Spatial-Temporal Framework of Shiquanhe-Laguoco-Yongzhu-Jiali Ophiolite Mélange Zone, Qinghai-Tibet Plateau and Its Tectonic Evolution
-
摘要: 青藏高原中部狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带(简称SYMZ)位于班公湖-怒江缝合带与雅鲁藏布江缝合带之间,其构造属性存在很大争议,制约了对青藏高原多岛弧盆系构造演化的理解.根据新的地质调查资料、研究成果并结合分析数据,系统总结了该蛇绿混杂岩带的地质特征,讨论了其构造演化过程.一系列新资料及新认识表明SYMZ是分割北拉萨地块和中拉萨地块的一条独立的蛇绿混杂岩带,是特提斯构造域多岛弧盆系的组成部分.在狮泉河、拉果错、阿索、永珠、凯蒙等地发育比较典型的蛇绿岩组合,高精度年代学数据指示洋盆主体发育于178~160 Ma,比班公湖-怒江洋盆主体发育时限(188~162 Ma)要晚10 Ma左右,阿索一带蛇绿岩残片记录洋盆一直持续到113 Ma.SYMZ侏罗纪基性岩具有MORB型(洋中脊玄武岩)和IAT型(岛弧拉斑玄武岩)火山岩的地球化学性质,属于洋内弧型和洋中脊型蛇绿混杂岩;早白垩世基性岩具MORB和火山弧玄武岩的双重特性,指示其很可能形成于SSZ的构造环境,不同于同时期班公湖-怒江特提斯受地幔柱热点影响的洋盆性质.同时,在拉果错、永珠、凯蒙等地区识别出侏罗纪前弧玻安岩及玻玄岩系列,一致指示SYMZ洋壳发生过洋内俯冲.在此基础上,结合区域地质资料,构建了SYMZ特提斯洋的时空格架及构造演化历史,认为经历了晚三叠世-早侏罗世洋盆裂解-扩张、中-晚侏罗世洋内俯冲、早白垩世俯冲消减和早白垩世末期洋盆消亡四个阶段,为特提斯洋的构造演化及大地构造过程再造提供了重要的地质学证据.Abstract: The Shiquanhe-Laguoco-Yongzhu-Jiali ophiolite mélange zone (SYMZ) is located between the Bangongco-Nujiang suture zone and the Yarlung-Zangbo suture zone in the central Qinghai-Tibet Plateau. The tectonic property of the SYMZ remains controversial, which restricts the application of archipelagic arc-basin system theory to the evolution of Qinghai-Tibet Plateau. Based on recent geological survey information, research results and comprehensive data analyses, in this paper, it summarizes the geological feature and discusses the tectonic process of the SYMZ. The SYMZ represents an independent ophiolitic mélange zone dividing the north Lhasa Terrane and central Lhasa Terrane, which is part of the Tethyan archipelagic arc-basin system. The typical ophiolite mélange suites are distributed in such places as Shiquanhe, Laguoco, Aso, Yongzhu and Kaimeng, and high precision geochronology data show that the main ocean basin was formed during 178-160 Ma, which was about 10 Ma later than the formation of the Bangongco-Nujiang ocean basin (188-162 Ma). The Aso ophiolitic mélange reflects that the SYMZ ocean basin had existed until 113 Ma. The Jurassic mafic rocks of the SYMZ show the geochemistry characteristics of MORB and IAT, belonging to the Oceanic Arc and MORB type ophiolites. The Early Cretaceous mafic rocks show both MORB and arc basalt characters, suggesting they probably formed in the tectonic setting of SSZ, different from the contemporaneous Bangongco-Nujiang ocean which was influenced by the mantle plume. The Jurassic boninites and bonibasalts series places like Laguoco, Yongzhu and Kaimeng were found in this study, indicating the intra-oceanic subduction of the SYMZ oceanic slab. Combined all these new discoveries with regional geological data, the spatial-temporal framework of the SYMZ Tethyan Ocean and its tectonic evolution history are established. The SYMZ Tethyan Ocean opened and spread in Late Triassic-Early Jurassic, the intra-oceanic subduction lasted during Middle-Late Jurassic, oceanic slab subduction begun in the Early Cretaceous, and finally ocean basin was extinct in the late Early Cretaceous. This study provides important geological evidences for understanding the lithosphere evolution and tectonic process of the Tethyan.
