Discovery and Tectonic Implications of Paleoproterozoic Cold Subduction Low-Temperature/High-Pressure Eclogitic Metapelites, Yangtze Craton
-
摘要: 首次报道了扬子克拉通黄陵穹隆北部崆岭杂岩古元古代水月寺混杂岩带中发现特征性石榴石-蓝晶石-硬绿泥石组合低温-高压(LT-HP)榴辉岩相变泥质岩,其变质峰期矿物组合为石榴石+蓝晶石+硬绿泥石+多硅白云母+金红石+石英.相平衡模拟计算得到一条近等温减压的顺时针型变质P-T轨迹,其峰期变质条件为571~576℃,19.2~21.8 kbar.LA-ICP-MS锆石U-Pb年代学研究获得变泥质岩中碎屑锆石核部年龄集中于2.1~2.2 Ga,变质增生边年龄为1 991±20 Ma.Grt-Ky-Cld组合榴辉岩相变泥质岩原岩形成构造环境和变质峰期条件指示,其形成于较低地温梯度(dT/dP≈300℃/GPa)下的活动大陆边缘冷俯冲构造环境,进一步表明至少从古元古代开始具有“冷俯冲”构造特征的现代板块构造体制已经启动.
-
关键词:
- 扬子克拉通 /
- 古元古代水月寺混杂岩带 /
- 低温-高压榴辉岩相 /
- 石榴石-蓝晶石-硬绿泥石组合 /
- 冷俯冲构造折返
Abstract: In this paper, it documents for the first time the presence of the distinctive Grt-Ky-Cld assemblage low-temperature/high-pressure (LT-HP) eclogitic metapelites from the Paleoproterozoic Shuiyuesi mélange belt in the Kongling complex, Yangtze craton. The high-pressure metapelites display peak metamorphic mineral assemblages of garnet+kyanite+chloritoid+phengite+rutile+quartz. A near-isothermal decompression (ITD) clockwise P-T path with peak conditions of 571-576 ℃ and 19.2-21.8 kbar were estimated by phase equilibria modelling. The LA-ICP-MS zircon U-Pb dating shows that the metapelite has a metamorphic age of 1 991±20 Ma recorded by zircon rims and ages ranges from 2.1 to 2.2 Ga recorded detrital zircon cores. The sedimentary tectonic setting and metamorphic peak conditions of the Grt-Ky-Cld assemblage in eclogitic metapelites indicate that it has formed in a cold subduction zone with low thermal gradient (dT/dP≈300 ℃/GPa) at the active continental margin. Our study further implies that the modern plate tectonics with "cold subduction" tectonic characteristics has been initiated at least since the Paleoproterozoic. -
0. 引言
早前寒武纪高压变质岩是研究板块构造体制启动时间及机制、俯冲构造演化动力学过程等重大地质问题的关键研究对象.榴辉岩相高压变质岩是板块俯冲最为特征的标志,它记录了俯冲带地球动力学演化的重要信息(Coleman et al., 1965;Koons and Thompson, 1985;郑永飞等,2013;Holder et al., 2019).榴辉岩相变质作用不仅记录于经历俯冲-折返高压变质的大洋板片基性岩(如榴辉岩),经历高压变质的沉积岩中也同样存在指示高压榴辉岩相变质的特征矿物组合(如Guillot et al., 1997;Zhang et al., 2004;Smye et al., 2010;Maldonado et al., 2018).在高压榴辉岩相变沉积岩中,石榴石-蓝晶石-硬绿泥石(Grt⁃Ky⁃Cld)为特征组合的变泥质岩是最为典型的一类,其多出现在全岩成分具有高Al2O3:K2O比值变泥质岩石(Smye et al., 2010).实验岩石学及热力学相平衡研究表明,Grt⁃Ky⁃Cld组合存在于狭窄的变质P⁃T稳定域内(18~25 kbar,550~600 ℃)(Wei and Powell, 2006;Smye et al., 2010),是低地温梯度(dT/dP < 375 ℃/GPa;Brown and Johnson, 2018)环境下“冷俯冲”变质作用的典型产物.因此,Grt⁃Ky⁃Cld变质矿物组合常作为变泥质岩经历低温-高压榴辉岩相变质的特征指示矿物组合,是陆源沉积物经历冷俯冲-折返的重要岩石记录,对于研究俯冲板片陆壳物质俯冲-构造折返动力学过程及机制具有重要意义(Negulescu et al., 2009, 2018;Smye et al., 2010;石永红等,2016;Maldonado et al., 2018).
