Discovery and Tectonic Implications of Paleoproterozoic Cold Subduction Low-Temperature/High-Pressure Eclogitic Metapelites, Yangtze Craton
-
摘要: 首次报道了扬子克拉通黄陵穹隆北部崆岭杂岩古元古代水月寺混杂岩带中发现特征性石榴石-蓝晶石-硬绿泥石组合低温-高压(LT-HP)榴辉岩相变泥质岩,其变质峰期矿物组合为石榴石+蓝晶石+硬绿泥石+多硅白云母+金红石+石英.相平衡模拟计算得到一条近等温减压的顺时针型变质P-T轨迹,其峰期变质条件为571~576℃,19.2~21.8 kbar.LA-ICP-MS锆石U-Pb年代学研究获得变泥质岩中碎屑锆石核部年龄集中于2.1~2.2 Ga,变质增生边年龄为1 991±20 Ma.Grt-Ky-Cld组合榴辉岩相变泥质岩原岩形成构造环境和变质峰期条件指示,其形成于较低地温梯度(dT/dP≈300℃/GPa)下的活动大陆边缘冷俯冲构造环境,进一步表明至少从古元古代开始具有“冷俯冲”构造特征的现代板块构造体制已经启动.
-
关键词:
- 扬子克拉通 /
- 古元古代水月寺混杂岩带 /
- 低温-高压榴辉岩相 /
- 石榴石-蓝晶石-硬绿泥石组合 /
- 冷俯冲构造折返
Abstract: In this paper, it documents for the first time the presence of the distinctive Grt-Ky-Cld assemblage low-temperature/high-pressure (LT-HP) eclogitic metapelites from the Paleoproterozoic Shuiyuesi mélange belt in the Kongling complex, Yangtze craton. The high-pressure metapelites display peak metamorphic mineral assemblages of garnet+kyanite+chloritoid+phengite+rutile+quartz. A near-isothermal decompression (ITD) clockwise P-T path with peak conditions of 571-576 ℃ and 19.2-21.8 kbar were estimated by phase equilibria modelling. The LA-ICP-MS zircon U-Pb dating shows that the metapelite has a metamorphic age of 1 991±20 Ma recorded by zircon rims and ages ranges from 2.1 to 2.2 Ga recorded detrital zircon cores. The sedimentary tectonic setting and metamorphic peak conditions of the Grt-Ky-Cld assemblage in eclogitic metapelites indicate that it has formed in a cold subduction zone with low thermal gradient (dT/dP≈300 ℃/GPa) at the active continental margin. Our study further implies that the modern plate tectonics with "cold subduction" tectonic characteristics has been initiated at least since the Paleoproterozoic. -
图 1 扬子克拉通黄陵穹隆北部崆岭杂岩地质简图
Fig. 1. Simplified geological map of the Kongling complex in the northern Huangling dome, Yangtze craton
图 2 变泥质岩野外露头及岩相学显微照片
a.变泥质岩显微结构特征,石榴石变斑晶中早期十字石包裹体;b.半自形蓝晶石、硬绿泥石周缘分别被十字石、绿泥石等环绕分布,显示退变质结构特征(单偏光);c.毛发状夕线石集合体围绕蓝晶石残留斑晶生长;d.多硅白云母沿着石榴石裂隙分布(正交光);e.退变质阶段自形十字石取代峰期蓝晶石斑晶(单偏光);f.BSE显微结构图像显示晚期退变质阶段十字石取代峰期阶段蓝晶石,金红石边部退变为钛铁矿.矿物简写据Whitney and Evans(2010);Chl.绿泥石; Cld.硬绿泥石; Grt.石榴石; Ilm.钛铁矿; Ky.蓝晶石; Pa.钠云母;Phe.多硅白云母;Qz.石英; Rt.金红石; Sil.夕线石; St.十字石
Fig. 2. Petrographic photomicrographs for the metapelites
图 3 黄陵穹隆石榴石-蓝晶石-硬绿泥石组合高压变泥质岩变质P-T条件
a.MnNCKFMASHT体系下变质相平衡模拟计算P-T视剖面图,图中投点为Thermocalc 3.33平均温压法计算的变质P-T结果;b.水月寺混杂岩中石榴石-蓝晶石-硬绿泥石高压变泥质岩与全球不同造山带中类似样品峰期变质P-T对比.图b中Grt+Ky+Cld组合稳定域引自Smye et al. (2010).数据来源:1.Turkey (24±3 kbar,430±30 ℃;Okay,2002);2.Iberian Massif,Spain(21~22 kbar,520 ℃;19~21 kbar,440±20 ℃;López-Carmona et al., 2013);3.Gran Paradiso,Italy,West Alps(18~20 kbar,490 ℃;Chopin,1981;Le Bayon et al., 2006);4.Sardinia,Italy(16~19 kbar,480±20 ℃,Cruciani et al., 2013);5和6.Tauern Window,Eastern Alps(24.6 kbar,575 ℃;26.2 kbar,553 ℃;Holland,1979;Hoschek et al., 2010;Smye et al., 2010;Hoschek,2013);7.Betic Cordillera,Spain(20.8 kbar,580 ℃;Smye et al., 2010);8.Bohemian Massif(27.2 kbar,546 ℃;Konopásek,2001;Smye et al., 2010);9.Raspas Complex,Andes(20.3 kbar,569 ℃;Gabriele et al., 2004;Smye et al., 2010);10.Bughea Complex,Carpathians(21 kbar,560 ℃;24.6 kbar,590 ℃;Negulescu et al., 2009, 2018;Smye et al., 2010);11.Sesia zone,Western Alps(29.9 kbar,544 ℃;Zucali et al., 2002;Smye et al., 2010);12.Susong complex,Dabie orogenic belt(19.6~24.7 kbar,551~569 ℃;石永红等,2016);13和14.Chuacus Complex,Central Guatemala(∼19.5~20 kbar,580~600 ℃;23~25 kbar and 620~690 ℃;Maldonado et al., 2016, 2018)