-
图 1 青藏高原构造格架简图(a)和班公湖-怒江缝合带、狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空展布及锆石年龄分布(b)
图b据Wang et al.(2016)修改;班公湖-怒江数据引自Wang et al.(2016)及其文献,SYMZ数据引用同表 1. JSSZ.金沙江缝合带; LSSZ.龙木错-双湖缝合带; BNSZ.班公湖-怒江缝合带;SYMZ.狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带;YZSZ.雅鲁藏布江缝合带
Fig. 1. Tectonic outline of the Qinghai-Tibet Plateau (a) and the Bangongco-Nujiang suture zone and Shiquanhe-Laguoco-Yongzhu-Jiali ophiolitic mélange zone in central Tibet, showing zircon U-Pb ages of the major ophiolitic massifs (b)
图 5 SYMZ侏罗纪基性岩岩石分类图解
底图据Winchester and Floyd(1977).数据来源:拉果错据王保弟等(2007)、樊帅权等(2010)和Yuan et al.(2015); 永珠据杨日红等(2003)、叶培盛等(2004, 2005)、Zhong et al.(2015)、王永胜等(2005)和Xu et al.(2014);凯蒙据和钟铧等(2006);下图同
Fig. 5. Classification of Jurassic mafic rocks on Nb/Y vs. Zr/TiO2 diagram in the SYMZ
图 6 SYMZ侏罗纪基性岩和玻安岩的Ti-V图解
底图据Shervais(1982). Boninite.玻安岩;IAT.岛弧拉斑玄武岩;MORB.洋中脊玄武岩;OIB.洋岛玄武岩
Fig. 6. Diagram of Ti vs. V for Jurassic mafic rocks and boninites in the SYMZ
图 7 狮泉河-嘉黎蛇绿混杂岩带侏罗纪基性岩构造环境Nb-Zr-Y(a)和Hf-Th-Ta(b)图解
图a据Meschede (1986);图b据Wood (1980).图a:AI.板内碱性玄武岩;AII.板内碱性玄武岩和板内拉斑玄武岩;B. E-MORB; C.板内拉斑玄武岩和火山弧玄武岩;D. N-MORB和火山弧玄武岩.图b:A. N-MORB; B. E-MORB; C.板内碱性玄武岩; D.岛弧拉斑玄武岩
Fig. 7. Diagrams of Nb-Zr-Y (a) and Hf-Th-Ta (b) showing the tectonic setting for Jurassic mafic rocks and boninites in the SYMZ
图 8 狮泉河-嘉黎蛇绿混杂岩带侏罗纪基性岩Nb/Ta-Th/Ta图解
Fig. 8. Diagram of Nb/Ta-Th/Ta for Jurassic mafic rocks in the SYMZ
图 9 狮泉河-嘉黎蛇绿混杂岩带侏罗纪基性岩Th/Yb-Nb/Yb (a)和TiO2/Yb-Nb/Yb (b)图解
Fig. 9. Diagrams of Th/Yb vs. Nb/Yb (a) and TiO2/Yb vs. Nb/Yb (b) for Jurassic mafic rocks in the SYMZ
图 10 SYMZ白垩纪基性岩和侏罗纪安山岩Nb/Y-Zr/TiO2(a)和Nb-Zr-Y(b)图解
a.底图据Winchester and Floyd(1977);b.底图据Meschede (1986)
Fig. 10. Classification of Cretaceous mafic rocks and Jurassic andesites on Nb/Y-Zr/TiO2(a)and Nb-Zr-Y(b)diagrams in the SYMZ
图 11 狮泉河-嘉黎蛇绿混杂岩带玻安岩和玻玄岩分类图解
Fig. 11. Classification of boninites and bonibasalts on Nb/Y vs. Zr/TiO2 diagram in the SYMZ
图 12 拉果错玻安岩稀土元素粒陨石标准化分布曲线
标准化数据引自Sun and McDonough(1989)
Fig. 12. Chondrite-normalized REE pattern for the Laguoco boninites
图 13 玻安岩Ti/Sc-Ti/V图解(与典型玻安岩对比)
Fig. 13. Diagram of Ti/Sc vs. Ti/V for the boninites in the SYMZ
图 14 狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带(SYMZ)构造演化模式简图
据Pan et al.(2012)和Wang et al.(2016)修改
Fig. 14. Schematic illustration of the evolution of the Shiquanhe-Laguoco-Yongzhu-Jiali ophiolite mélange zone (SYSZ)
表 1 狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带年龄信息
Table 1. Age information of ophiolite in the Shiquanhe-Laguoco-Yongzhu-Jiali ophiolite mélange zone
地名 岩石名称 年龄(Ma) 测试方法 文献来源 狮泉河 堆晶橄榄辉石岩 193.1±3.2 SHRIMP 郑有业等,2006 闪长岩(岩墙) 165.8±1.7 SHRIMP 郑有业等,2006 辉长闪长岩(岩墙) 163.4±0.8 SHRIMP 郑有业等,2006 拉果错 斜长花岗岩 166.6±2.5 SHRIMP 张玉修等,2007 斜长花岗岩 189.8±1.9 LA-ICPMS 樊帅权等,2010 角闪岩 177.6±3.4 Ar-Ar Wang et al., 2008 角闪岩 176.0±3.9 Ar-Ar Wang et al., 2008 辉长岩 172.8±1.8 LA-ICPMS 本文 辉长岩 165.4±3.5 LA-ICPMS Yuan et al., 2015 石英闪长岩 161.2±2.7 LA-ICPMS Yuan et al., 2015 斜长花岗岩 164.6±1.6 LA-ICPMS 未发表数据 古昌 辉长岩 128.4±2.6 Ar-Ar 张宽忠等,2007 辉长岩 124.6±0.6 Ar-Ar 张宽忠等,2007 中仓 堆晶辉长岩 114.3±1.4 LA-ICPMS Xu et al., 2014 辉长岩(岩墙) 113.4±1.7 LA-ICPMS 徐梦婧等,2019 堆晶辉长岩 116.1±1.8 LA-ICPMS 徐梦婧等,2019 阿索 辉绿岩(岩墙) 118.9±0.5 LA-ICPMS 本文 斜长花岗岩 162.3±1.7 LA-ICPMS 本文 永珠 辉长岩 150.6±2.4 LA-ICPMS Zeng et al., 2018 纳木错 变辉长岩 178.0±2.9 LA-ICPMS Zhong et al., 2015 仁错 辉长岩 149.7±1.6 LA-ICPMS Zhong et al., 2015 凯蒙 橄长岩 218.2±4.6 SHRIMP 和钟铧等,2006 -
[1] Bai, Z.D., Xu, D.B., Chen, M.J., et al., 2009. Characteristics and Zircon SHRIMP U-Pb Dating of the Amduo Trachyte, Tibet, China. Geological Bulletin of China, 28(9):1229-1235 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200909011.htm [2] Bao, P.S., Xiao, X.C., Su, L., et al., 2007. Petrological, Geochemical and Chronological Constraints for the Tectonic Setting of the Dongco Ophiolite in Tibet. Scientia Sinica Terrae, 37(3):298-307 (in Chinese). http://d.wanfangdata.com.cn/Periodical_zgkx-ed200705003.aspx [3] Baxter, A. T., Aitchison, J. C., Zyabrev, S. V., 2009. Radiolarian Age Constraints on Mesotethyan Ocean Evolution, and Their