石榴石-蓝晶石-硬绿泥石变质矿物组合在显生宙造山带HP⁃UHP变质带中普遍存在(如阿尔卑斯山、柴北缘、大别造山带等),但在前寒武纪古老造山带中尚未有报道.本文对扬子克拉通黄陵穹隆太古宙-古元古代变质杂岩区石榴石-蓝晶石-硬绿泥石为典型矿物组合的变泥质岩岩石学、岩相学、矿物学和变质P⁃T演化轨迹研究表明,其形成于较低地温梯度下的活动大陆边缘冷俯冲构造环境,这为从古元古代开始具有新元古代(或显生宙)以来“冷俯冲”特征的现代板块构造体制已启动提供了重要变质地质学证据.
1. 地质背景
扬子克拉通黄陵穹隆基底保存有太古宙到新元古代多期构造-岩浆-变质事件的岩石地质记录,是研究华南前寒武纪大地构造演化的最重要窗口(Zhang and Zheng, 2013).黄陵穹隆北部前南华纪基底出露有目前华南最古老的岩浆-变质杂岩,即前人所称的崆岭杂岩体(图 1).20世纪90年代以来,国内外学者对黄陵穹隆北部太古宙-古元古代崆岭杂岩内太古宙TTG片麻岩的成因演化(高山和张本仁,1990;Qiu et al., 2000;Zhang et al., 2006a;Zheng et al., 2006;Gao et al., 2011;Chen et al., 2013;Guo et al., 2014)、古元古代碰撞造山相关构造-岩浆-变质热事件的时代及其大地构造意义(Ling et al., 2001;Zhang et al., 2006b;Peng et al., 2009, 2012;Wu et al., 2009;Cen et al., 2012;Yin et al., 2013;Li et al., 2016;Han et al., 2017, 2018, 2019;Liu et al., 2019; Han and Peng, 2020)等方面进行了许多卓有成效的开拓性研究工作,使黄陵穹隆地区成为研究华南扬子克拉通早前寒武纪构造演化、超大陆聚合-裂解等相关地学前沿重大科学问题的关键热点地区.
近年来,随着扬子克拉通内早前寒武纪基底地质构造研究的深入,黄陵穹隆、后河、钟祥等地区陆续发现与古元古代俯冲-碰撞造山相关的岛弧花岗岩(2.08 Ga)、蛇绿岩残片和高镁安山岩(2.15~2.12 Ga)、富Nb基性岩脉(2.05 Ga)、高温/高压麻粒岩和深熔花岗岩(2.02~1.95 Ga)及1.89~1.83 Ga伸展环境A型花岗岩-基性岩脉群(Ling et al., 2001;Peng et al., 2009, 2012;Wu et al., 2009, 2012;Yin et al., 2013;Wang et al., 2015;Han et al., 2017, 2018, 2019;Guo et al., 2018;Han and Peng, 2020; Li et al., 2020;Qiu et al., 2020),表明扬子克拉通基底经历了古元古代多微陆块的俯冲-碰撞拼贴演化.
特别是,Han et al.(2017)最近根据黄陵穹隆基底北部典型地质构造剖面、岩石地球化学、地质年代学的综合研究,提出崆岭杂岩中部呈北东向带状展布的由变沉积岩系夹变镁铁-超镁铁质岩岩片/岩块组成的构造带实际上为一套古元古代蛇绿混杂岩,是古元古代(~2.0 Ga)发生俯冲-碰撞形成的构造缝合带的新认识,并将其命名为水月寺蛇绿混杂岩带(图 1).混杂岩带内~2.12 Ga岛弧环境成因高镁玄武岩、安山岩和~2.05 Ga富Nb基性岩脉以及碰撞造山-造山后伸展构造花岗岩类(2.0~1.85 Ga)的发现,更进一步证实了古元古代板块俯冲及活动大陆边缘的存在(Han et al., 2018, 2019; Han and Peng, 2020).这些重要新发现为深入认识太古宙-古元古代崆岭杂岩的成因演化、构造属性提供了重要启示.