Fig. 3. Metamorphic P-T condition of the garnet-kyanite-chloritoid assemblage high-pressure metapelites from the Huangling dome
-
[1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Brown, M., Johnson, T., 2018.Secular Change in Metamorphism and the Onset of Global Plate Tectonics.American Mineralogist, 103(2):181-196. https://doi.org/10.2138/am-2018-6166 [3] Cen, Y., Peng, S.B., Kusky, T.M., et al., 2012.Granulite Facies Metamorphic Age and Tectonic Implications of BIFs from the Kongling Group in the Northern Huangling Anticline.Journal of Earth Science, 23(5):648-658. https://doi.org/10.1007/s12583-012-0286-x [4] Chen, K., Gao, S., Wu, Y.B., et al., 2013.2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China.Precambrian Research, 224:472-490. https://doi.org/10.1016/j.precamres.2012.10.017 [5] Chopin, C., 1981.Talc-Phengite:A Widespread Assemblage in High-Grade Pelitic Blueschists of the Western Alps.Journal of Petrology, 22(4):628-650. https://doi.org/10.1093/petrology/22.4.628 [6] Coleman, R.G., Lee, D.E., Beatty, L.B., et al., 1965.Eclogites and Eclogites:Their Differences and Similarities.Geological Society of America Bulletin, 76(5):483-508. doi: 10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2 [7] Connolly, J.A.D., 2005.Computation of Phase Equilibria by Linear Programming:A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation.Earth and Planetary Science Letters, 236(1-2):524-541. https://doi.org/10.1016/j.epsl.2005.04.033 [8] Corfu, F., 2003.Atlas of Zircon Textures.Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469 [9] Cruciani, G., Franceschelli, M., Massonne, H.J., et al., 2013.Pressure-Temperature and Deformational Evolution of High-Pressure Metapelites from Variscan NE Sardinia, Italy.Lithos, (175-176):272-284. https://doi.org/10.1016/j.lithos.2013.05.001 [10] François, C., Debaille, V., Paquette, J.L., et al., 2018.The Earliest Evidence for Modern-Style Plate Tectonics Recorded by HP-LT Metamorphism in the Paleoproterozoic of the Democratic Republic of the Congo.Scientific Reports, 8(1):15452. https://doi.org/10.1038/s41598-018-33823-y [11] Gabriele, P., Ballèvre, M., Jaillard, E., et al., 2004.Garnet-Chloritoid-Kyanite Metapelites from the Raspas Complex (SW Ecuador) a Key Eclogite-Facies Assemblage.European Journal of Mineralogy, 15(6):977-989. https://doi.org/10.1127/0935-1221/2003/0015-0977 [12] Ganne, J., de Andrade, V., Weinberg, R.F., et al., 2012.Modern-Style Plate Subduction Preserved in the Palaeoproterozoic West African Craton.Nature Geoscience, 5(1):60. https://doi.org/10.1038/ngeo1321 [13] Gao, S., Yang, J., Zhou, L., et al., 2011.Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses.American Journal of Science, 311(2):153-182. https://doi.org/10.2475/02.2011.03 [14] Gao, S., Zhang, B.R., 1990.The Discovery of Archean TTG Gneisses in the Northern Yangtze Platform and Their Implications.Earth Science, 15(6):675-679(in Chinese with English abstract) http://www.researchgate.net/publication/284789764_The_discovery_of_Archean_TTG_gneisses_in_northern_Yangtze_craton_and_their_implications [15] Guillot, S., de Sigoyer, J., Lardeaux, J.M., et al., 1997.Eclogitic Metasediments from the Tso Morari Area (Ladakh, Himalaya):Evidence for Continental Subduction during India-Asia Convergence.Contributions to Mineralogy and Petrology, 128(2-3):197-212. https://doi.org/10.1007/s004100050303 [16] Guo, J.L., Gao, S., Wu, Y.B., et al., 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China:Implications for Early Archean Crustal