Implications for Development of the Bangong-Nujiang Suture, Tibet. Journal of the Geological Society, 166(4):689-694. https://doi.org/10.1144/0016-76492008-128 [4] Bureau of Geology Mineral Resources of Xizang Autonomous Region, 1993. Regional Geology of Xizang (Tibet) Autonomous Region. Geological Publishing House, Beijing (in Chinese). [5] Chen, J. L., Xu, J. F., Yu, H. X., et al., 2015. Late Cretaceous High-Mg# Granitoids in Southern Tibet:Implications for the Early Crustal Thickening and Tectonic Evolution of the Tibetan Plateau? Lithos, 232:12-22. https://doi.org/10.1016/j.lithos.2015.06.020 [6] Cheng, H., Liu, Y. M., Vervoort, J. D., et al., 2015. Combined U-Pb, Lu-Hf, Sm-Nd and Ar-Ar Multichronometric Dating on the Bailang Eclogite Constrains the Closure Timing of the Paleo-Tethys Ocean in the Lhasa Terrane, Tibet. Gondwana Research, 28(4):1482-1499. https://doi.org/10.1016/j.gr.2014.09.017 [7] Du, D.D., Qu, X.M., Wang, G.H., et al., 2011. Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-Pb LAICPMS Dating and Petrogeochemistry of Arc Granites. Acta Petrologica Sinica, 27(7):1993-2002 (in Chinese with English abstract). [8] Fan, J. J., Li, C., Xie, C. M., et al., 2014a. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet:Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of the Neo-Tethys. International Geology Review, 56(12):1504-1520. https://doi.org/10.1080/00206814.2014.947639 [9] Fan, J. J., Li, C., Xu, J. X., et al., 2014b. Petrology, Geochemistry, and Geological Significance of the Nadong Ocean Island, Banggongco-Nujiang Suture, Tibetan Plateau. International Geology Review, 56(8):915-928. https://doi.org/10.1080/00206814.2014.900651 [10] Fan, S.Q., Shi, R.D., Ding, L., et al., 2010. Geochemical Characteristics and Zircon U-Pb Age of the Plagiogranite in Gaize Ophiolite of Central Tibet and Their Tectonic Significance. Acta Petrologica et Mineralogica, 29(5):467-478 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSKW201005001.htm [11] Geng, Q.R., Peng, Z.M., Zhang, Z., et al., 2012. Tethyan Evolution and Geological Background of the Bangong Co-Nujiang Metallogenetic Zone and Adjacent Region. Geological Publishing House, Beijing (in Chinese). [12] Geng, Q.R., Wang, L.Q., Pan, G.T., et al., 2007. Carboniferous Marginal Rifting in Gangdese:Volcanic Rocks and Stratigraphic Constraints, Xizang (Tibet), China. Acta Geologica Sinica, 81(9):1259-1276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200709011.htm [13] Girardeau, J., Marcoux, J., Allègre, C. J., et al., 1984. Tectonic Environment and Geodynamic Significance of the Neo-Cimmerian Donqiao Ophiolite, Bangong-Nujiang Suture Zone, Tibet. Nature, 307(5946):27-31. https://doi.org/10.1038/307027a0 [14] He, Z.H., Yang, D.M., Wang, T.W., 2006. Age, Geochemistry and Its Tectonic Significance of Kaimeng Ophiolites in Jiali Fault Belt, Tibet. Acta Petrologica Sinica, 22(3):653-660 (in Chinese with English abstract). [15] Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2009. Geochemistry of Cretaceous Volcanic Rocks of Duoni Formation in Northern Lhasa Block:Discussion of Tectonic Setting. Earth Science, 34(1):89-104 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200901010.htm [16] Kapp, P., Murphy, M. A., Yin, A., et al., 2003. Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet. Tectonics, 22(4):1029. https://doi.org/10.1029/2001tc001332 [17] Li, G.M., Zhang, L.K., Wu, J.Y., et al., 2020. Reestablishment and Scientific Significance of the Ocean Plate Geology in the Southern Tibet Plateau, China. Sedimentary Geology and Tethyan Geology, 40(1):1-14 (in Chinese with English abstract). [18] Liu, W. L., Xia, B., Zhong, Y., et al., 2014. Age and Composition of the Rebang Co and Julu Ophiolites, Central Tibet:Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 56(4):430-447. https://doi.org/10.1080/00206814.2013.873356 [19] Matte, P., Tapponnier, P., Arnaud, N., et al., 1996. Tectonics of Western Tibet, between the Tarim and the Indus. Earth and Planetary Science Letters, 