Geochronology, Geochemical Characteristics and Significance of High-Mg Rhyolite Rocks in Early Cretaceous in Ritu, Tibet
-
摘要: 班公湖-怒江洋晚期的构造演化存在诸多争议.以在西藏日土东新发现的高镁流纹质岩石为研究对象,开展了年代学、地球化学等方面的研究.LA-ICP-MS锆石U-Pb测得样品113.69±0.82 Ma(MSWD=2.7)的谐和年龄,证明其为早白垩世晚期岩浆活动的产物.岩石地球化学分析显示,样品具有富硅(70.27%~75.72%)、高镁(3.50%~4.12%)、高Mg#(82.68~84.79)等特征.稀土元素呈现富集轻稀土、相对亏损重稀土(LaN/YbN=7.00~9.34),存在较为明显的Eu负异常(δEu=0.50~0.65);富集Th、U,亏损Ba、Sr、P和Ti等元素,微弱的Nb、Ta亏损.在构造环境判别图解上,样品落于陆缘弧区域,表明其形成于大洋岩石圈俯冲的构造背景.研究结果为沙木罗组海相地层的厘定提供了确切的同位素年龄,同时也为探讨班公湖-怒江洋白垩纪时期的构造演化提供了新的依据.Abstract: There are still many controversies about the tectonic evolution of Bangongco-Nujiang suture zone in the late period. In this paper, it presents a study of chronology and geochemistry, taking the newly discovered high magnesium rhyolite in East Ritu of Tibet as the object. The concordance age of 113.69±0.82 Ma (MSWD=2.7) measured by LA-ICP-MS zircon U-Pb indicates that it is the product of magmatic activity in the late Early Cretaceous. The geochemical analyses show that the samples are rich in SiO2 (70.27%-75.72%), MgO (3.50%-4.12%) and Mg# (82.68-84.79). It is relatively enriched in light rare earth elements, and depleted in heavy rare earth elements (LaN/YbN=7.00-9.34), with obvious negative Eu anomalies (δEu=0.50-0.65). The results show enrichment of Th, U, depletion of Ba, Sr, P and Ti, and weak depletion of Nb and Ta. In the diagram of tectonic environment discrimination, the samples are projected in the continental margin arc area, indicating that they were formed in the tectonic background of oceanic lithosphere subduction. This study provides a precise isotopic age to determine the marine strata of Shamulo, and new evidence for further studies on the structural evolution of the Bangongco-Nujiang suture zone in Cretaceous period.
-
图 5 SiO2-FeOT/MgO(a)和K2O-SiO2(b)图解
图a据邓晋福等(2010)修改;图b虚线据le Maitre (1984),阴影带据Rickwood(1989)
Fig. 5. SiO2 -FeOT/MgO diagram (a) and K2O-SiO2 diagram (b)
图 6 球粒陨石标准化稀土元素配分模式(a)和原始地幔标准化微量元素蛛网图(b)
球粒陨石标准化数据引自Taylor and McLennan (1985);原始地幔标准化数据引自McDonough et al. (1992)
Fig. 6. Chondrite-normalized REE pattern (a) and primitive mantle-normalized trace elements spider diagram (b)
图 7 TAS图解(a)和SiO2-Zr/TiO2图解(b)
图a据le Maitre (1984);图b据Winchester and Floyd (1977)
Fig. 7. TAS diagram(a)and SiO2-Zr/TiO2 diagram(b)
图 8 源区组成判别图解(a)和Th/Ce-Th/Sm图解(b)
图a据Altherr and Siebel(2002);图b据Martin(1999)
Fig. 8. Discrimination diagram for magma source(a)and Th/Ce-Th/Sm diagram(b)
图 9 La-La/Sm图解(a)和Rb-Sr图解(b)
图a据Allègre and Minster(1978);图b据Sami et al.(2018)修改
Fig. 9. La-La/Sm diagram(a)and Rb-Sr diagram(b)
图 10 Rb-(Y+Nb)图解(a)和LaN/YbN-YbN图解(b)
图a据Pearce(1996);图b据Defant and Drummond(1990)
Fig. 10. Rb-(Y+Nb) diagram(a)and LaN/YbN-YbN diagram(b)
图 11 Th/Yb-Ta/Yb图解(a)和Th/Ta-Yb图解(b)
图a据Pearce(1996); 图b据Defant and Drummond(1990)
Fig. 11. Th/Yb-Ta/Yb diagram (a) and Th/Ta-Yb diagram(b)
表 1 高镁流纹质岩石LA-IPC-MS锆石U-Pb同位素分析结果
Table 1. LA-ICP-MS U-Pb compositions of zircons from high-Mg rhyolitic rocks
