(6865): 738-742. https://doi.org/10.1038/414738a
      [5] Cai, P.J., Xu, R.K., Liu, J., et al., 2014. The First Discovery of the Neogene Volcanic Activity in the Guide Basin, Qinghai Province. Resources Survey & Environment, 35(2): 129-129, 156 (in Chinese).
      [6] Chen, L.S., Booker, J. R., Jones, A. G., et al., 1996. Electrically Conductive Crust in Southern Tibet from INDEPTH Magnetotelluric Surveying. Science, 274(5293): 1694-1696. https://doi.org/10.1126/science.274.5293.1694
      [7] Chen, X. H., Dang, Y. Q., Yin, A., et al., 2010. Basin-Mountain Coupling and Tectonic Evolution of the Qaidam Basin and Its Surrounding Mountain System. Geological Publishing House, Beijing (in Chinese).
      [8] Craddock, W. H., Kirby, E., Harkins, N., et al., 2010. Rapid Fluvial Incision along the Yellow River during Headward Basin Integration. Nature Geoscience, 3(3): 209-213. doi: 10.1038/ngeo777
      [9] Craddock, W. H., Kirby, E., Zhang, H. P., et al., 2014. Rates and Style of Cenozoic Deformation around the Gonghe Basin, Northeastern Tibetan Plateau. Geosphere, 10(6): 1255-1282. https://doi.org/10.1130/geS01024.1
      [10] Desissa, M., Johnson, N. E., Whaler, K. A., et al., 2013. A Mantle Magma Reservoir beneath an Incipient Mid-Ocean Ridge in Afar, Ethiopia. Nature Geoscience, 6(10): 861-865. doi: 10.1038/ngeo1925
      [11] Didana, L.Y., Thiel, S., Heinson, G., 2014. Magnetotelluric Imaging of Upper Crustal Partial Melt at Tendaho Graben in Afar, Ethiopia. Geophysical Research Letters, 41(9): 3089-3095. https://doi.org/10.1002/2014gl060000
      [12] Feldman, I. S., 1976. On the Nature of Conductive Layers in the Earth's Crust and Upper Mantle. Geoelectric and Geothermal Studies, 1(1): 721-730.
      [13] Feng, Y. M., Cao, X. D., Zhang, E. P., et al., 2002. Fragment, Process and Mechanism of the Western Qinling Orogenic Belt. Xi'an Cartographic Press, Xi'an (in Chinese).
      [14] Fleitout, L., Froidevaux, C., 1980. Thermal and Mechanical Evolution of Shear Zones. Journal of Structural Geology, 2(1/2): 159-164.
      [15] Flinders, A. F., Shelly, D. R., Dawson, P. B., et al., 2018. Seismic Evidence for Significant Melt beneath the Long Valley Caldera, California, USA. Geology, 46: 799-802. https://doi.org/10.1130/g45094.1
      [16] Gao, J., Zhang, H. J., Zhang, S. Q., et al., 2018. Three-Dimensional Magnetotelluric Imaging of the Geothermal System beneath the Gonghe Basin, Northeast Tibetan Plateau. Geothermics, 76: 15-25. https://doi.org/10.1016/j.geothermics.2018.06.009
      [17] Gao, L.E., Zeng, L.S., Wang, L., et al., 2016. Timing of Different Crustal Partial Melting in the Himalayan Orogenic Belt and Its Tectonic Implications. Acta Geologica Sinica, 90(11): 3039-3059(in Chinese with English abstract).
      [18] Goes, S., Govers, R., Vacher, P., 2000. Shallow Mantle Temperatures under Europe from P and S Wave Tomography. Journal of Geophysical Research: Solid Earth, 105(B5): 11153-11169. https://doi.org/10.1029/1999jb900300
      [19] Grujic, D., Casey, M., Davidson, C., et al., 1996. Ductile Extrusion of the Higher Himalayan Crystalline in Bhutan: Evidence from Quartz Microfabrics. Tectonophysics, 260: 21-43. https://doi.org/10.1016/0040-1951(96)00074-1
      [20] Gu, Q., Sun, J., Shi, S. L., et al., 1980. The Features of Highly Electrical Conductivity Layer in North China and Northwest China Regions. Seismology and Geology, 2(2): 21-29 (in Chinese with English abstract).