142(3-4):311-330. https://doi.org/10.1016/0012-821x(96)00086-6 [20] Meschede, M., 1986. A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram. Chemical Geology, 56(3-4):207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [21] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract). [22] Pan, G.T., Chen, Z.L., Li, X.Z., et al., 1996. Models for the Evolution of the Polyarc-Basin Systems in Eastern Tethys. Sedimentary Facies and Palaeogeography, 16(2):52-65 (in Chinese with English abstract). [23] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://ci.nii.ac.jp/naid/10026542222 [24] Pan, G. T., Wang, L. Q., Li, R. S., et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53:3-14. https://doi.org/10.1016/j.jseaes.2011.12.018 [25] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012. Tectonic Model of Archipelagic Arc-Basin Systems:The Key to the Continental Geology. Sedimentary Geology and Tethyan Geology, 32(3):1-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD201203000.htm [26] Pan, G.T., Wang, L.Q., Yin, F.G., et al., 2004. Charm of Landing of Plate Tectonics on the Continent as Viewed from the Study of the Archipelagic Arc-Basin System. Geological Bulletin of China, 23(9):933-939 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD2004Z2015.htm [27] Pan, G.T., Wang, L.Q., Zhang, W.P., et al., 2013. The Tectonic Map and Instruction of the Qinghai-Tibet Plateau and Its Adjacent Areas (1:1 500 000). Geological Publishing House, Beijing (in Chinese). [28] Pan, G.T., Xiao, Q.H., Zhang, K.X., et al., 2019. Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance. Earth Science, 44(5):1544-1561 (in Chinese with English abstract). [29] Pearce, J. A., 2008. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100(1-4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [30] Pearce, J. A., Deng, W., 1988. The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986). Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 327(1594):215-238. https://doi.org/10.1098/rsta.1988.0127 [31] Pearce, J. A., Peate, D. W., 1995. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annual Review of Earth and Planetary Sciences, 23(1):251-285. https://doi.org/10.1146/annurev.ea.23.050195.001343 [32] Qin, Y.D., Li, D.W., Lin, S.L., et al., 2015. Conversion of Tectonic Regimes from Compression to Extension in the Bangong Lake Area, Xizang during the Late Cretaceous:Evidence from Magmatic Rocks. Sedimentary Geology and Tethyan Geology, 35(4):92-105 (in Chinese with English abstract). [33] Qu, X.M., Wang, R.J., Xin, H.B., et al., 2009. Geochronology and Geochemistry of Igneous Rocks Related to the Subduction of the Tethys Oceanic Plate along the Bangong Lake Arc Zone, the Western Tibetan Plateau. Geochimica, 38(6):523-535 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQHX200906005.htm [34] Qu, X. M., Wang, R. J., Xin, H. B., et al., 2012. Age and Petrogenesis of A-Type Granites in the Middle Segment of the Bangonghu-Nujiang Suture, Tibetan Plateau. Lithos, 146-147:264-275. https://doi.org/10.1016/j.lithos.2012.05.006 [35] Qu, X.M., Xin, H.B., Zhao, Y.Y., et al., 2010. Opening Time of Bangong Lake Middle Tethys Oceanic Basin of the Tibet Plateau:Constraints from Petro-geochemistry and Zircon U-Pb LAICPMS Dating of Mafic Ophiolites. Earth Science Frontiers, 17(3):53-63 (in Chinese with English abstract). [36] Reagan, M. K., Ishizuka, O., Stern, R. J., et al., 2010. Fore-arc Basalts and Subduction Initiation in the Izu-Bonin-Mariana System. Geochemistry, Geophysics, Geosystems, 11(3):Q03X12. https://doi.org/10.1029/2009gc002871 [37] Shervais, J. W., 1982. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59(1):101-118. https://doi.org/10.1016/0012-821x(82)90120-0 [38] Shi, R.D., Yang, J.S., Xu, Z.Q., et al., 2004. Discovery of the Boninite Series Volcanic Rocks in the Bangong Lake Ophiolite Mélange, Western Tibet, and Its Tectonic Implications. Chinese Science Bulletin, 49(12):1179-1184 (in Chinese). doi: 10.1360/csb2004-49-12-1179 [39] Smithies, R., 2002. Archaean Boninite-Like Rocks in an Intracratonic Setting. Earth and Planetary Science Letters, 197(1-2):19-34. https://doi.org/10.1016/s0012-821x(02)00464-8 [40] Sobolev, A. V., Danyushevsky, L. V., 1994. Petrology and Geochemistry of Boninites from the North Termination of the Tonga Trench:Constraints on the Generation Conditions of Primary High-Ca Boninite Magmas. Journal of Petrology, 35(5):1183-1211. https://doi.org/10.1093/petrology/35.5.1183 [41] Sun, G. Y., Hu, X. M., Sinclair, H. D., et al., 2015. Late Cretaceous Evolution of the Coqen Basin (Lhasa Terrane) and Implications for Early Topographic Growth on the Tibetan Plateau. Geological Society of America Bulletin, 127:B31137.1. https://doi.org/10.1130/b31137.1 [42] Sun, S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [43] Tang, F.L., Huang, J.C., Luo, X.C., et al., 2004. The Discovery and Significance of the Asuo Structural Melanges in North Tibet. Journal of East China Institute of Technology, 27(3):245-250 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HDDZ200403008.htm [44] Wang, B. D., Wang, L. Q., Chung, S. L., et al., 2016. Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites. Lithos, 245:18-33. https://doi.org/10.1016/j.lithos.2015.07.016 [45] Wang, B. D., Wang, L. Q., Pan, G. T., et al., 2013. U-Pb Zircon Dating of Early Paleozoic Gabbro from the Nantinghe Ophiolite in the Changning-Menglian Suture Zone and Its Geological Implication. Chinese Science Bulletin, 58(8):920-930. https://doi.org/10.1007/s11434-012-5481-8 [46] Wang, B.D., Wang, L.Q., Wang, D.B., et al., 2018. Tectonic Evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang Area, Southwestern China. Earth Science, 43(8):2527-2550 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201808001.htm [47] Wang, B.D., Wang, L.Q., Xu, J.F., et al., 2015. The Discovery of High-Pressure Granulite at Shelama in Dongco Area along the Bangong Co-Nujiang River Suture Zone and Its Tectonic Significance. Geological Bulletin of China, 34(9):1605-1616 (in Chinese with English abstract). [48] Wang, B.D., Xu, J.F., Liu, B.M., et al., 2013. Geochronology and Ore-Forming Geological Background of~90 Ma Porphyry Copper Deposit in the Lhasa Terrane, Tibet Plateau. Acta Geologica Sinica, 87(1):71-80 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201301007.htm [49] Wang, B.D., Xu, J.F., Zeng, Q.G., et al., 2007. Geochemistry and Genesis of Lhaguo Tso Ophiolite in South of Gerze Area, Center Tibet. Acta Petrologica Sinica, 23(6):1521-1530 (in Chinese with English abstract). [50] Wang, D.B., Luo, L., Tang, Y., et al., 2016. Zircon U-Pb Dating and Petrogenesis of Early Paleozoic Adakites from the Niujingshan Ophiolitic Mélange in the Changning-Menglian Suture Zone and Its Geological Implications. Acta Petrologica Sinica, 32(8):2317-2329 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201608006.htm [51] Wang, L.Q., Pan, G.T., Ding, J., et al., 2013. The Geological Map and Instruction of the Qinghai-Tibet Plateau and Its Adjacent Areas (1:1 500 000). Geological Publishing House, Beijing (in Chinese). [52] Wang, L.Q., Pan, G.T., Li, C., et al., 2008. SHRIMP U-Pb Zircon Dating of Eopaleozoic Cumulate in Guoganjianian Mt. from Central Qiangtang Area of Northern Tibet-Considering the Evolvement of Proto- and Paleo-Tethys. Geological Bulletin of China, 27(12):2045-2056 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200812012.htm [53] Wang, W. L., Aitchison, J. C., Lo, C. H., et al., 2008. Geochemistry and Geochronology of the Amphibolite Blocks in Ophiolitic Mélanges along Bangong-Nujiang Suture, Central Tibet. Journal of Asian Earth Sciences, 33(1-2):122-138. https://doi.org/10.1016/j.jseaes.2007.10.022 [54] Wang, Y.J., Wang, J.P., Liu, Y.M., et al., 2002a. Characteristics and Age of the Dengqen Ophiolite in Xizang (Tibet) and Their Geological Significance. Acta Micropalaeontologica Sinica, 19(4):417-420 (in Chinese with English abstract). [55] Wang, Y.J., Wang, J.P., Pei, F, 2002b. A Late Triassic Radiolarian Fauna in the Dingqing Ophiolite Belt, Xizang (Tibet). Acta Micropalaeontologica Sinica, 19(4):323-336 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WSGT200204000.htm [56] Wang, Y.S., Qu, Y.G., Wang, Z.H., et al., 2005. Discovery of the Yunzhug Sheeted Dike Swarm in Northern Tibet, China-Evidence for Seafloor Spreading. Geological Bulletin of China, 24(12):1150-1156 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200512011.htm [57] Winchester, J. A., Floyd, P. A., 1977. Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements. Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [58] Wolde, B., Team G.G., 1996. Tonalite-Trondhjemite-Granite Genesis by Partial Melting of Newly Underplated Basaltic Crust:An Example from the Neoproterozoic Birbir Magmatic Arc, Western Ethiopia. Precambrian Research, 76(1-2):3-14. https://doi.org/10.1016/0301-9268(95)00016-x [59] Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1):11-30. https://doi.org/10.1016/0012-821x(80)90116-8 [60] Wu, H., Li, C., Xu, M. J., et al., 2015. Early Cretaceous Adakitic Magmatism in the Dachagou Area, Northern Lhasa Terrane, Tibet:Implications for Slab Roll-Back and Subsequent Slab Break-off of the Lithosphere of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 97:51-66. https://doi.org/10.1016/j.jseaes.2014.10.014 [61] Wu, Z., Wang, B.D., Wang, D.B., et al., 2020. Zircon U-Pb Dating of Early Paleozoic Adakites from the Nantinghe Ophiolitic Mélange in the Changning-Menglian Suture Zone and Its Geological Implications. Earth Science, 45(8):3003-3013(in Chinese with English abstract). [62] Wu, Z.H., Ye, P.S., Yang, Y., 2013. The Ngari Thrust System and Tectonic Emplacement of Ophiolites in Western Tibet. Geology in China, 40(1):182-190 (in Chinese with English abstract). [63] Xiao, X.C., Li, T.D., 2000. Tectonic Evolution and Uplift Mechanism of the Qinghai-Tibet Plateau. Science and Technology Press of Guangdong, Guangzhou (in Chinese). [64] Xu, M.J., 2014. The Evolution of Shiquanhe-Yongzhu-Jiali Ophiolitic Mélange Belt, Tibetan Plateau(Dissertation). Changchun: Jilin University (in Chinese with English abstract). [65] Xu, M.J., Lan, R., Wang, P., et al., 2019. Zircon U-Pb Dating of Gabbro from Zhongcang Ophiolitic Mélange in Tibet and Its Geological Implications. Journal of Tianjin Chengjian University, 25(2):128-132 (in Chinese with English abstract). [66] Yang, R.H., Li, C., Chi, X.G., et al., 2003. The Primary Study of Geochemical Characteristics and Tectonic Setting of Ophiolite in Yongzhu-Namuhu, Tibet. Geoscience, 17(1):14-19 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200301003.htm [67] Ye, P.S., Wu, Z.H., Hu, D.G., et al., 2004. Geochemistry and Tectonic Setting of Ophiolites in West of Namco Lake, Tibet. Geoscience, 18(2):237-243 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ200402014.htm [68] Ye, P.S., Wu, Z.H., Hu, D.G., et al., 2005. Geochemical Characteristics of Ophiolites in Yongzhu-Guomangcuo, Tibet and Its Tectonic Significance. Geoscience, 19(4):508-514 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XDDZ200504005.htm [69] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [70] Yuan, Y. J., Yin, Z. X., Liu, W. L., et al., 2015. Tectonic Evolution of the Meso-Tethys in the Western Segment of Bangonghu-Nujiang Suture Zone:Insights from Geochemistry and Geochronology of the Lagkor Tso Ophiolite. Acta Geologica Sinica (English Edition), 89(2):369-388. https://doi.org/10.1111/1755-6724.12436 [71] Zeng, Y.C., 2017. Late Triassic-Late Jurassic Magmatic-Tectonic Evolution of the Lhasa Terrane (Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract). [72] Zeng, Y. C., Xu, J. F., Chen, J. L., et al., 2018. Geochronological and Geochemical Constraints on the Origin of the Yunzhug Ophiolite in the Shiquanhe-Yunzhug-Namu Tso Ophiolite Belt, Lhasa Terrane, Tibetan Plateau. Lithos, 300-301:250-260. https://doi.org/10.1016/j.lithos.2017.11.025 [73] Zhang, K. J., Tang, X. C., Wang, Y., et al., 2011. Geochronology, Geochemistry, and Nd Isotopes of Early Mesozoic Bimodal Volcanism in Northern Tibet, Western China:Constraints on