• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    冲积和湖积成因土壤Cd的吸附特征:以安徽省当涂县为例

    段燕 汪丙国 王慧敏 焦团理 秦一雄 次仁卓玛

    段燕, 汪丙国, 王慧敏, 焦团理, 秦一雄, 次仁卓玛, 2021. 冲积和湖积成因土壤Cd的吸附特征:以安徽省当涂县为例. 地球科学, 46(4): 1490-1504. doi: 10.3799/dqkx.2020.089
    引用本文: 段燕, 汪丙国, 王慧敏, 焦团理, 秦一雄, 次仁卓玛, 2021. 冲积和湖积成因土壤Cd的吸附特征:以安徽省当涂县为例. 地球科学, 46(4): 1490-1504. doi: 10.3799/dqkx.2020.089
    Duan Yan, Wang Bingguo, Wang Huimin, Jiao Tuanli, Qin Yixiong, Ciren Zhuoma, 2021. Adsorption Characteristics of Cd in Alluvial and Lacustrine Soils: A Case Study in Dangtu County, Anhui Province. Earth Science, 46(4): 1490-1504. doi: 10.3799/dqkx.2020.089
    Citation: Duan Yan, Wang Bingguo, Wang Huimin, Jiao Tuanli, Qin Yixiong, Ciren Zhuoma, 2021. Adsorption Characteristics of Cd in Alluvial and Lacustrine Soils: A Case Study in Dangtu County, Anhui Province. Earth Science, 46(4): 1490-1504. doi: 10.3799/dqkx.2020.089

    冲积和湖积成因土壤Cd的吸附特征:以安徽省当涂县为例

    doi: 10.3799/dqkx.2020.089
    基金项目: 

    安徽省公益性地质项目 2015-g-19

    详细信息
      作者简介:

      段燕(1994-), 女, 博士研究生, 主要研究方向为饱和-非饱和带溶质运移研究.ORCID: 0000-0002-2791-0798.E-mail: duanyan2012@cug.edu.cn

      通讯作者:

      汪丙国, ORCID: 0000-0002-3682-6846.E-mail: bgwang@cug.edu.cn

    • 中图分类号: P595

    Adsorption Characteristics of Cd in Alluvial and Lacustrine Soils: A Case Study in Dangtu County, Anhui Province

    • 摘要: 为揭示冲积与湖积成因土壤镉的吸附特征,以安徽省当涂县冲积成因的江心洲和冲积、湖积成因的大陇乡根际土壤为研究对象,开展土壤镉的等温吸附实验和吸附动力学实验.等温吸附实验结果表明,冲积土壤镉的吸附量(S)、等温吸附常数(K)和固液分配系数(Kd)均较湖积土壤明显偏大,显示冲积土壤对镉的吸附能力较湖积土壤强;吸附动力学实验表明,冲积土壤的最大吸附量、平衡吸附量均较湖积土壤大,吸附速率也明显偏大,尤其在吸附实验早期更为显著;等温吸附常数K和平衡吸附速率Vb与土壤理化性质的分析表明,土壤pH是造成研究区土壤镉吸附能力差异的主要原因,其次为物理性粘粒含量;土壤pH是影响研究区冲积土壤镉吸附能力的主要因素;湖积土壤镉的吸附能力受土壤pH、有机质含量、Cd含量、物理性粘粒含量等因素的综合影响.研究对于揭示Cd在水土系统的迁移转化规律以及土壤Cd的污染防治具有重要的指导意义.

       

    • 图  1  研究区采样点位置

      Fig.  1.  The location of sampling sites in the study area

      图  2  冲积和湖积土壤镉的吸附等温线

      Fig.  2.  The isothermal adsorption curves of cadmium in alluvial and lacustrine soils

      图  3  冲积和湖积土壤镉的固液分配系数Kd与初始浓度关系

      Fig.  3.  The relationship between Kd of cadmium and initial concentration in alluvial and lacustrine soils

      图  4  冲积和湖积土壤振荡时间与镉吸附量关系

      Fig.  4.  The relationship between oscillation time and cadmium absorbance of alluvial and lacustrine soils

      图  5  不同pH条件下冲积与湖积土壤镉吸附速率与吸附时间关系

      a.t=0~24 h吸附速率, b.t=0.5 h和24 h吸附速率; 图中红色符号表示湖积土壤,蓝色符号表示冲积土壤

      Fig.  5.  The relationship between cadmium adsorption rate of alluvial and lacustrine soils and adsorption time in different pH