测点 Pb U 232Th/ 238U 同位素比值 年龄(Ma) (10-6) 206Pb/ 238U 1σ 207Pb/ 235U 1σ 207Pb/ 206Pb 1σ 208Pb/ 232Th 1σ 206Pb/ 238U 1σ 207Pb/ 235U 1σ 207Pb/ 206Pb 1σ 1 7 415 0.50 0.017 4 1.23 0.123 3 9.85 0.048 5 9.73 0.005 0 6.53 112 1 118 12 123 229 2 14 786 0.51 0.017 9 0.92 0.121 5 5.36 0.049 1 5.27 0.003 9 5.79 115 1 116 6 154 123 3 17 945 0.66 0.017 3 0.88 0.142 6 4.57 0.061 5 4.43 0.004 2 5.26 110 1 135 6 658 95 4 53 2712 0.99 0.018 1 0.82 0.124 0 2.47 0.049 7 2.41 0.003 7 4.72 116 1 119 3 181 56 5 17 942 0.60 0.017 6 0.90 0.128 3 4.38 0.050 3 4.31 0.003 7 4.58 112 1 123 5 210 100 6 17 899 0.43 0.018 0 0.89 0.134 6 6.92 0.052 8 6.86 0.005 5 4.68 115 1 128 9 319 156 7 6 321 0.47 0.018 3 1.38 0.140 1 9.61 0.063 4 9.64 0.003 7 5.73 117 2 133 13 722 205 8 20 1103 0.71 0.017 6 0.88 0.120 6 4.07 0.049 6 4.01 0.003 4 5.14 113 1 116 5 176 93 9 10 494 0.71 0.018 2 1.40 0.129 1 21.12 0.051 4 52.78 0.004 5 5.86 116 2 123 26 257 1 213 10 9 486 0.76 0.018 1 1.09 0.135 2 9.30 0.054 3 9.40 0.004 6 4.54 115 1 129 12 383 211 11 8 434 0.75 0.018 0 1.13 0.116 0 10.59 0.046 6 10.76 0.004 2 4.27 115 1 111 12 31 258 12 6 347 0.55 0.017 8 1.36 0.157 1 10.04 0.061 9 10.38 0.004 3 4.78 114 2 148 15 670 222 13 21 1101 0.57 0.018 3 0.89 0.143 4 3.83 0.056 7 3.76 0.004 7 4.06 117 1 136 5 479 83 14 11 595 0.47 0.018 0 1.07 0.122 4 10.37 0.047 1 10.32 0.005 2 4.62 115 1 117 12 57 246 15 8 439 0.43 0.018 1 1.25 0.123 0 11.06 0.049 3 11.21 0.005 0 5.50 116 1 118 13 164 262 16 7 399 0.48 0.017 9 1.40 0.123 9 13.93 0.050 2 14.49 0.005 7 5.71 114 2 119 17 203 336 17 8 457 0.47 0.017 8 1.18 0.105 2 10.88 0.042 9 11.09 0.004 5 5.58 114 1 102 11 175 276 18 21 1128 0.67 0.017 4 0.88 0.118 6 4.17 0.049 5 4.12 0.004 3 4.44 111 1 114 5 171 96 19 12 742 0.06 0.017 8 1.32 0.127 3 7.28 0.051 7 7.46 0.004 5 4.64 114 2 122 9 274 171 20 8 441 0.46 0.017 5 1.17 0.116 6 10.15 0.048 4 10.17 0.004 6 4.42 112 1 112 11 120 240 21 16 922 0.48 0.017 5 0.91 0.116 3 5.54 0.048 1 5.53 0.004 2 3.65 112 1 112 6 106 131 22 12 634 0.78 0.017 6 1.35 0.118 0 9.07 0.048 7 8.10 0.004 2 3.74 112 2 113 10 135 190 23 9 535 0.45 0.017 8 1.06 0.120 3 8.33 0.049 1 8.36 0.004 0 3.73 114 1 115 10 151 196 24 8 393 0.95 0.017 4 1.23 0.120 7 12.43 0.058 7 13.03 0.004 2 3.43 111 1 116 14 557 284 25 6 340 0.48 0.017 9 1.42 0.132 9 11.61 0.053 7 11.99 0.004 2 4.68 115 2 127 15 360 270 表 2 样品主量(%)、微量(10-6)和稀土(10-6)元素测试结果
Table 2. Major elements (%), trace elements (10-6) and REEs (10-6) analytical results of samples
样号 YQ1 YQ2 YQ3 YQ4 YQ5 SiO2 71.21 75.72 72.69 73.63 70.27 TiO2 0.24 0.27 0.29 0.26 0.31 Al2O3 11.04 11.10 12.29 10.58 12.38 Fe2O3 1.04 1.21 1.73 1.30 1.66 FeO 1.01 0.64 0.78 0.82 0.69 MnO 0.08 0.02 0.04 0.03 0.04 MgO 3.92 3.50 4.12 3.57 3.98 CaO 2.08 0.72 1.18 1.51 2.76 Na2O 3.05 2.82 3.23 2.72 3.18 K2O 3.51 2.65 1.59 2.51 2.31 P2O5 0.05 0.06 0.06 0.06 0.07 烧失量 2.66 1.16 1.93 2.96 2.29 合计 99.9 99.87 99.93 99.95 99.94 DI 79.14 82.94 77.12 79.73 73.32 A/CNK 0.876 1.259 1.339 1.065 0.971 SI 31.28 32.43 36.16 32.77 33.83 A.R 3 2.72 2.11 2.52 2.14 σ 1.49 0.91 0.78 0.88 1.09 ALK 6.56 5.47 4.82 5.23 5.49 Mg# 83.14 84.79 