      [21] Guo, A. L., Zhang, G. W., Qiang, J., et al., 2009. Indosinian Zongwulong Orogenic Belt on the Northeastern Margin of the Qinghai-Tibet Plateau. Acta Petrologica Sinica, 25 (1): 1-12 (in Chinese with English abstract).
      [22] Guo, X.F., Zhang, Y.C., Cheng, Q.Y., et al., 1990. Magnetotelluric Studies along Yadong-Golmud Geosciences Transect in Qinghai-Xizang Plateau. Acta Geoscientica Sinica, 11(2): 191-202(in Chinese with English abstract).
      [23] Hacker, B. R., Ritzwoller, M. H., Xie, J., 2014. Central Tibet has a Partially Melted, Mica-Bearing Crust. Tectonics, 33: 1408-1424. https://doi.org/10.1002/2014tc003545
      [24] Harkins, N., Kirby, E., Heimsath, A., et al., 2007. Transient Fluvial Incision in the Head-Waters of the Yellow River, Northeastern Tibet, China. Journal of Geophysical Research: Earth Surface, 112: F03S04. https://doi.org/10.1029/2006JF000570
      [25] He, L.F., Chen, L., Dor, J., et al., 2016. Mapping the Geothermal System Using AMT and MT in the Mapamyum (QP) Field, Lake Manasarovar, Southwestern Tibet. Energies, 9 (10): 855. https://doi.org/10.3390/en9100855
      [26] Hirt, C., Claessens, S., Fecher, T., et al., 2013. New Ultrahigh-Resolution Picture of Earth's Gravity Field. Geophysical Research Letters, 40(1-5): 4279-4283. https://doi.org/10.1002/grl.50838
      [27] Hou, K.M., Shi, Y.M., Zhang, X., 1999. Activity Ways and Formation Age of the New Tectonics in the Northern Tibet Plateau. Seismology and Geology, 21(2): 127-136(in Chinese with English abstract).
      [28] Huang, J. H., Wang, M., Liu, H., 2016. Qinghai South Montain-Gonghe Area 1: 50 000 Aeromagnetic Survey Report. Data Center of Natural Resources Department, Qinghai Province, Xining (in Chinese).
      [29] Huang, Z.L., 2005. A Dictionary of Earth Sciences · Applied Science Volume. Geological Publishing House, Beijing (in Chinese).
      [30] Jamieson, R. A., Unsworth, M. J., Harris, N. B. W., et al., 2011. Crustal Melting and the Flow of Mountains. Elements, 7(4): 253-260. doi: 10.2113/gselements.7.4.253
      [31] Jia S. X., Guo W. B., Mooney, W. D., et al., 2019. Crustal Structure of the Middle Segment of the Qilian Fold Belt and the Coupling Mechanism of Its Associated Basin and Range System. Tectonophysics, 770: 128154. https://doi.org/10.1016/j.tecto.2019.06.024
      [32] Jiang, R.B., Chen, X.H., Dang, Y.Q., et al., 2008. Apatite Fission Track Evidence for Two Phases Mesozoic-Cenozoic Thrust Faulting in Eastern Qaidam Basin. Chinese Journal of Geophysics, 51(1): 116-124(in Chinese with English abstract).
      [33] Jiang, Y.T., Zhang, Y.Z., Wang, L.M., et al., 2015. The Characteristics of Gravity Fields in Sichuan-Yunnan Region and Its Relationship with Regional Earthquakes. Progress in Geophysics, 30(5): 1990-1994(in Chinese with English abstract).
      [34] Kennedy, B.M., van Soest, M. C., 2007. Flow of Mantle Fluids through the Ductile Lower Crust: Helium Isotope Trends. Science, 318(5855): 1433-1436. https://doi.org/10.1126/science.1147537
      [35] Kong, X.R., Wang, Q.S., Xiong, S.B., 1996. Study on the Comprehensive Geophysics and Lithospheric Structure in the Western Tibet Plateau. Science in China (Series D), 26(4): 308-315(in Chinese).