      图  6  土壤pH与KVb关系

      Fig.  6.  The relationship between soil pH and K, Vb

      图  7  物理性粘粒含量与KVb关系

      Fig.  7.  The relationship between soil physical clay content and K, Vb

      图  8  冲积和湖积土壤KVb与pH的关系

      Fig.  8.  The relationship between K, Vb and pH in alluvial and lacustrine soils

      图  9  冲积和湖积土壤KVb与土壤有机质的关系

      Fig.  9.  The relationship between K, Vb and organic matter in alluvial and lacustrine soils

      图  10  冲积和湖积土壤KVb与土壤Cd含量的关系

      Fig.  10.  The relationship between K, Vb and Cd in alluvial and lacustrine soils

      图  11  冲积和湖积土壤KVb与物理性粘粒含量的关系

      Fig.  11.  The relationship between K, Vb and clay grain content in alluvial and lacustrine soils

      表  1  供试样品基本情况

      Table  1.   Basic information of test samples

      沉积物类型 野外编号 pH 有机质(%) Cd (mg·kg-1) 粘粒(%) 粉粒(%) 砂粒(%) 作物类型 土壤质地
      (< 2 μm) (2~20 μm) (> 20 μm)
      大陇乡湖积物 WDTZ-10 7.02 1.52 0.39 10.04 78.04 11.93 水稻 粉砂质壤土
      WDTZ-11 6.55 1.20 0.64 3.47 82.99 13.54 水稻 粉砂质壤土
      WDTZ-25 5.68 1.44 0.30 16.34 72.99 10.68 水稻 粉砂质粘壤土
      平均值 / 6.42 1.39 0.44 9.95 78.01 12.05 水稻 /
      大陇乡冲积物 WDTZ-08 7.32 1.47 0.31 1.99 55.00 43.01 水稻 粉砂质壤土
      WDTZ-09 8.13 0.95 0.28 1.11 70.34 28.55 水稻 粉砂质壤土
      平均值 / 7.73 1.21 0.30 1.55 62.67 35.78 水稻 /
      江心洲冲积物 WDTZ-02 8.30 0.76 0.28 1.83 58.07 40.10 玉米 粉砂质壤土
      WDTZ-04 8.19 0.90 0.34 3.05 73.31 23.64 玉米 粉砂质壤土
      WDTZ-05 7.12 1.52 0.46 6.44 76.40 17.16 玉米 粉砂质壤土
      平均值 / 7.87 1.06 0.36 3.77 69.26 26.97 玉米 /
      下载: 导出CSV

      表  2  冲积和湖积土壤镉的等温吸附实验Freundlich方程拟合结果

      Table  2.   The fitting results of the isothermal adsorption by Freundlich model in alluvial and lacustrine soils

      沉积物类型 野外编号 K 1/n R2
      大陇乡湖积物 WDTZ-10 664.66 0.96 0.939 7**
      WDTZ-11 442.08 1.02 0.967 1**
      WDTZ-25 539.01 1.04 0.960 9**
      平均值 548.58 1.00 0.955 9
      大陇乡冲积物 WDTZ-08 796.71 0.99 0.911 6**
      WDTZ-09 942.11 1.00 0.913 0**
      平均值 869.41 0.99 0.912 3
      江心洲冲积物 WDTZ-02 956.31 0.97 0.887 9**
      WDTZ-04 948.20 0.98 0.927 7**
      WDTZ-05 785.78 1.01 0.926 1**
      平均值 896.76 0.98 0.913 9
      注:**在0.01水平(双侧)上显著相关;*在0.05水平(双侧)上显著相关,下表同.
      下载: 导出CSV

      表  3  冲积与湖积土壤镉的吸附动力学方程

      Table  3.   Adsorption kinetics equation of Cd2+ on alluvial and lacustrine soils