83.36 82.68 84.02 La 28.26 33.35 30.94 28.9 35.11 Ce 56.64 69.06 64.96 57.95 68.34 Pr 6.70 7.95 7.67 6.58 7.93 Nd 24.45 29.23 28.47 24.25 29.94 Sm 4.57 4.79 4.72 3.88 5.67 Eu 0.94 1 1.01 0.7 0.89 Gd 4.24 5.1 4.73 4.1 4.97 Tb 0.75 0.75 0.7 0.68 0.73 Dy 4.73 4.04 3.67 3.54 3.93 Ho 0.89 0.8 0.76 0.73 0.84 Er 2.57 2.34 2.05 1.97 2.3 Tm 0.45 0.42 0.4 0.32 0.41 Yb 2.73 2.94 2.35 2.42 2.54 Lu 0.53 0.51 0.47 0.47 0.44 Y 22.15 25.09 21.05 20.72 22.09 ΣREE 138.45 162.28 152.90 136.49 164.04 LREE 121.56 145.38 137.77 122.26 147.88 HREE 16.89 16.90 15.13 14.23 16.16 LR/HR 7.20 8.60 9.11 8.59 9.15 δEu 0.64 0.61 0.65 0.53 0.50 δCe 0.94 0.97 0.97 0.96 0.93 (La/Yb)N 7.00 7.67 8.90 8.07 9.34 (La/Sm)N 3.89 4.38 4.13 4.69 3.9 (Gd/Yb)N 1.26 1.41 1.63 1.37 1.59 Ba 437.7 678 166.1 67.7 92.9 Rb 21.7 30.02 28.79 20.63 22.31 Th 12.18 14.46 15.95 10.4 16.64 K 29 138 21 999 13 199 20 837 19 176 Nb 11.94 16.21 17.01 13.55 18.08 Ta 1.13 1.2 1.26 0.95 1.34 Sr 77 44.1 25.7 29.4 37.1 P 218 262 262 262 305 Zr 168.8 187.5 216.8 178.2 197.1 Hf 5.61 6.12 7.01 5.65 6.44 Ti 1439 1619 1739 1559 1858 Cr 9.1 17.4 18.3 18 18.9 Ni 7.8 6 5.3 7.9 6.4 V 20.8 41.8 47.1 34.8 44.8 U 2.87 3.14 3.43 2.5 3.42 Th/U 4.24 4.61 4.65 4.16 4.87 Nb/Ta 10.6 13.5 13.5 14.3 13.5 La/Ta 25 27.8 24.6 30.4 26.2 -
[1] Allègre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946):17-22. https://doi.org/10.1038/307017a0 [2] Allègre, C. J., Minster, J. F., 1978. Quantitative Models of Trace Element Behavior in Magmatic Processes. Earth and Planetary Science Letters, 38(1):1-25. https://doi.org/10.1016/0012-821x(78)90123-1 [3] Altherr, R., Siebel, W., 2002. I-Type Plutonism in a Continental Back-Arc Setting:Miocene Granitoids and Monzonites from the Central Aegean Sea, Greece. Contributions to Mineralogy and Petrology, 143(4):397-415. https://doi.org/10.1007/s00410-002-0352-y [4] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [5] Bao, P.S., Xiao, X.C., Su, L., et al., 2007. Tectonic Environment of the Dongcuo Ophiolite, Tibet:Petrology, Geochemistry and Geochronology Constraints. Scientia Sinica Terrae, 37(3):298-307 (in Chinese). http://www.researchgate.net/publication/307632192_Tectonic_Environment_of_Dong_Tso_Ophiolite_Petrology_Geochemistry_and_Chronology_Tibet [6] Beard, J. S., Lofgren, G. E., 1991. Partial Melting of Basaltic and Andesite Greenstones and Amphibolites under Dehydration and Water-Saturated Conditions at 1.3 and 6.9 Kilobars. Journal of Petrology, 32(2):365-402. http://www.researchgate.net/publication/284378352_Partial_melting_of_basaltic_and_andesite_greenstones_and_amphibolites_under_dehydration_and_water-saturated_conditions_at_1_3_and_69_kilobars [7] Chang, C. F., Chen, N. S., Coward, M. P., et al., 1986. Preliminary Conclusions of the Royal Society and Academia Sinica Geotraverse of Tibet. Nature, 323(6088):501-507. https://doi.org/10.1038/323501a0 [8] Chen, G.R., Liu, H.F., Jiang, G.W., et al., 2004. Discovery of the Shamuluo Formation in the Central Segment of the Bangong Co-Nujiang River Suture Zone, Tibet. Geological