      [36] Le Pape, F., Jones, A. G., Vozar, J., et al., 2012. Penetration of Crustal Melt beyond the Kunlun Fault into Northern Tibet. Nature Geoscience, 5(5): 330-335. https://doi.org/10.1038/ngeo1449
      [37] Li, B. X., 2002. Langshan-Wuwei-Gonghe Faulted Zone and Geothermal Distribution. Acta Geologica Gansu, 11(1): 83-88 (in Chinese with English abstract).
      [38] Li, Z.Q., Hou, Z.Q., Nie, F.J., et al., 2005. Characteristic and Distribution of the Partial Melting Layers in the Upper Crust: Evidence from Active Hydrothermal Fluid in the South Tibet. Acta Geologica Sinica, 79(1): 68-77(in Chinese with English abstract).
      [39] Liu, J.L., Bai, W. M., Kong, X. R., et al., 2001. Electrical Conductivity of Granite, Basalt and Pyroxene Peridotite under High Temperature-High Pressure Conditions. Chinese Journal of Geophysics, 44(4): 528-533 (in Chinese with English abstract).
      [40] Ma, X.B., Kong, X.R., Liu, H.B., et al., 2005. The Electrical Structure of Northeastern Qinghai-Tibet Plateau. Chinese Journal of Geophysics, 48(3): 689-697(in Chinese with English abstract).
      [41] McKenzie, D., Jackson, J., Priestley, K., 2005. Thermal Structure of Oceanic and Continental Lithosphere. Earth and Planetary Science Letters, 233(3/4): 337-349. https://doi.org/10.1016/j.epsl.2005.02.005
      [42] Mclaren, S., Sandiford, M., Hand, M., et al., 2003. The Hot Southern Continent: Heat Flow and Heat Production in Australian Proterozoic Terranes. Geological Society of Australia Special Publication, 22: 151-161. https://doi.org/10.1016/j.epsl.2005.02.005
      [43] Nelson, K. D., Zhao, W. J., Brown, L. D., et al., 1996. Partially Molten Middle Crust beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science, 274(5293): 1684-1688. https://doi.org/10.1126/science.274.5293.1684
      [44] Nover, G., 2005. Electrical Properties of Crustal and Mantle Rocks: A Review of Laboratory Measurements and Their Explanation. Surveys in Geophysics, 26(5): 593-651. https://doi.org/10.1007/s10712-005-1759-6
      [45] Owens, T.J., Zandt, G., 1997. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 387: 37-43. https://doi.org/10.1038/387037a0
      [46] Pan, G.T., Xiao, Q. H., Lu, S. N., et al., 2009. Subdivision of Tectonic Units in China. Geology in China, 36(1): 1-27 (in Chinese with English abstract).
      [47] Peng, Y., 2015. The Late Hercynian–Indosinian Structural Characteristics of the Zongwulong Tectonic Belt in North Qaidam Basin (Dissertation). Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract).
      [48] Priestley, K., Kenzie, D. M., 2006. The Thermal Structure of the Lithosphere from Shear Wave Velocities. Earth and Planetary Science Letters, 244(1/2): 285-301. https://doi.org/10.1016/j.epsl.2006.01.008
      [49] Qi, X.X., Li, H.B., Zhang, J.X., et al., 2003. Relationship between Deformation-Metamorphism and Syntectonic Melting in a Ductile Shear Zone: A Case Study of the Baokuhe Ductile Shear Zone in the Central Qilian Mountains. Geological Review, 49(4): 413-421, T003(in Chinese with English abstract).
      [50] Qian, H., Jiang, M., Xue, G.Q., et al., 2001. Crustal Structure of Northeastern Tibet Inferred from Receiver Function Analysis. Acta Seismologica Sinica, 23(1): 103-108(in Chinese with English abstract).
      [51] Robinson, R., Iyer, H. M., 1981. Delineation of a Low-Velocity Body under the Roosevelt Hot Springs Geothermal Area, Utah, Using Teleseismic P-Wave Data. Geophysics, 46(10): 1456-1466. https://doi.org/10.1190/1.1441152
      [52] Searle, M. P., Law, R. D., Jessup, M. J., 2006. In Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications, 268: 355-378. doi: 10.1144/GSL.SP.2006.268.01.17
      [53] Sun, Y. G., 2004. Gonghe Aulacogen and Conjugate and Transfer between the West Qinling and East Kunlun Orogens(Dissertation). Northwest University, Xi'an(in Chinese with English abstract).