      沉积物类型 模型 Elovich模型:S(t)=(1/β)lnαβ+(1/β)lnt
      参数 α(mg·(kg·h)-1) β(kg·mg-1) R2
      江心洲冲积物 WDTZ-02 1.37×1034 0.043 6 0.878 2**
      WDTZ-04 2.87×1024 0.030 3 0.760 0**
      WDTZ-05 3.37×1038 0.049 2 0.966 7**
      大陇乡冲积物 WDTZ-08 4.65×1078 0.099 0 0.764 6**
      WDTZ-09 4.71×1069 0.087 2 0.700 2**
      大陇乡湖积物 WDTZ-10 9.19×1025 0.034 5 0.871 3**
      WDTZ-11 2.25×1021 0.030 3 0.869 3**
      WDTZ-25 3.00×1022 0.031 8 0.922 5**
      下载: 导出CSV

      表  4  KVb与土壤理化性质之间的Pearson相关系数

      Table  4.   Pearson correlation coefficient between K, Vb and soil physical and chemical properties

      参数 pH 有机质(%) Cd(mg·kg-1) 物理性粘粒(%)
      等温吸附常数K 0.911** -0.595 -0.661 -0.721*
      平衡吸附速率Vb 0.858** -0.370 -0.525 -0.717*
      下载: 导出CSV
    • [1] Ahamada, K.U., Singh, R., Baruah, T., et al., 2018. Equilibrium and Kinetics Modeling of Fluoride Adsorption onto Activated Alumina, Alum and Brick Powder. Groundwater for Sustainable Development, 7: 452-458. https://doi.org/10.1016/j.gsd.2018.06.005
      [2] Aşçı, Y., Nurbaş, M., Açıkel, Y.S., 2008. A Comparative Study for the Sorption of Cd(II) by Soils with Different Clay Contents and Mineralogy and the Recovery of Cd(II) Using Rhamnolipid Biosurfactant. Journal of Hazardous Materials, 154(1-3): 663-673. https://doi.org/10.1016/j.jhazmat.2007.10.078
      [3] Bai, J., Ye, X., Jia, J., et al., 2017. Phosphorus Sorption-Desorption and Effects of Temperature, pH and Salinity on Phosphorus Sorption in Marsh Soils from Coastal Wetlands with Different Flooding Conditions. Chemosphere, 188: 677-688. https://doi.org/10.1016/j.chemosphere.2017.08.117
      [4] Cerqueira, B., Covelo, E.F., Andrade, L., et al., 2011. The Influence of Soil Properties on the Individual and Competitive Sorption and Desorption of Cu and Cd. Geoderma, 162(1): 20-26. https://doi.org/10.1016/j.geoderma.2010.08.013
      [5] Chen, S., Sun, T.H., Sun, L.N., et al., 2007. Sorption-Desorption Behavior of Cd2+ and Pb2+ in Rhizosphere and Bulk Soil. Environmental Sciences, 28(4): 4843-4851 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/17639948
      [6] Chen, D., Wang, X., Wang, X., et al., 2020. The Mechanism of Cadmium Sorption by Sulphur-Modified Wheat Straw Biochar and Its Application Cadmium-Contaminated Soil. The Science of the Total Environment, 714: 136550. https://doi.org/10.1016/j.scitotenv.2020.136550
      [7] Covelo, E.F., Andrade, M.L., Vega, F.A., 2004. Heavy Metal Adsorption by Humic Umbrisols: Selectivity Sequences and Competitive Sorption Kinetics. Journal of Colloid and Interface Science, 280(1): 1-8. https://doi.org/10.1016/j.jcis.2004.07.024
      [8] Elbana, T.A., Selim, H.M., 2010. Cadmium Transport in Alkaline and Acidic Soils: Miscible Displacement Experiments. Soil Science Society of America Journal, 74(6): 1956-1966. https://doi.org/10.2136/sssaj2010.0146
      [9] He, M.Y., Zheng, H.B., Huang, X.T., et al., 2011. Clay Mineral Assemblages in the Yangtze Drainage and Provenance Implications. Acta Sedimentologica Sinica, 29(3): 544-551(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201103017.htm
      [10] Huang, S., Zhang, R.D., Zhang, J.Y., et al., 2012. Effects of Physical and Chemical Properties of Soil on Adsorption of Heavy Metals to Cadmium. Journal of Irrigation and Drainage, 31(1): 19-22(in Chinese with English abstract).