Bulletin of China, 23(2):193-194 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200402015 [9] Chen, Y.L., Zhang, K.Z., Yang, Z.M., et al., 2006. Discovery of a Complete Ophiolite Section in the Jueweng Area, Nagqu County, in the Central Segment of the Bangong Co-Nujiang Junction Zone, Qinghai-Tibet Plateau. Geological Bulletin of China, 25(6):694-699 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200606007.htm [10] Chung, S. L., Chu, M. F., Zhang, Y. Q., et al., 2005. Tibetan Tectonic Evolution Inferred from Spatial and Temporal Variations in Post-Collisional Magmatism. Earth-Science Reviews, 68(3-4):173-196. https://doi.org/10.1016/j.earscirev.2004.05.001 [11] Dai, Z.W., Li, G.M., Ding, J., et al., 2018. Late Cretaceous Adakite in Nuri Area, Tibet:Products of Ridge Subduction. Earth Science, 43(8):2727-2741 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808015.htm [12] Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0 [13] Deng, J.F., Feng, Y.F., Di, Y.J., et al., 2015. Magmatic Arc and Ocean-Continent Transition:Discussion. Geological Review, 61(3):473-484 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201503001.htm [14] Deng, J.F., Liu, C., Feng, Y.F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks(HMA) and Magnesian Andesitic/Dioritic Rocks (MA):Two Igneous Rock Types Related to Oceanic Subduction. Geology in China, 37(4):1112-1118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004027.htm [15] Deng, J.F., Xiao, Q.H., Su, S.G., et al., 2007. Igneous Petrotectonic Assemblages and Tectonic Settings:A Discussion. Geological Journal of China Universities, 13(3):392-402 (in Chinese with English abstract). https://www.researchgate.net/publication/288033539_Igneous_petrotectonic_assemblages_and_tectonic_settings_A_discussion [16] Ding, S., Tang, J.X., Zheng, W.B., et al., 2017. Geochronology and Geochemistry of Naruo Porphyry Cu (Au) Deposit in Duolong Ore-Concentrated Area, Tibet, and Their Geological Significance. Earth Science, 42(1):1-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201701001 [17] Fan, J. J., Li, C., Liu, Y. M., et al., 2015a. Age and Nature of the Late Early Cretaceous Zhaga Formation, Northern Tibet:Constraints on When the Bangong-Nujiang Neo-Tethys Ocean Closed. International Geology Review, 57(3):342-353. https://doi.org/10.1080/00206814.2015.1006695 [18] Fan, J. J., Li, C., Xie, C. M., et al., 2015b. Petrology and U-Pb Zircon Geochronology of Bimodal Volcanic Rocks from the Maierze Group, Northern Tibet:Constraints on the Timing of Closure of the Banggong-Nujiang Ocean. Lithos, 227:148-160. https://doi.org/10.1016/j.lithos.2015.03.021 [19] Fan, J. J., Li, C., Xie, C. M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet:Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of the Neo-Tethys. International Geology Review, 56(12):1504-1520. https://doi.org/10.1080/00206814.2014.947639 [20] Gorton, M. P., Schandl, E. S., 2000. From Continents to Island Arcs:A Geochemical Index of Tectonic Setting for Arc-Related and Within-Plate Felsic to Intermediate Volcanic Rocks. The Canadian Mineralogist, 38(5):1065-1073. https://doi.org/10.2113/gscanmin.38.5.1065 [21] Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1-2):47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 [22] Kapp, P., Murphy, M. A., Yin, A., et al., 2003. Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet. Tectonics, 22(4):1029. https://doi.org/10.1029/2001tc001332 [23] le Maitre, R. W., 1984. A Proposal by the IUGS Subcommission on the Systematics of Igneous Rocks for a Chemical Classification of Volcanic Rocks Based on the Total Alkali Silica (TAS) Diagram. Australian Journal of Earth Sciences, 31(2):243-255. https://doi.org/10.1080/08120098408729295 [24] Lei, C.Y., Wu, J.L., Yin, X.K., et al., 2018. New Discovery of the Diorite Porphyry Dyke in the Shamuluo Formation in Western Segment of the Bangongco-Nujiang Suture Zone and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 37(2):250-259 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KYDH201802010.htm [25] Li, F.Q., Liu, Z.B., Tang, J.X., et al., 2018. Petrogenesis of Granite Porphyry in Mariaicuo Area, Shuanghu County, Tibet, and Constraints on the Evolution in the Middle Section of Bangonghu-Nujiang Suture Zone. Earth Science, 43(4):1051-1069 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201804009 [26] Li, H.F., Liu, Z.B., Chen, W., et al., 2019. The Discovery of High-Mg Rhyolitic Rocks in Peng Tso Area, Tibet and Its Significance for Evolution of Bangong-Nujiang Ocean. Acta Petrologica Sinica, 35(3):799-815 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.03.11 [27] Li, H.L., 2014. Signs and Time of Continent-Ocean Transform of the Western Part of Bangong-Nujiang Suture Zone (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [28] Li, J. X., Qin, K. Z., Li, G. M., et al., 2014. Geochronology, Geochemistry, and Zircon Hf Isotopic Compositions of Mesozoic Intermediate-Felsic Intrusions in Central Tibet:Petrogenetic and Tectonic Implications. Lithos, 198-199:77-91. https://doi.org/10.1016/j.lithos.2014.03.025 [29] Liu, W., Yin, X.K., Wu, J.L., et al., 2019. The Discovery of Qushenla Formation Argillaceous Cherts in the Western Part of the Bangong Co-Nujiang Suture Zone, Tibet and Its Significance. Geological Bulletin of China, 38(4):484-493 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201904002 [30] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [31] Ludwig, K.R., 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, Berkeley. [32] Luo, A.B., Fan, J.J., Wang, M., et al., 2019. Age of Flysch in Bangong-Nujiang Ocean:Constraints of Detrital Zircon from Yaduo Village of Gerze County. Earth Science, 44(7):2426-2444 (in Chinese with English abstract). [33] Ma, L.T., Zhang, Z.C., Dong, S.Y., et al., 2010. Geology and Geochemistry of the Yingmailai Granitic Intrusion in the Southern Tianshan and Its Implications. Earth Science, 35(6):908-920 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201006003 [34] Martin, H., 1999. Adakitic Magmas:Modern Analogues of Archaean Granitoids. Lithos, 46(3):411-429. https://doi.org/10.1016/s0024-4937(98)00076-0 [35] McDonough, W. F., Sun, S. S., Ringwood, A. E., et al., 1992. Potassium, Rubidium, and Cesium in the Earth and Moon and the Evolution of the Mantle of the Earth. Geochimica et Cosmochimica Acta, 56(3):1001-1012. https://doi.org/10.1016/0016-7037(92)90043-i [36] Pan, G.T., Mo, X.X., Hou, Z. Q., et al., 2006.Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001 [37] Pearce, J. A., 1996. Sources and Settings of Granitic Rocks. Episodes, 19(4):120-125. https://doi.org/10.18814/epiiugs/1996/v19i4/005 [38] Qu, X.M., Wang, R.J., Dai, J.J., et al., 2012. Discovery of Xiongmei Porphyry Copper Deposit in Middle Segment of Bangonghu-Nujiang Suture Zone and Its Significance. Mineral Deposits, 31(1):1-12 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201201001 [39] Rickwood, P. C., 1989. Boundary Lines within Petrologic Diagrams Which Use Oxides of Major and Minor Elements. Lithos, 22(4):247-263. https://doi.org/10.1016/0024-4937(89)90028-5 [40] Rudnick, R. L., Gao, S., 2003. Composition of the Continental Crust. In: Rudnick, R. L., ed., The Crust. Elsevier, Oxford. [41] Sami, M., Ntaflos, T., Farahat, E. S., et al., 2018. Petrogenesis and Geodynamic Implications of Ediacaran Highly Fractionated A-Type Granitoids in the North Arabian-Nubian Shield (Egypt):Constraints from Whole-Rock Geochemistry and Sr-Nd Isotopes. Lithos, 304-307:329-346. https://doi.org/10.1016/j.lithos.2018.02.015 [42] Sun, L.X., 2005. Late Jurassic-Cretaceous Sedimentary Response to Collision Process in Middle Bangonghu-Nujiang Suture (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [43] Sylvester, P. J., 1998. Post-Collisional Strongly Peraluminous Granites. Lithos, 45(1-4):29-44. https://doi.org/10.1016/s0024-4937(98)00024-3 [44] Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford. [45] Wang, L.Q., Pan, G.T., Ding, J., et al., 2013. The Geological Map and Instruction of the Qinghai-Tibet Plateau and Its Adjacent Areas (1: 1 500 000). Geological Publishing House, Beijing (in Chinese). [46] Wang, X., Chen, J., Luo, D., 2008. Study on Petrogenesis of Zircons from the Danzhu Granodiorite and Its Geological Implications. Geological Review, 54(3):387-398 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200803012 [47] Wei, S.G., 2017. Study on the Early Cretaceous Magmatism and Tectonic Dynamic Setting of the Duolong Cu Mining District in the Bangong-Nujiang Metallogenic Belt, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [48] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [49] Wu, Y., Chen, S.Y., Qin, M.K., et al., 2018. Zircon U-Pb Ages of Dongcuo Ophiolite in Western Bangonghu-Nujiang Suture Zone and Their Geological Significance. Earth Science, 43(4):1070-1087 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201804010 [50] Wu, Y.B., Zheng, Y.F., 2004. Genetic Mineralogy of Zircon and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589 [51] Xu, W., Li, C., Xu, M. J., et