      [54] Teng, J.W., Xiong, S.B., Zhang, Z.J., 1997. Review and Prospects for Geophysical Study of the Deep Lithosphere Structure and Tectonics in Qinghai-Xizang(Tibet) Plateau. Chinese Journal of Geophysics, 40(S1): 121-139(in Chinese with English abstract).
      [55] Unsworth, M. J., Jones, A. G., Wei, W., et al., 2005. Crustal Rheology of the Himalaya and Southern Tibet Inferred from Magnetotelluric Data. Nature, 438(7064): 78-81. https://doi.org/10.1038/nature04154
      [56] Wan, T.F., 2018. On the Dynamic Mechanics of Global Lithosphere Plate Tectonics. Earth Science Frontiers, 25(2): 320-335(in Chinese with English abstract).
      [57] Wan, T. F., Zhu, H., 2002. Tectonics and Environment Change of Meso-Cenozoic in China Continent and Its Adjacent Area. Geoscience, 16(2): 107-1120 (in Chinese with English abstract).
      [58] Wang, E. Q., Su, Z., Xu, G., 2009. A Case Study on Lateral Extrusion Occurred along Some Orogenic Belts in China. Chinese Journal of Geology, 44(4): 1266-1288 (in Chinese with English abstract).
      [59] Wang, K., 2019. Research on Simulation and Inversion of Magnetotelluric for Hot Dry Rock Exploration and Its Application(Dissertation). Jilin University, Changchun (in Chinese with English abstract).
      [60] Wang, Q., Hawkesworth, C. J., Wyman, D., et al., 2016. Pliocene-Quaternary Crustal Melting in Central and Northern Tibet and Insights into Crustal Flow. Nature Communications, 7: 11888. doi: 10.1038/ncomms11888
      [61] Wei, W.B., Chen, L.S., Tan, H.D., et al., 1997. Application of Advanced Mt Processing and Inversion Methods in Project Indepth Mt. Geoscience, 11(3): 387-392(in Chinese with English abstract).
      [62] Wei, W.B., Jin, S., Ye, G.F., et al., 2003. Methods to Study Electrical Conductivity of Continental Lithosphere. Earth Science Frontiers, 10(1): 15-23(in Chinese with English abstract).
      [63] Wu, Q., 1982. Application of Gravity-Magnetic Method in Geothermal Field. Geophysical and Geochemical Exploration, 6(2): 121-124 (in Chinese with English abstract).
      [64] Wu, Z. H., Hu, D. G., Wu, Z. H., et al., 2005. Geological Characteristics and Formation Age of Yangbajing-Dangxiong-Gulu Graben in Tibet. In: Geochanics Professional Committee and Quaternary Geology Professional Committee, ed., Geological Processes and Environmental Disaster Effects in Tibetan Plateau. Seismological Press, Beijing (in Chinese).
      [65] Xu, Z. Q., Zhang, J. X., Xu, H. F., et al., 1997. Ductile Shear Zones in the Main Continental Mountain Chains of China and Their Dynamics. Geological Publishing House, Beijing (in Chinese).
      [66] Yan, J.Y., Zheng, H.W., He, R.Z., et al., 2019. Low Velocity Layer Investigation in Central Qiangtang in North Tibet and Its Dynamic Implications. Earth Science, 44(6): 1784-1796(in Chinese with English abstract).
      [67] Yan, Y. L., Ma, X. B., Chen, Y., et al., 2012. The Study of Magnetotelluric Sounding on Coqên-Xainza Profile in Tibet. Chinese Journal of Geophysics, 55(8): 2636-2642 (in Chinese with English abstract).
      [68] Yang, L.Z., Liu, J.H., Sun, Z.X., et al., 2016. Study of the Characteristics of Radioactive Heat Production Rate and Hot Dry Rock Resources Potential in Zhangzhou City. Modern Mining, 32(3): 123-127, 133(in Chinese with English abstract).
      [69] Yang, X.S., Jin, Z.M., 1998. The Low Velocity Zone Resulted from Crustal Partial Melting and Its Significance. Progress in Geophysics, 13(3): 38-45(in Chinese with English abstract).