      [11] Huang, Y.Y., Liu, D.D., Li, G.R., 2012. Adsorption Kinetics of As (Ⅲ) from Groundwater by Nanoscale Zero-Valent Iron. Earth Science, 37(2): 294-300(in Chinese with English abstract). http://www.mendeley.com/research/adsorption-kinetics-iii-groundwater-nanoscale-zerovalent-iron/
      [12] Inyang, H.I., Onwawoma, A., Bae, S., 2016. The Elovich Equation as a Predictor of Lead and Cadmium Sorption Rates on Contaminant Barrier Minerals. Soil and Tillage Research, 155: 124-132. https://doi.org/10.1016/j.still.2015.07.013
      [13] Itami, K., Yanai, J.T., 2006. Sorption and Desorption Properties of Cadmium and Copper on Soil Clays in Relation to Charge Characteristics. Soil Science and Plant Nutrition, 52(1): 5-12. https://doi.org/10.1111/j.1747-0765.2006.00015.x
      [14] Ji, L.M., Qiu, J.L., Zhang, T.W., et al., 2012. Experiments on Methane Adsorption of Common Clay Minerals in Shale. Earth Science, 32(5): 1043-1050 (in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dqkx201205016
      [15] Krishnamurti, G.S.R., Naidu, R., 2003. Solid-Solution Equilibria of Cadmium in Soils. Geoderma, 113(1-2): 17-30. https://doi.org/10.1016/s0016-7061(02)00313-0
      [16] Lair, G.J., Gerzabek, M.H., Haberhauer, G., et al., 2006. Response of the Sorption Behavior of Cu, Cd, and Zn to Different Soil Management. Journal of Plant Nutrition and Soil Science, 169(1): 60-68. https://doi.org/10.1002/jpln.200521752
      [17] Li, C.F., Li, T.X., Zhang, X.Z., et al., 2017. Stabilization Characteristics of Cadmium in Some Typical Agricultures Oils. Journal of Agro-Environment Science, 36(1): 85-92 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NHBH201701011.htm
      [18] Li, P., Lang, M., Wang, X., et al., 2016. Sorption and Desorption of Copper and Cadmium in a Contaminated Soil Affected by Soil Amendments. Clean-Soil, Air, Water, 44(11): 1547-1556. https://doi.org/10.1002/clen.201500555
      [19] Lin, D.S., Xu, Y.M., Sun, G.H., et al., 2007. Effects of pH, Organic Matter and Hydrous Oxides on Competitive Adsorption of Cd2+ and Pb2+ by Soil. Journal of Agro-Environment Science, 26(2): 510-515(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-NHBH200702019.htm
      [20] Lin, Q., Xu, S.H., 2008. A Review on Competitive Adsorption of Heavy Metals in Soils. Soils, 40(5): 706-711(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TURA200805007.htm
      [21] Liu, Y.Z., Xiao, T.F., Ning, Z.P., et al., 2013. Cadmium and Selected Heavy Metals in Soils of Jianping Area in Wushan County, the Three Gorges Region: Distribution and Source Recognition. Chinese Journal of Environmental Science, 34(6): 2390-2398(in Chinese with English abstract). http://www.researchgate.net/publication/255956196_Cadmium_and_selected_heavy_metals_in_soils_of_Jianping_area_in_Wushan_County_the_Three_Gorges_Region_Distribution_and_source_recognition
      [22] Ma, P.G., Zhang, H.T., Ding, W.M., 2019. Kinetics and Thermodynamics of Modified Granular Activated Alumina for Fluoride Removal. Journal of Beijing University of Chemical Technology (Natural Science), 46(3): 1-6(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-BJHY201903001.htm
      [23] Manjuladevi, M., Anitha, R., Manonmani, S., 2018. Kinetic Study on Adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) Ions from Aqueous Solutions Using Activated Carbon Prepared from Cucumis Melo Peel. Applied Water Science, 8(1): 1-8. https://doi.org/10.1007/s13201-018-0674-1