al., 2015. Petrology, Geochemistry, and Geochronology of Boninitic Dikes from the Kangqiong Ophiolite:Implications for the Early Cretaceous Evolution of Bangong-Nujiang Neo-Tethys Ocean in Tibet. International Geology Review, 57(16):2028-2043. https://doi.org/10.1080/00206814.2015.1050464 [52] Xu, Z.Q., Yang, J.S., Hou, Z.Q., et al., 2016. The Progress in the Study of Continental Dynamics of the Tibetan Plateau. Geology in China, 43(1):1-42 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201601001.htm [53] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [54] Yin, T., Li, W., Yin, X.K., et al., 2019. The Early Cretaceous Granodiorites in the Aweng Co Area, Tibet:Evidence for the Subduction of the Bangong Co-Nujiang River Oceanic Crust to the South. Geology in China, 46(5):1105-1115 (in Chinese with English abstract). http://geochina.cgs.gov.cn/geochina/ch/reader/view_abstract.aspx?file_no=20190511&flag=1 [55] Zhang, S.Q., Qi, X.X., Wei, C., et al., 2018. Geochemistry, Zircon U-Pb Dating and Hf Isotope Compositions of Early Cretaceous Magmatic Rocks in Yongzhu Area, Northern Lhasa Terrane, Tibet, and Its Geological Significance. Earth Science, 43(4):1085-1109 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201804011 [56] Zhang, Z., Fang, X., Tang, J.X., et al., 2017. Chronology, Geochemical Characteristics of the Gaerqin Porphyry Copper Deposit in the Duolong Ore Concentration Area in Tibet and Discussion about the Identification of the Lithoscaps and the Possible Epithermal Deposit. Acta Petrologica Sinica, 33(2):476-494 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201702011 [57] Zhao, Y.Y., Liu, X.F., Liu, Y.C., et al., 2018. Zircon U-Pb Ages and Geochemical Characteristics of Youqiumi Porphyry Pluton in Cimabanshuo Area, Tibet. Earth Science, 43(12):4551-4565 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201812021 [58] Zhou, J.S., Meng, X.J., Zang, W.S., et al., 2013. Zircon U-Pb Geochronology and Trace Element Geochemistry of the Ore-bearing Porphyry in Qingcaoshan Porphyry Cu-Au Deposit, Tibet, and Its Geological Significance. Acta Petrologica Sinica, 29(11):3755-3766 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201311009 [59] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006. Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau:Geochronology, Geochemistry and Their Tectonic Setting. Acta Geologica Sinica, 80(9):1312-1328 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200609008.htm [60] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [61] 鲍佩声, 肖序常, 苏犁, 等, 2007.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约.中国科学:地球科学, 37(3):298-307. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200703001.htm [62] 陈国荣, 刘鸿飞, 蒋光武, 等, 2004.西藏班公湖-怒江结合带中段沙木罗组的发现.地质通报, 23(2):193-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200402015 [63] 陈玉禄, 张宽忠, 杨志民, 等, 2006.青藏高原班公湖-怒江结合带中段那曲县觉翁地区发现完整的蛇绿岩剖面.地质通报, 25(6):694-699. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200606007 [64] 代作文, 李光明, 丁俊, 等, 2018.