      [70] Yang, Y. J., Ritzwoller, M. H., Zheng, Y., et al., 2012. A Synoptic View of the Distribution and Connectivity of the Midcrustal Low Velocity Zone beneath Tibet. Journal of Geophysical Research, 117: B04303. https://doi.org/10.1029/2011jb008810
      [71] Yang, Y., Chen, J.Y., Yang, X.S., et al., 2010. Does Alignment of Melt Enhance Seismic Anisotropy beneath Tibet? Seismology and Geology, 32(1): 59-69(in Chinese with English abstract).
      [72] Yang, Y., Jiang, Z. H., Yue, J. H., et al., 2019. Discussion on Application of Geophysical Methods in Hot Dry Rock (HDR) Exploration. Progress in Geophysics. 34(4): 1556-1567 (in Chinese with English abstract).
      [73] Yuan, D.Y., Zhang, P.Z., Liu, X.L., et al., 2004. The Tectonic Activity and Deformation Features during the Late Quaternary of Elashan Mountain Active Fault Zone in Qinghai Province and Its Implication for the Deformation of the Northeastern Margins of the Qinghai-Tibet Plateau. Earth Science Frontiers, 11(4): 393-402(in Chinese with English abstract).
      [74] Yuan, X.C., 1995. On Continental Basal Structure in China. Chinese Journal of Geophysics, 38(4): 448-459(in Chinese with English abstract).
      [75] Yuan, X. C., Li, L., Jin, G. Y., et al., 1985. Deep Magnetotelluric Sounding in the Luozha-Yangbajing Area, Tibet. Acta Geologica Sinica, (1): 26-32 (in Chinese with English abstract).
      [76] Zeng, Z. F., Chen, X., Li, J., et al., 2012. Advancement of Geothermal Geophysics Exploration. Progress in Geophysics, 27(1): 168-178 (in Chinese with English abstract).
      [77] Zhang, C., Zhang, S. S., Li, S. T., et al., 2018. Geothermal Characteristics of the Qiabuqia Geothermal Area in the Gonghe Basin, Northeastern Tibetan Plateau. Chinese Journal of Geophysics, 61 (11): 4545-4557 (in Chinese with English abstract).
      [78] Zhang, G. W., Guo, A. L., Yao, A. P., 2004. Western Qinling-Songpan Continental Tectonic Node in China's Continental Tectonics. Earth Science Frontiers, 11(3): 23-32 (in Chinese with English abstract).
      [79] Zhang, H.F., Chen, Y.L., Xu, W.C., et al., 2006. Granitoids around Gonghe Basin in Qinghai Province: Petrogenesis and Tectonic Implications. Acta Petrologica Sinica, 22(12): 2910-2922(in Chinese with English abstract).
      [80] Zhang, L.T., Wei, W.B., Jin, S., et al., 2011. Studies on the Temperature Dependence of Electrical Conductivity of Upper Mantle Rocks. Progress in Geophysics, 26(2): 505-510(in Chinese with English abstract).
      [81] Zhang, S. Q., Wen, D. G., Xu, T. F., et al., 2019. The U.S. Frontier Observatory for Research in Geothermal Energy Project and Comparison of Typical EGS Site Exploration Status in China and U.S. . Earth Science Frontiers, 26(2): 321-334 (in Chinese with English abstract).
      [82] Zhang, S.Q., Yan, W.D., Li, D.P., et al., 2018. Characteristics of Geothermal Geology of the Qiabuqia HDR in Gonghe Basin, Qinghai Province. Geology in China, 45(6): 1087–1102(in Chinese with English abstract).
      [83] Zhang, X. T., Yang, S. D., Yang, Z. J., 2007. The Plate Tectonics of Qinghai Province—A Guide to the 1: 1 Million Geotectonic Map of Qinghai Province. Geological Publishing House, Beijing(in Chinese).
      [84] Zhang, Y. M., 2017. Indosinian Tectonic–Magmatism and Regional Tectonic Evolution in the Qinghainanshan Tectonic Belt (Dissertation). Chang'an University, Xi'an(in Chinese with English abstract).