      [24] Meng, F.D., Jiang, X., Jin, X.C., 2004. Physical-Chemical Characteristics of the Sediments in Lakes from the Middle and Lower Reaches of the Yangtze River. Research of Environmental Sciences, 17: 24-29(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJKX2004S1006.htm
      [25] Naidu, R., Kookana, R.S., Sumner, M.E., 1997. Cadmium Sorption and Transport in Variable Charge Soils: A Review. Journal of Environmental Quality, 26(3): 602- 617. https://doi.org/10.2134/jeq1997.00472425002600030004x
      [26] Ren, B.Z., Wu, Y., Deng, D.P., et al., 2020. Effect of Multiple Factors on the Adsorption of Cd in an Alluvial Soil from Xiba, China. Journal of Contaminant Hydrology, 232: 103605. https://doi.org/10.1016/j.jconhyd.2020.103605
      [27] Satish, P., Sameer, R., Naseema, P., 2011. Removal of Methylene Blue, a Basic Dye from Aqueous Solutions by Adsorption Using Teak Tree (Tectona Grandis) Bark Powder. International Journal of Environmental Sciences, 5(1): 711-725. http://www.researchgate.net/publication/284971987_Removal_of_methylene_blue_a_basic_dye_from_aqueous_solutions_by_adsorption_using_teak_tree_Tectona_grandis_bark_powder
      [28] Sauvé, S., Manna, S., Turmel, M. C., et al., 2003. Solid–Solution Partitioning of Cd, Cu, Ni, Pb, and Zn in the Organic Horizons of a Forest Soil. Environmental Science & Technology, 37(22): 5191-5196. https://doi.org/10.1021/es030059g
      [29] Shirvani, M., Kalbasi, M., Shariatmadari, H., et al., 2006. Sorption–Desorption of Cadmium in Aqueous Palygorskite, Sepiolite, and Calcite Suspensions: Isotherm Hysteresis. Chemosphere, 65(11): 2178-2184. https://doi.org/10.1016/j.chemosphere.2006.06.002
      [30] Tang, H.X., Xue, H.B., Lin, G.Z., et al., 1981. Basic Characteristics of Adsorption of Cd Contaminants by Clay Minerals. Acta Scuentiae Circumstantiae, 1(2): 140-154(in Chinese with English abstract).
      [31] Wang, H.M., Wang, B.G., Jin, M.G., et al., 2018. Spatial Distribution and Source of Heavy Metals in Alluvial Soils and Lacustrine Soils—A Case Study in Dangtu County, Anhui. Safety and Environmental Engineering, 25(5): 55-63(in Chinese with English abstract). http://search.cnki.net/down/default.aspx?filename=KTAQ201805009&dbcode=CJFD&year=2018&dflag=pdfdown
      [32] Wang, L., 2010. Study of the Environmental Geochemical Behavior of Cd and Other Heavy Metals in the Changjiang River and Typical Soil in It's Basin(Dissertation). Chinese Academy of Geological Sciences, Beijing, 4-60(in Chinese with English abstract).
      [33] Wang, Y.J., Zhou, D.M., Sun, R.J., et al., 2006. Competitive Adsorption Kinetics of Copper and Lead Ions in Soils. China Environmental Sciences, 26(5): 555-559(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGHJ200605010.htm
      [34] Wang, Z., Zhang, L., Dang, X.L., 2012. Effect of the Freezing-Thawing on Kinetics of Adsorption-Desorption of the Soil Cadmium. Acta Scientiae Circumstantiae, 32(3): 721-725(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX201203030.htm
      [35] Xu, M.G., Li, J.M., Zhang, Q., 2004. Effect of pH on the Desorption Characteristics of Heavy Metals in Yellow Brown Soil. Ecology and Environment, 13(3): 312-315(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/tryhj200403004
      [36] Zhang, D.L., Jin, M.G., Fang, Y., et al., 2014. Adsorption and Desorption of Cadmium in Silty Loam under Acidic Conditions. Chinese Soil and Fertilizer, (4): 29-34(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRFL201404008.htm