西藏努日晚白垩世埃达克岩:洋脊俯冲的产物.地球科学, 43(8):2727-2741. doi: 10.3799/dqkx.2018.230 [65] 邓晋福, 冯艳芳, 狄永军, 等, 2015.岩浆弧火成岩构造组合与洋陆转换.地质论评, 61(3):473-484. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201503001 [66] 邓晋福, 刘翠, 冯艳芳, 等, 2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类.中国地质, 37(4):1112-1118. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201004027.htm [67] 邓晋福, 肖庆辉, 苏尚国, 等, 2007.火成岩组合与构造环境:讨论.高校地质学报, 13(3):392-402. http://www.cnki.com.cn/Article/CJFDTotal-GXDX200703004.htm [68] 丁帅, 唐菊兴, 郑文宝, 等, 2017.西藏拿若斑岩型铜(金)矿含矿岩体年代学、地球化学及地质意义.地球科学, 42(1):1-23. doi: 10.3799/dqkx.2017.001 [69] 雷传扬, 吴建亮, 尹显科, 等, 2018.班公湖-怒江缝合带西段沙木罗组地层中闪长玢岩脉的发现及其地质意义.矿物岩石地球化学通报, 37(2):250-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201802011 [70] 李发桥, 刘治博, 唐菊兴, 等, 2018.西藏玛日埃错地区花岗斑岩岩石成因及其对班公湖-怒江缝合带中段演化的制约.地球科学, 43(4):1051-1069. doi: 10.3799/dqkx.2018.709 [71] 李海峰, 刘治博, 陈伟, 等, 2019.西藏蓬错地区高镁流纹质岩石的发现及对班公湖-怒江洋演化的指示意义.岩石学报, 35(3):799-815. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201903011 [72] 李华亮, 2014.班公湖-怒江缝合带西段洋陆转换的标志及时间(博士学位论文).武汉: 中国地质大学. [73] 刘文, 尹显科, 吴建亮, 等, 2019.西藏班公湖-怒江缝合带西段去申拉组泥质硅质岩的发现及其地质意义.地质通报, 38(4):484-493. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201904002 [74] 罗安波, 范建军, 王明, 等, 2019.班公湖-怒江洋复理石沉积时代:来自改则县亚多村碎屑锆石的制约.地球科学, 44(7):2426-2444. doi: 10.3799/dqkx.2018.944 [75] 马乐天, 张招崇, 董书云, 等, 2010.南天山英买来花岗岩的地质、地球化学特征及其地质意义.地球科学, 35(6):908-920. doi: 10.3799/dqkx.2010.106 [76] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001 [77] 曲晓明, 王瑞江, 代晶晶, 等, 2012.西藏班公湖-怒江缝合带中段雄梅斑岩铜矿的发现及意义.矿床地质, 31(1):1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201201001 [78] 孙立新. 2005.班公湖-怒江缝合带中段晚侏罗世-白垩纪碰撞作用的沉积响应(博士学位论文).北京: 中国地质大学. [79] 汪相, 陈洁, 罗丹, 2008.浙西南淡竹花岗闪长岩中锆石的成因研究及其地质意义.地质论评, 54(3):387-398. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp200803012 [80] 王立全, 潘桂棠, 丁俊, 等, 2013.青藏高原及邻区地质图及说明书(1:1 500 000).北京:地质出版社. [81] 韦少港. 2017.西藏班-怒成矿带多龙矿集区早白垩世岩浆作用及动力学背景(博士学位论文).北京: 中国地质大学. [82] 武勇, 陈松永, 秦明宽, 等, 2018.西藏班公湖-怒江缝合带西段洞错蛇绿岩中的辉长岩锆石U-Pb年代学及地质意义.地球科学, 43(4):1070-1087. doi: 10.3799/dqkx.2018.710 [83] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200416002 [84] 许志琴, 杨经绥, 侯增谦, 等, 2016.青藏高原大陆动力学研究若干进展.中国地质, 43(1):1-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201601001 [85] 尹滔, 李威, 尹显科, 等, 2019.西藏阿翁错地区早白垩世花岗闪长岩:班公湖-怒江洋壳南向俯冲消减证据.中国地质, 46(5):1105-1115. http://geochina.cgs.gov.cn/html/2019/5/20190511.htm [86] 张诗启, 戚学祥, 韦诚, 等, 2018.拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义.地球科学, 43(4):1085-1109. doi: 10.3799/dqkx.2018.711 [87] 张志, 方向, 唐菊兴, 等, 2017.西藏多龙矿集区尕尔勤斑岩铜矿床年代学及地球化学:兼论硅帽的识别与可能的浅成低温热液矿床.岩石学报, 33(2):476-494. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702011.htm [88] 赵亚云, 刘晓峰, 刘远超, 等, 2018.西藏次玛班硕地区由秋米斑岩体锆石U-Pb年龄、地球化学特征.地球科学, 43(12):4551-4565. doi: 10.3799/dqkx.2018.118 [89] 周金胜, 孟祥金, 臧文栓, 等, 2013.西藏青草山斑岩铜金矿含矿斑岩锆石U-Pb年代学、微量元素地球化学及地质意义.岩石学报, 29(11):3755-3766. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201311009 [90] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9):1312-1328. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200609008.htm