Growth.Precambrian Research, 242:82-95. https://doi.org/10.1016/j.precamres.2013.12.018 [17] Guo, J.W, Zheng, J.P., Ping, X.Q., et al., 2018.Paleoproterozoic Porphyries and Coarse-Grained Granites Manifesting a Vertical Hierarchical Structure of Archean Continental Crust beneath the Yangtze Craton Precambrian Research 318: 288-305.https://doi.org/10.1016/j.precamres.2018.06.012 [18] Han, Q.S., Peng, S.B., 2020.Paleoproterozoic Subduction within the Yangtze Craton:Constraints from Nb-Enriched Mafic Dikes in the Kongling Complex.Precambrian Research, 340:105634. https://doi.org/10.1016/j.precamres.2020.105634 [19] Han, Q.S., Peng, S.B., Kusky, T.M., et al., 2017.A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation.Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004 [20] Han, Q.S., Peng, S.B., Kusky, T.M., et al., 2019.Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex:Evidence for a Collisional Orogenic Event in the Yangtze Craton.Lithos, 342-343:513-529. https://doi.org/10.1016/j.lithos.2019.05.015 [21] Han, Q.S., Peng, S.B., Polat, A., et al., 2018.A ca.2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China:Evidence from High-Mg Basalts and Andesites.Precambrian Research, 309:309-324. https://doi.org/10.1016/j.precamres.2017.05.015 [22] Holder, R.M., Viete, D.R., Brown, M., et al., 2019.Metamorphism and the Evolution of Plate Tectonics.Nature, 572:378-381. https://doi.org/10.1038/s41586-019-1462-2 [23] Holland, T.J.B., 1979.Experimental Determination of the Reaction Paragonite=Jadeite+Kyanite+H2O, and Internally Consistent Thermodynamic Data for Part of the System Na2O-Al2O3-SiO2-H2O, with Applications to Eclogites and Blueschists.Contributions to Mineralogy and Petrology, 68(3):293-301. https://doi.org/10.1007/bf00371551 [24] Holland, T.J.B., Powell, R., 2004.An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest.Journal of Metamorphic Geology, 16(3):309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x [25] Hoschek, G., 2013.Garnet Zonation in Metapelitic Schists from the Eclogite Zone, Tauern Window, Austria:Comparison of Observed and Calculated Profiles.European Journal of Mineralogy, 25(4):615-629. https://doi.org/10.1127/0935-1221/2013/0025-2310 [26] Hoschek, G., Konzett, J., Tessadri, R., 2010.Phase Equilibria in Quartzitic Garnet-Kyanite-Chloritoid Micaschist from the Eclogite Zone, Tauern Window, Eastern Alps.European Journal of Mineralogy, 22(5):721-732. https://doi.org/10.1127/0935-1221/2010/0022-2049 [27] Konopásek, J., 2001.Eclogitic Micaschists in the Central Part of the Krušné Hory Mountains (Bohemian Massif).European Journal of Mineralogy, 13(1):87-100. https://doi.org/10.1127/0935-1221/01/0013-0087 [28] Koons, P.O., Thompson, A.B., 1985.Non-Mafic Rocks in the Greenschist, Blueschist and Eclogite Facies.Chemical Geology, 50(1-3):3-30. https://doi.org/10.1016/0009-2541(85)90109-3 [29] Le Bayon, B., Pitra, P., Ballevre, M., et al., 2006.Reconstructing P-T Paths during Continental Collision Using Multi-Stage Garnet (Gran Paradiso Nappe, Western Alps).Journal of Metamorphic Geology, 24(6):477-496. https://doi.org/10.1111/j.1525-1314.2006.00649.x [30] Li, H.Q., Zhou, W.X., Wei, Y.X., et al., 2020.Two Extensional Events in the Early Evolution of the Yangtze Block, South China:Geochemical and Isotopic Evidence from Two Sets of Paleoproterozoic Alkali Porphyry in the Northern Kongling Terrane.Geological Journal. https://doi.org/10.1002/gj.3802 [31] Li, X.L., Zhang, L.F., Wei, C.J., et al., 