      [85] Zhang, Z.M., Dong, X., Ding, H.X., et al., 2017. Metamorphism and Partial Melting of the Himalayan Orogen. Acta Petrologica Sinica, 33(8): 2313-2341(in Chinese with English abstract).
      [86] Zhang, Z.M., Kang, D.Y., Ding, H.X., et al., 2018. Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 43(1): 82-98(in Chinese with English abstract).
      [87] Zhao, W. J., Nelson, K. D., 1993. Project INDEPTH Team Deep Seismic Reflection Evidence for Continental under Thrusting beneath Southern Tibet. Nature, 366: 557-559. doi: 10.1038/366557a0
      [88] Zhu, Y. Q., Shi, Y. L., 1990. Shear Heating and Partial Melting of Granite-Thermal Structure at Overthrusted Terrains in the Greater Himalaya. Acta Geophysica Sinica, 33(4): 408-416 (in Chinese with English abstract).
      [89] 白嘉启, 梅琳, 杨美伶, 2006. 青藏高原地热资源与地壳热结构. 地质力学学报, 12(3): 354-362. doi: 10.3969/j.issn.1006-6616.2006.03.010
      [90] 蔡鹏捷, 许荣科, 刘嘉, 等, 2014. 青海省贵德盆地内首次发现新近系火山活动. 资源调查与环境, 35(2): 129-129, 156. doi: 10.3969/j.issn.1671-4814.2014.02.006
      [91] 陈宣华, 党玉琪, 尹安, 等, 2010. 柴达木盆地及其周缘山系盆山耦合与构造演化. 北京: 地质出版社.
      [92] 冯益民, 曹宣铎, 张二朋, 等, 2002. 西秦岭造山带结构造山过程及动力学. 西安: 西安地图出版社.
      [93] 高利娥, 曾令森, 王莉, 等, 2016. 喜马拉雅碰撞造山带不同类型部分熔融作用的时限及其构造动力学意义. 地质学报, 90(11): 3039-3059. doi: 10.3969/j.issn.0001-5717.2016.11.006
      [94] 顾群, 孙洁, 史书林, 等, 1980. 华北、西北一些地区地壳和上地幔内高导层. 地震地质, 2(2): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198002002.htm
      [95] 郭安林, 张国伟, 强娟, 等, 2009. 青藏高原东北缘印支期宗务隆造山带. 岩石学报, 25(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200901002.htm
      [96] 郭新峰, 张元丑, 程庆云, 等, 1990. 青藏高原亚东—格尔木地学断面岩石圈电性研究. 地球学报, 11(2): 191-202. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB199002018.htm
      [97] 侯康明, 石亚缪, 张忻, 1999. 青藏高原北部NNW向构造活动方式及形成年代. 地震地质, 21(2): 127-136. doi: 10.3969/j.issn.0253-4967.1999.02.005
      [98] 黄金辉, 王牧, 刘浩, 2016. 青海省青海南山-共和地区1: 5万航磁测量报告. 西宁: 青海省国土资源厅资料馆.
      [99] 黄宗理, 2005. 地球科学大辞典·应用学科卷. 北京: 地质出版社.
      [100] 蒋荣宝, 陈宣华, 党玉琪, 等, 2008. 柴达木盆地东部中新生代两期逆冲断层作用的FT定年. 地球物理学报, 51(1): 116-124. doi: 10.3321/j.issn:0001-5733.2008.01.015
      [101] 姜永涛, 张永志, 王丽美, 等, 2015. 川滇地区重力场特征及其与区域强震的关系. 地球物理学进展, 30(5): 1990-1994. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201505002.htm
      [102] 孔祥儒, 王谦身, 熊绍柏, 1996. 西藏高原西部综合地球物理与岩石圈结构研究. 中国科学(D辑), 26(4): 308–315. doi: 10.3321/j.issn:1006-9267.1996.04.004
      [103] 李百祥, 2002. 狼山—武威—共和断裂带和地热分布. 甘肃地质学报, 11(1): 83-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GSDZ200201012.htm
      [104] 李振清, 侯增谦, 聂凤军, 等, 2005. 藏南上地壳低速高导层的性质与分布: 来自热水流体活动的证据. 地质学报, 79(1): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200501007.htm
      [105] 柳江琳, 白武明, 孔祥儒, 等, 2001. 高温高压下花岗岩、玄武岩和辉橄岩电导率的变化特征. 地球物理学报, 44(4): 528-533. doi: 10.3321/j.issn:0001-5733.2001.04.011
      [106] 马晓冰, 孔祥儒, 刘宏兵, 等, 2005. 青藏高原东北部地区地壳电性结构特征. 地球物理学报, 48(3): 689-697. doi: 10.3321/j.issn:0001-5733.2005.03.029
      [107] 潘桂棠, 肖庆辉, 陆松年, 等, 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200901004.htm
      [108] 彭渊, 2015. 柴北缘宗务隆构造带海西晚期-印支期构造特征研究(博士学位论文). 北京: 中国地质科学院.