the Exhumation of the Central Qiangtang Metamorphic Belt. Lithos, 121(1-4):167-175. https://doi.org/10.1016/j.lithos.2010.10.015 [74] Zhang, K. J., Xia, B., Zhang, Y. X., et al., 2014. Central Tibetan Meso-Tethyan Oceanic Plateau. Lithos, 210-211:278-288. https://doi.org/10.1016/j.lithos.2014.09.004 [75] Zhang, K.Z., Chen, Y.L., 2007. Plagiogranite in the Goicang Ophiolites in Xizang. Sedimentary Geology and Tethyan Geology, 27(1):32-37 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200701005.htm [76] Zhang, Q, 1990. Classification of Ophiolites. Scientia Geologica Sinica, 25(1):54-61 (in Chinese with English abstract). [77] Zhang, X.F., Li, Y.G., Cao, X.M., et al., 2014. LA-ICP-MS Zircon U-Pb Age and Geochemical Characteristics of the Acid Intrusive Rocks in the Western Part of Bangong Lake-Nujiang River Suture Zone. Geological Bulletin of China, 33(7):984-994 (in Chinese with English abstract). [78] Zhang, Y.X., Zhang, K.J., Li, B., et al., 2007. Zircon SHRIMP U-Pb Geochronology and Petrogenesis of the Plagiogranites from the Lagkor Lake Ophiolite, Gerze, Tibet, China. Chinese Science Bulletin, 52(1):100-106 (in Chinese). doi: 10.1360/csb2007-52-1-100 [79] Zhang, Y.Y., 1999. The Evolutionary Succession of Cretaceous Angiosperm Pollen in China. Acta Palaeontologica Sinica, 38(4):435-457 (in Chinese with English abstract). [80] Zheng, Y.Y., Xu, R.K., Ma, G.T., et al., 2006. Ages of Generation and Subduction of Shiquan River Ophiolite:Restriction from SHRIMP Zircon Dating. Acta Petrologica Sinica, 22(4):895-904 (in Chinese with English abstract). [81] Zhong, Y., Xia, B., Liu, W. L., et al., 2015. Geochronology, Petrogenesis and Tectonic Implications of the Jurassic Namco-Renco Ophiolites, Tibet. International Geology Review, 57(4):508-528. https://doi.org/10.1080/00206814.2015.1017776 [82] Zhu, D. C., Li, S. M., Cawood, P. A., et al., 2016. Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 245:7-17. https://doi.org/10.1016/j.lithos.2015.06.023 [83] Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4):298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008 [84] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2008. Zircon U-Pb Geochronology of Zenong Group Volcanic Rocks in Coqen Area of the Gangdese, Tibet and Tectonic Significance. Acta Petrologica Sinica, 24(3):401-412 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb200803001.htm [85] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006. Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau:Geochronology, Geochemistry and Their Tectonic Setting. Acta Geologica Sinica, 80(9):1312-1328 (in Chinese with English abstract). [86] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [87] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [88] 白志达, 徐德斌, 陈梦军, 等, 2009.西藏安多地区粗面岩的特征及其锆石SHRIMP U-Pb定年.地质通报, 28(9):1229-1235. http://www.cqvip.com/Main/Detail.aspx?id=32044459 [89] 鲍佩声, 肖序常, 苏犁, 等, 2007.西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约.中国科学:地球科学, 37(3):298-307. http://www.cnki.com.cn/Article/CJFDTotal-JDXK200703001.htm [90] 杜德道, 曲晓明, 王根厚, 等, 2011.西藏班公湖-怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据.岩石学报, 27(7):1993-2002. http://d.wanfangdata.com.cn/Periodical/ysxb98201107008 [91] 樊帅权, 史仁灯, 丁林, 等, 2010.西藏改则蛇绿岩中斜长花岗岩地球化学特征、锆石U-Pb年龄及构造意义.岩石矿物学杂志, 29(5):467-478. http://d.wanfangdata.com.cn/Periodical/yskwxzz201005002 [92] 耿全如, 彭智敏, 张璋, 等, 2012.班公湖-怒江成矿带及邻区特提斯演化与成矿地质背景.北京:地质出版社. [93] 耿全如, 王立全, 潘桂棠, 等, 2007.西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据.地质学报, 81(9):1259-1276. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200709011.htm [94] 和钟铧, 杨德明, 王天武, 等, 2006.西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义.岩石学报, 22(3):653-660. http://d.wanfangdata.com.cn/Periodical/ysxb98200603014 [95] 康志强, 许继峰, 王保弟, 等, 2009.拉萨地块北部白垩纪多尼组火山岩的地球化学:形成的构造环境.地球科学, 34(1):89-104. http://www.earth-science.net/article/id/1789 [96] 李光明, 张林奎, 吴建阳, 等, 2020.青藏高原南部洋板块地质重建及科学意义.