2017.Neoarchean-Paleoproterozoic Granulite-Facies Metamorphism in Uzkaya Salma Eclogite-Bearing Mélange, Belomorian Province (Russia).Precambrian Research, 294:257-283. https://doi.org/10.1016/j.precamres.2017.03.031 [32] Li, Y.H., Zheng, J.P., Xiong, Q., et al., 2016.Petrogenesis and Tectonic Implications of Paleoproterozoic Metapelitic Rocks in the Archean Kongling Complex from the Northern Yangtze Craton, South China.Precambrian Research, 276:158-177. https://doi.org/10.1016/j.precamres.2016.01.028 [33] Ling, W.L., Gao, S., Zhang, B.R., et al., 2001.The Recognizing of ca.1.95 Ga Tectono-Thermal Event in Kongling Nucleus and Its Significance for the Evolution of Yangtze Block, South China.Chinese Science Bulletin, 46(4):326-329. https://doi.org/10.1007/bf03187196 [34] Liu, B., Zhai, M.G., Zhao, L., et al., 2019.Metamorphism, P-T Path and Zircon U-Pb Dating of Paleoproterozoic Mafic and Felsic Granulites from the Kongling Terrane, South China.Precambrian Research, 333:105403. https://doi.org/10.1016/j.precamres.2019.105403 [35] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [36] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [37] López-Carmona, A., Pitra, P., Abati, J., 2013.Blueschist-Facies Metapelites from the Malpica-Tui Unit (NW Iberian Massif):Phase Equilibria Modelling and H2O and Fe2O3 Influence in High-Pressure Assemblages.Journal of Metamorphic Geology, 31(3):263-280. https://doi.org/10.1111/jmg.12018 [38] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication, 70. [39] Maldonado, R., Ortega-Gutiérrez, F., Hernández-Uribe, D., 2016.Garnet-Chloritoid-Paragonite Metapelite from the Chuacús Complex (Central Guatemala):New Evidence for Continental Subduction in the North America-Caribbean Plate Boundary.European Journal of Mineralogy, 28(6):1169-1186. https://doi.org/10.1127/ejm/2016/0028-2578 [40] Maldonado, R., Weber, B., Ortega-Gutiérrez, F., et al., 2018.High-Pressure Metamorphic Evolution of Eclogite and Associated Metapelite from the Chuacús Complex (Guatemala Suture Zone):Constraints from Phase Equilibria Modelling Coupled with Lu-Hf and U-Pb Geochronology.Journal of Metamorphic Geology, 36(1):95-124. https://doi.org/10.1111/jmg.12285 [41] Mints, M.V., Belousova, E.A., Konilov, A.N., et al., 2010.Mesoarchean Subduction Processes:2.87 Ga Eclogites from the Kola Peninsula, Russia.Geology, 38(8):739-742. https://doi.org/10.1130/G31219.1 [42] Miyashiro, A., 1961.Evolution of Metamorphic Belts.Journal of Petrology, 2(3):277-311. https://doi.org/10.1093/petrology/2.3.277 [43] Moyen, J.F., Stevens, G., Kisters, A., 2006.Record of Mid-Archaean Subduction from Metamorphism in the Barberton Terrain, South Africa.Nature, 442(7102):559-562. https://doi.org/10.1038/nature04972 [44] Negulescu, E., Săbău, G., Massonne, H.J., 2009.Chloritoid-Bearing Mineral Assemblages in High-Pressure Metapelites from the Bughea Complex, Leaota Massif (South Carpathians).Journal of Petrology, 50(1):103-125. https://doi.org/10.1093/petrology/egn075 [45] Negulescu, E., Săbău, G., Massonne, H.J., 2018.Growth of Chloritoid and Garnet along a Nearly Isothermal Burial Path to 70 km Depth:An Example from the Bughea Metamorphic Complex, Leaota Massif, South Carpathians.Mineralogy and Petrology, 112(4):535-553. https://doi.org/10.1007/s00710-017-0552-9 [46] Okay, A.I., 2002.Jadeite-Chloritoid-Glaucophane-Lawsonite Blueschists in North-West Turkey:Unusually High P/T Ratios in Continental Crust.Journal of Metamorphic Geology, 