      [37] Zhang, Z.Q., Zhang, Y.P., Zhu, Z.H., 2000. Study on the Characteristics of Kinetic of Cadmium Retention on Soils. Acta Scientiae Circumstantiae, 20(3): 370-375(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXX200003022.htm
      [38] Zhou, Y.T., Sherpa, S., Mcbride, M.B., 2020. Pb and Cd Chemisorption by Acid Mineral Soils with Variable Mn and Organic Matter Contents. Geoderma, 368: 114274. https://doi.org/10.1016/j.geoderma.2020.114274
      [39] Zong, L.G., Xu, X.Y., 2003. Advances in Adsorption and Desorption of Soil Cadmium. Ecology and Environment, 12(3): 331-335 (in Chinese with English abstract).
      [40] 陈苏, 孙铁珩, 孙丽娜, 等, 2007. Cd2+、Pb2+在根际和非根际土壤中的吸附-解吸行为. 环境科学, 28(4): 4843-4851. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ200704027.htm
      [41] 何梦颖, 郑洪波, 黄湘通, 等, 2011. 长江流域沉积物黏土矿物组合特征及物源指示意义. 沉积学报, 29(3): 544-551. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201103017.htm
      [42] 黄爽, 张仁铎, 张家应, 等, 2012. 土壤理化性质对吸附重金属镉的影响. 灌溉排水学报, 31(1): 19-22. https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201201005.htm
      [43] 黄园英, 刘丹丹, 李桂荣, 2012. 纳米铁对地下水中As(Ⅲ)的吸附动力学. 地球科学, 37(2): 294-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201202015.htm
      [44] 吉利明, 邱军利, 张同伟, 等, 2012. 泥页岩主要黏土矿物组分甲烷吸附实验. 地球科学, 32(5): 1043-1050. http://www.earth-science.net/article/id/2308
      [45] 李传飞, 李廷轩, 张锡洲, 等, 2017. 外源镉在几种典型农耕土壤中的稳定化特征. 农业环境科学学报, 36(1): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201701011.htm
      [46] 林大松, 徐应明, 孙国红, 等, 2007. 土壤pH、有机质和含水氧化物对镉、铅竞争吸附的影响. 农业环境科学学报, 26(2): 510-515. doi: 10.3321/j.issn:1672-2043.2007.02.020
      [47] 林青, 徐绍辉, 2008. 土壤中重金属离子竞争吸附的研究进展. 土壤, 40(5): 706-711. doi: 10.3321/j.issn:0253-9829.2008.05.005
      [48] 刘意章, 肖唐付, 宁增平, 等, 2013. 三峡库区巫山建坪地区土壤镉等重金属分布特征及来源研究. 环境科学, 34(6): 2390-2398. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201306051.htm
      [49] 马培根, 张海涛, 丁文明, 2019. 颗粒改性活性氧化铝吸附除氟动力学和热力学的研究. 北京化工大学学报(自然科学版), 46(3): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHY201903001.htm
      [50] 孟凡德, 姜霞, 金相灿, 2004. 长江中下游湖泊沉积物理化性质研究. 环境科学研究, 17: 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX2004S1006.htm
      [51] 汤鸿霄, 薛含斌, 林国珍, 等, 1981. 粘土矿物吸附锦污染物的基本特征. 环境科学学报, 1(2): 140-154. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX198102003.htm
      [52] 王慧敏, 汪丙国, 靳孟贵, 等, 2018. 冲积与湖积成因土壤重金属的空间分布特征及其来源——以安徽当涂县为例. 安全与环境工程, 25(5): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201805009.htm
      [53] 王岚, 2010. 长江水系及流域典型土壤中Cd等重金属元素的环境地球化学行为研究(博士学位论文). 北京: 中国地质科学院, 4-60.
      [54] 王玉军, 周东美, 孙瑞娟, 等, 2006. 土壤中铜、铅离子的竞争吸附动力学. 中国环境科学, 26(5): 555-559. doi: 10.3321/j.issn:1000-6923.2006.05.011
      [55] 王展, 张良, 党秀丽, 等, 2012. 冻融作用对土壤镉动力学吸附解吸的影响. 环境科学学报, 32(3): 721-725. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201203030.htm
      [56] 徐明岗, 李菊梅, 张青, 2004. pH对黄棕壤重金属解吸特征的影响. 生态环境, 13(3): 312-315. doi: 10.3969/j.issn.1674-5906.2004.03.004
      [57] 张德乐, 靳孟贵, 方远, 等, 2014. 酸性条件下粉砂质壤土对Cd~(2+)的吸附解吸特性研究. 中国土壤与肥料, (4): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TRFL201404008.htm
      [58] 张增强, 张一平, 朱兆华, 2000. 镉在土壤中吸持的动力学特征研究. 环境科学学报, 20(3): 370-375. doi: 10.3321/j.issn:0253-2468.2000.03.025
      [59] 宗良纲, 徐晓炎, 2003. 土壤中镉的吸附解吸研究进展. 生态环境, 12(3): 331-335. doi: 10.3969/j.issn.1674-5906.2003.03.019
    • 加载中
    图(11) / 表(4)
    计量
    • 文章访问数:  629
    • HTML全文浏览量:  354
    • PDF下载量:  28
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-01-20
    • 刊出日期:  2021-04-15

    目录

      /

      返回文章
      返回