沉积与特提斯地质, 40(1):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl202001001 [97] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. http://www.cnki.com.cn/Article/CJFDTotal-GXDX200503001.htm [98] 潘桂棠, 陈智樑, 李兴振, 等, 1996.东特提斯多弧-盆系统演化模式.岩相古地理, 16(2):52-65. http://www.cqvip.com/Main/Detail.aspx?id=2038725 [99] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.wanfangdata.com.cn/Periodical/ysxb98200603001 [100] 潘桂棠, 王立全, 李荣社, 等, 2012.多岛弧盆系构造模式:认识大陆地质的关键.沉积与特提斯地质, 32(3):1-20. http://www.cqvip.com/QK/98500A/201203/43991521.html [101] 潘桂棠, 王立全, 尹福光, 等, 2004.从多岛弧盆系研究实践看板块构造登陆的魅力.地质通报, 23(9):933-939. http://d.wanfangdata.com.cn/Periodical/zgqydz200409016 [102] 潘桂棠, 王立全, 张万平, 等, 2013.青藏高原及邻区大地构造图及说明书(1:1 500 000).北京:地质出版社. [103] 潘桂棠, 肖庆辉, 张克信, 等, 2019.大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义.地球科学, 44(5):1544-1561. doi: 10.3799/dqkx.2019.063 [104] 秦雅东, 李德威, 林仕良, 等, 2015.西藏班公湖地区晚白垩世构造体制由挤压向伸展的转换:来自岩浆岩的证据.沉积与特提斯地质, 35(4):92-105. [105] 曲晓明, 王瑞江, 辛洪波, 等, 2009.西藏西部与班公湖特提斯洋盆俯冲相关的火成岩年代学和地球化学.地球化学, 38(6):523-535. [106] 曲晓明, 辛洪波, 赵元艺, 等, 2010.西藏班公湖中特提斯洋盆的打开时间:镁铁质蛇绿岩地球化学与锆石U-Pb LAICPMS定年结果.地学前缘, 17(3):53-63. [107] 史仁灯, 杨经绥, 许志琴, 等, 2004.西藏班公湖蛇绿混杂岩中玻安岩系火山岩的发现及构造意义.科学通报, 49(12):1179-1184. [108] 唐峰林, 黄建村, 罗小川, 等, 2004.藏北阿索构造混杂岩的发现及其地质意义.东华理工学院学报, 27(3):245-250. [109] 王保弟, 王立全, 王冬兵, 等, 2018.三江昌宁-孟连带原-古特提斯构造演化.地球科学, 43(8):2527-2550. doi: 10.3799/dqkx.2018.160 [110] 王保弟, 王立全, 许继峰, 等, 2015.班公湖-怒江结合带洞错地区舍拉玛高压麻粒岩的发现及其地质意义.地质通报, 34(9):1605-1616. [111] 王保弟, 许继峰, 刘保民, 等, 2013.拉萨地块北部~90 Ma斑岩型矿床年代学及成矿地质背景.地质学报, 87(1):71-80. [112] 王保弟, 许继峰, 曾庆高, 等, 2007.西藏改则地区拉果错蛇绿岩地球化学特征及成因.岩石学报, 23(6):1521-1530. [113] 王冬兵, 罗亮, 唐渊, 等, 2016.昌宁-孟连结合带牛井山早古生代埃达克岩锆石U-Pb年龄、岩石成因及其地质意义.岩石学报, 32(8):2317-2329. [114] 王立全, 潘桂棠, 丁俊, 等, 2013.青藏高原及邻区地质图及说明书(1:1 500 000).北京:地质出版社. [115] 王立全, 潘桂棠, 李才, 等, 2008.藏北羌塘中部果干加年山早古生代堆晶辉长岩的锆石SHRIMP U-Pb年龄:兼论原-古特提斯洋的演化.地质通报, 27(12):2045-2056. [116] 王玉净, 王建平, 刘彦明, 等, 2002a.西藏丁青蛇绿岩特征、时代及其地质意义.微体古生物学报, 19(4):417-420. [117] 王玉净, 王建平, 裴放, 2002b.西藏丁青蛇绿岩带中一个晚三叠世放射虫动物群.微体古生物学报, 19(4):323-336. [118] 王永胜, 曲永贵, 王忠恒, 等, 2005.藏北永珠席状岩墙群的发现:海底扩张的证据.地质通报, 24(12):1150-1156. [119] 吴喆, 王保弟, 王冬兵, 等, 2020.昌宁-孟连缝合带南汀河早古生代埃达克岩锆石U-Pb年龄及其地质意义.地球科学, 45(8):3003-3013. [120] 吴珍汉, 叶培盛, 杨艳, 2013.西藏阿里推覆构造与蛇绿岩构造侵位.中国地质, 40(1):182-190. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201301015.htm [121] 西藏地质矿产局, 1993.西藏自治区区域地质志.北京:地质出版社. [122] 肖序常, 李廷栋, 2000.青藏高原的构造演化与隆升机制.广州:广东科技出版社. [123] 徐梦婧, 2014.青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化(博士学位论文).长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1014267909.htm [124] 徐梦婧, 兰锐, 王沛, 等, 2019.西藏中仓蛇绿混杂岩中辉长岩锆石U-Pb定年及其地质意义.天津城建大学学报, 25(2):128-132. [125] 杨日红, 李才, 迟效国, 等, 2003.西藏永珠-纳木湖蛇绿岩地球化学特征及其构造环境初探.现代地质, 17(1):14-19. http://d.wanfangdata.com.cn/Thesis/Y402695 [126] 叶培盛, 吴珍汉, 胡道功, 等, 2004.西藏纳木错西岸蛇绿岩的地球化学特征及其形成环境.现代地质, 18(2):237-243. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ200402014.htm [127] 叶培盛, 吴珍汉, 胡道功, 等, 2005.西藏永珠-果芒错蛇绿岩的地球化学特征及其构造意义.现代地质, 19(4):508-514. http://d.wanfangdata.com.cn/Periodical/xddz200504005 [128] 曾云川, 2017.拉萨地块晚三叠纪-晚侏罗纪岩浆-构造演化(博士学位论文).广州: 中国科学院广州地球化学研究所. http://cdmd.cnki.com.cn/Article/CDMD-80165-1017074601.htm [129] 张宽忠, 陈玉禄, 2007.古昌蛇绿岩中的斜长花岗岩特征.沉积与特提斯地质, 27(1):32-37. http://www.cnki.com.cn/Article/CJFDTotal-TTSD200701005.htm [130] 张旗, 1990.蛇绿岩的分类.地质科学, 25(1):54-61. http://www.cqvip.com/qk/94066X/199001/229488.html [131] 张一勇, 1999.中国白垩纪被子植物花粉的宏演化.古生物学报, 38(4):435-457. http://d.wanfangdata.com.cn/Periodical/gswxb199904003 [132] 张玉修, 张开均, 黎兵, 等, 2007.西藏改则南拉果错蛇绿岩中斜长花岗岩锆石SHRIMP U-Pb年代学及其成因研究.科学通报, 52(1):100-106. http://www.cqvip.com/QK/94252X/200701/23699421.html [133] 张向飞, 李佑国, 曹晓民, 等, 2014.班公湖-怒江缝合带西段酸性侵入岩LA-ICP-MS锆石U-Pb年龄与地球化学特征.地质通报, 33(7):984-994. http://www.cqvip.com/QK/95894A/201407/662000393.html [134] 郑有业, 许荣科, 马国桃, 等, 2006.锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束.岩石学报, 22(4):895-904. http://www.cqvip.com/Main/Detail.aspx?id=22020994 [135] 朱弟成, 莫宣学, 赵志丹, 等, 2008.西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义.岩石学报, 24(3):401-412. [136] 朱弟成, 潘桂棠, 莫宣学, 等, 2006.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9):1312-1328. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200609008.htm