20(8):757-768. https://doi.org/10.1046/j.1525-1314.2002.00402.x [47] Peng, M., Wu, Y.B., Gao, S., et al., 2012.Geochemistry, Zircon U-Pb Age and Hf Isotope Compositions of Paleoproterozoic Aluminous A-Type Granites from the Kongling Terrain, Yangtze Block:Constraints on Petrogenesis and Geologic Implications.Gondwana Research, 22(1):140-151. https://doi.org/10.1016/j.gr.2011.08.012 [48] Peng, M., Wu, Y.B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication.Chinese Sci.Bull., 54:1098-1104. [49] Qiu, X.F., Jiang, T., Zhao, X.M., et al., 2020.Baddeleyite U-Pb Geochronology and Geochemistry of Late Paleoproterozoic Mafic Dykes from the Kongling Complex of the Northern Yangtze Block, South China.Precambrian Research, 337:105537. https://doi.org/10.1016/j.precamres.2019.105537 [50] Qiu, X.F., Zhao, X.M., Yang, H.M., et al., 2018.Geochemical and Nd Isotopic Compositions of the Palaeoproterozoic Metasedimentary Rocks in the Kongling Complex, Nucleus of Yangtze Craton, South China Block:Implications for Provenance and Tectonic Evolution.Geological Magazine, 155(6):1263-1276. https://doi.org/10.1017/S0016756817000048 [51] Qiu, Y.M., Gao, S., McNaughton, N.J., et al., 2000.First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics.Geology, 28(1):11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2 [52] Shi, Y.H., Wang, J., Nie, F., et al., 2016.Investigation of P-T Conditions and Geochoronology for Garnet-Kyanite-Chloritoid Schist from the Susong Complex.Acta Petrologica Sinica, 32(2):493-504(in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602015 [53] Smye, A.J., Greenwood, L.V., Holland, T.J.B., 2010.Garnet-Chloritoid-Kyanite Assemblages:Eclogite Facies Indicators of Subduction Constraints in Orogenic Belts.Journal of Metamorphic Geology, 28(7):753-768. https://doi.org/10.1111/j.1525-1314.2010.00889.x [54] Stöckhert, B., Massonne, H.J., Nowlan, E.U., 1997.Low Differential Stress during High-Pressure Metamorphism:The Microstructural Record of a Metapelite from the Eclogite Zone, Tauern Window, Eastern Alps.Lithos, 41(1-3):103-118. https://doi.org/10.1016/S0024-4937(97)82007-5 [55] Wan, B., Windley, B.F., Xiao, W.J., et al., 2015.Paleoproterozoic High-Pressure Metamorphism in the Northern North China Craton and Implications for the Nuna Supercontinent.Nature Communications, 6:8344. https://doi.org/10.1038/ncomms9344 [56] Wang, Z.J., Wang, J., Deng, Q., et al., 2015.Paleoproterozoic I-Type Granites and Their Implications for the Yangtze Block Position in the Columbia Supercontinent:Evidence from the Lengshui Complex, South China.Precambrian Research, 263:157-173. https://doi.org/10.1016/j.precamres.2015.03.014 [57] Wei, C.J., Powell, R., 2006.Calculated Phase Relations in the System NCKFMASH (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) for High-Pressure Metapelites.Journal of Petrology, 47(2):385-408. https://doi.org/10.1093/petrology/egi079 [58] Weller, O.M., St-Onge, M.R., 2017.Record of Modern-Style Plate Tectonics in the Palaeoproterozoic Trans-Hudson Orogen.Nature Geoscience, 10(4):305. https://doi.org/10.1038/ngeo2904 [59] Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371 [60] Wu, Y.B., Gao, S., Gong, H.J., et al., 2009.Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton:Refining the Timing of Palaeoproterozoic High-Grade Metamorphism.Journal of Metamorphic Geology, 27(6):461-477. https://doi.org/10.1111/j.1525-1314.2009.00826.x [61] Wu, Y.B., Gao, S., Zhang, H.F., et al., 2012.Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications.Precambrian Research, 200:26-37. https://doi.org/10.1016/j.precamres.2011.12.015 [62] Xu, C., Kynický, J., Song, W.L., et al., 2018.Cold Deep Subduction Recorded by Remnants of a Paleoproterozoic Carbonated Slab.Nature Communications, 9(1):2790. https://doi.org/10.1038/s41467-018-05140-5 [63] Yin, C.Q., Lin, S.F., Davis, D.W., et al., 2013.2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China:Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia.Lithos, 182-183:200-210. https://doi.org/10.1016/j.lithos.2013.10.012 [64] Yu, H.L., Zhang, L.F, Zhang, L.J., et al., 2019.The Metamorphic Evolution of Salma-Type Eclogite in Russia:Constraints from Zircon/Titanite Dating and Phase Equilibria Modeling.Precambrian Research, 326:363-384. https://doi.org/10.1016/j.precamres.2018.01.019 [65] Zhang, J.X., Meng, F.C., Yang, J.S., 2003.Eclogitic Metapelites in the Western Segment of the North Qaidam Basin and Their Geological Implications.Geological Bulletin of China, 22(9):655-657 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200309003 [66] Zhang, J.X., Meng, F.C., Yang, J.S., 2004.Eclogitic Metapelites in the Western Segment of the North Qaidam Mountains:Evidence on "In Situ" Relationship between Eclogite and Its Country Rock.Science China:Earth Sciences, 47(12), 1102-1112. https://doi.org/10.1360/02yd0311 [67] Zhang, S.B., Zheng, Y.F., 2013.Formation and Evolution of Precambrian Continental Lithosphere in South China.Gondwana Research, 23(4):1241-1260. https://doi.org/10.1016/j.gr.2012.09.005 [68] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006a.Zircon Isotope Evidence for ≥ 3.5 Ga Continental Crust in the Yangtze Craton of China.Precambrian Research, 146(1-2):16-34. https://doi.org/10.1016/j.precamres.2006.01.002 [69] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006b.Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China.Precambrian Research, 151(3-4):265-288. https://doi.org/10.1016/j.precamres.2006.08.009 [70] Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2002.Review of Global 2.1-1.8 Ga Orogens:Implications for a Pre-Rodinia Supercontinent.Earth-Science Reviews, 59(1-4):125-162. https://doi.org/10.1016/s0012-8252(02)00073-9 [71] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006.Widespread Archean Basement beneath the Yangtze Craton.Geology, 34(6):417-420. https://doi.org/10.1130/g22282.1 [72] Zheng, Y.F., Zhang, L.F., Liu, L., et al., 2013.Progress in the Study of Continental Deep Subduction and Ultrahigh Pressure Metamorphism.Bulletin of Mineralogy, Petrology and Geochemistry, 32(2):135-158(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201302001 [73] Zucali, M., Spalla, M.I., Gosso, G., 2002.Strain Partitioning and Fabric Evolution as a Correlation Tool:The Example of the Eclogitic Micaschists Complex in the Sesia-Lanzo Zone (Monte Mucrone-Monte Mars, Western Alps, Italy).Schweizerische Mineralogische Und Petrographische Mitteilungen, 82(3):429-454. [74] 高山, 张本仁, 1990.扬子地台北部太古宙TTG片麻岩的发现及其意义.地球科学, 15(6):675-679. http://www.cnki.com.cn/Article/CJFDTotal-DQKX199006012.htm [75] 石永红, 王娟, 聂峰, 等, 2016.宿松变质杂岩中石榴石-蓝晶石-硬绿泥石片岩形成条件及时限研究.岩石学报, 32(2):493-504. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602015 [76] 张建新, 孟繁聪, 杨经绥, 2003.柴达木盆地北缘西段榴辉岩相变质泥质岩的确定及意义.地质通报, 22(9):655-657. doi: 10.3969/j.issn.1671-2552.2003.09.003 [77] 郑永飞, 张立飞, 刘良, 等, 2013.大陆深俯冲与超高压变质研究进展.矿物岩石地球化学通报, 32(2):135-158. doi: 10.3969/j.issn.1007-2802.2013.02.001 -
dqkx-45-6-1986-Table1-2.pdf