      [109] 戚学祥, 李海兵, 张建新, 等, 2003. 韧性剪切带的变形变质与同构造熔融作用: 以中祁连地块宝库河韧性走滑剪切带为例. 地质论评, 49(4): 413-421, T003. doi: 10.3321/j.issn:0371-5736.2003.04.012
      [110] 钱辉, 姜枚, 薛光琦, 等, 2001. 天然地震接收函数揭示的青藏高原东部地壳结构. 地震学报, 23(1): 103-108. doi: 10.3321/j.issn:0253-3782.2001.01.013
      [111] 孙延贵, 2004. 西秦岭-东昆仑造山带的衔接转换与共和坳拉谷(博士学位论文). 西安: 西北大学.
      [112] 滕吉文, 熊绍柏, 张中杰, 1997. 青藏高原深部结构与构造地球物理研究的回顾和展望. 地球物理学报, 40(S1): 121-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX1997S1011.htm
      [113] 万天丰, 2018. 论全球岩石圈板块构造的动力学机制. 地学前缘, 25(2): 320-335. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802039.htm
      [114] 万天丰, 朱鸿, 2002. 中国大陆及邻区中生代—新生代大地构造与环境变迁. 现代地质, 16(2): 107-1120. doi: 10.3969/j.issn.1000-8527.2002.02.001
      [115] 王二七, 苏哲, 许光, 2009. 我国的一些造山带的侧向挤出构造. 地质科学, 44(4): 1266-1288. doi: 10.3321/j.issn:0563-5020.2009.04.016
      [116] 王坤, 2019. 干热岩勘查中大地电磁测深正反演及其应用研究(博士学位论文). 长春: 吉林大学.
      [117] 魏文博, 陈乐寿, 谭捍东, 等, 1997. 西藏中-南部壳内高导体与热结构特点: INDEPTH-MT提供的证据. 现代地质, 11(3): 387-392. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ703.020.htm
      [118] 魏文博, 金胜, 叶高峰, 等, 2003. 大陆岩石圈导电性的研究方法. 地学前缘, 10(1): 15-23. doi: 10.3321/j.issn:1005-2321.2003.01.003
      [119] 吴钦, 1982. 地热田上重磁方法的应用. 物探与化探, 6(2): 121-124. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH198202007.htm
      [120] 吴珍汉, 胡道功, 吴中海, 等, 2005. 西藏羊八井-当雄-谷露地堑的地质特征与形成时代. 见: 地质力学专业委员会与第四纪地质专业委员会, 编, 青藏高原地质过程与环境灾害效应文集. 北京: 地震出版社.
      [121] 许志琴, 张建新, 徐惠芬, 等, 1997. 中国主要大陆山链韧性剪切带及动力学. 北京: 地质出版社.
      [122] 严江勇, 郑洪伟, 贺日政, 等, 2019. 藏北羌塘盆地中部地壳低速层分布与动力学意义. 地球科学, 44(6): 1784-1796. doi: 10.3799/dqkx.2018.355
      [123] 闫永利, 马晓冰, 陈赟, 等, 2012. 西藏错勤-申扎剖面大地电磁测深研究. 地球物理学报, 55(8): 2636-2642. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201208016.htm
      [124] 杨立中, 刘金辉, 孙占学, 等, 2016. 漳州岩体放射性生热率特征及干热岩资源潜力. 现代矿业, 32(3): 123-127, 133. doi: 10.3969/j.issn.1674-6082.2016.03.045
      [125] 杨晓松, 金振民, 1998. 壳内部分熔融低速层及其研究意义. 地球物理学进展, 13(3): 38-45. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ803.003.htm
      [126] 杨彧, 陈建业, 杨晓松, 等, 2010. 部分熔融强化了青藏高原地壳的各向异性? 地震地质, 32(1): 59-69. doi: 10.3969/j.issn.0253-4967.2010.01.006
      [127] 杨冶, 姜志海, 岳建华, 等, 2019. 干热岩勘探过程中地球物理方法技术应用探讨. 地球物理学进展, 34(4): 1556-1567. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201904035.htm
      [128] 袁道阳, 张培震, 刘小龙, 等, 2004. 青海鄂拉山断裂带晚第四纪构造活动及其所反映的青藏高原东北缘的变形机制. 地学前缘, 11(4): 393-402. doi: 10.3321/j.issn:1005-2321.2004.04.006
      [129] 袁学诚, 1995. 论中国大陆基底构造. 地球物理学报, 38(4): 448-459. doi: 10.3321/j.issn:0001-5733.1995.04.005
      [130] 袁学诚, 李立, 金国元, 等, 1985. 西藏洛扎-羊八井地区的磁大地电流地壳测深. 地质学报, (1): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE198501003.htm
      [131] 曾昭发, 陈雄, 李静, 等, 2012. 地热地球物理勘探新进展. 地热能, 27(1): 168-178. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201201020.htm
      [132] 张超, 张盛生, 李胜涛, 等, 2018. 共和盆地恰卜恰地热区现今地热特征. 地球物理学报, 61(11): 4545-4557. doi: 10.6038/cjg2018L0747
      [133] 张国伟, 郭安林, 姚安平, 2004. 中国大陆构造中的西秦岭-松潘大陆构造结. 地学前缘, 11(3): 23-32. doi: 10.3321/j.issn:1005-2321.2004.03.004
      [134] 张宏飞, 陈岳龙, 徐旺春, 等, 2006. 青海共和盆地周缘印支期花岗岩类的成因及其构造意义. 岩石学报, 22(12): 2910-2922. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200612008.htm
      [135] 张乐天, 魏文博, 金胜, 等, 2011. 上地幔岩石的电性-温度依赖关系研究. 地球物理学进展, 26(2): 505-510. doi: 10.3969/j.issn.1004-2903.2011.02.015
      [136] 张森琦, 文冬光, 许天福, 等, 2019. 美国干热岩"地热能前沿嘹望台研究计划"与中美典型EGS场地勘查现状对比. 地学前缘, 26(2): 321-334. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902030.htm
      [137] 张森琦, 严维德, 黎敦朋, 等, 2018. 青海省共和县恰卜恰干热岩体地热地质特征. 中国地质, 45(6): 1087-1102. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201806002.htm
      [138] 张雪亭, 杨生德, 杨站君, 2007. 青海省板块构造研究: 1: 100万青海省大地构造图说明书. 北京: 地质出版社.
      [139] 张永明, 2017. 青海南山构造带印支期构造岩浆作用与区域构造演化(博士学位论文). 西安: 长安大学.
      [140] 张泽明, 董昕, 丁慧霞, 等, 2017. 喜马拉雅造山带的变质作用与部分熔融. 岩石学报, 33(8): 2313-2341. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201708001.htm
      [141] 张泽明, 康东艳, 丁慧霞, 等, 2018. 喜马拉雅造山带的部分熔融与淡色花岗岩成因机制. 地球科学, 43(1): 82-98. doi: 10.3799/dqkx.2018.005
      [142] 朱元清, 石耀霖, 1990. 剪切热及花岗岩部分熔融——关于喜马拉雅地区逆冲断层与地壳热结构分析. 地球物理学报, 33(4): 408-416. doi: 10.3321/j.issn:0001-5733.1990.04.005
    • 加载中
    图(14) / 表(1)
    计量
    • 文章访问数:  996
    • HTML全文浏览量:  143
    • PDF下载量:  115
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-16
    • 刊出日期:  2021-04-15

    目录

      /

      返回文章
      返回