2. 岩相学特征
本文报道的黄陵穹隆石榴石-蓝晶石-硬绿泥石组合高压变泥质岩呈似层状、透镜状产于水月寺蛇绿混杂岩带变沉积岩系.变沉积岩系以石榴石-夕线石-黑云母片麻岩、云母片岩、大理岩、条带状磁铁石英岩(BIFs)为主体,并经历了强烈的韧性变形变质作用.石榴石-蓝晶石-硬绿泥石变泥质岩以出现高压矿物蓝晶石和缺乏斜长石为特征,片麻状、片状构造,变斑晶结构,主要由石榴石(25%~30%)、蓝晶石(10%~15%)、硬绿泥石(15%~20%)、白云母(5%~8%)、石英(15%~20%)、十字石(5%~10%)、绿泥石(5%~10%)、金红石(~2%)构成(图 2).
图 2 变泥质岩野外露头及岩相学显微照片a.变泥质岩显微结构特征,石榴石变斑晶中早期十字石包裹体;b.半自形蓝晶石、硬绿泥石周缘分别被十字石、绿泥石等环绕分布,显示退变质结构特征(单偏光);c.毛发状夕线石集合体围绕蓝晶石残留斑晶生长;d.多硅白云母沿着石榴石裂隙分布(正交光);e.退变质阶段自形十字石取代峰期蓝晶石斑晶(单偏光);f.BSE显微结构图像显示晚期退变质阶段十字石取代峰期阶段蓝晶石,金红石边部退变为钛铁矿.矿物简写据Whitney and Evans(2010);Chl.绿泥石; Cld.硬绿泥石; Grt.石榴石; Ilm.钛铁矿; Ky.蓝晶石; Pa.钠云母;Phe.多硅白云母;Qz.石英; Rt.金红石; Sil.夕线石; St.十字石Fig. 2. Petrographic photomicrographs for the metapelites石榴石(Grt):呈半自形-自形变斑晶产出,粒径粗大,粒径可达2~10 mm,内部多含有早期矿物包裹体,大部分颗粒发生了韧-脆性剪切变形呈透镜状-椭球状,且裂隙发育.石榴石核部包裹体较少,以石英、白云母、绿泥石为主;石榴石边部矿物包裹体较多,主要为十字石、石英、白云母、蓝晶石、金红石,包裹体矿物粒度细小,多呈他形(图 2a).
蓝晶石(Ky):多呈他形-半自形变斑晶产出于基质中,粒径可达0. 5~3 mm,被十字石、多硅白云母、绿泥石等环绕(图 2a,2b),部分退变为毛发状夕线石(图 2c).
十字石(St):以包体形式位于石榴石或其他变质矿物内部,多呈他形颗粒,此类十字石为进变质阶段产物;大部分十字石发育在基质中,多呈自形晶体.基质中可还可见十字石取代蓝晶石的反应结构(图 2e,2f),为退变质阶段典型特征.
硬绿泥石(Cld):多呈自形-半自形与蓝晶石共生分布于变质基质中,为峰期(Cld2)残留矿物组合,粒径为0. 3~2.0 mm,偶尔可见其边缘绿泥石反应边(图 2d);石榴石斑晶幔-边部偶见少量硬绿泥石包裹体(Cld1).
多硅白云母(Phe):主要以包体形式发育在石榴石和蓝晶石内部,或位于变质基质中.基质中多硅白云母呈半自形-自形,粒径可达0.5~1.0 mm;石榴石和蓝晶石矿物中的多硅白云母包裹体多呈他形,粒度细小(图 2d,2e).
金红石(Rt):多呈他形,颗粒细小,粒径多 < 0.3 mm,边部多退变为钛铁矿(Ilm)(见图 2f).
岩相学变质矿物共生组合及显微结构分析,可识别出3个变质阶段的矿物组合:
(1) 进变质阶段矿物组合:以保存于石榴石变斑晶中的Grtc+Chl1+Cld1+Phe1+St1+Qz包裹体矿物组合为特征.此阶段十字石(St1)、绿泥石(Chl1)多为他形,呈细小包裹体赋存于石榴石斑晶中.
(2) 峰期变质阶段矿物组合:以石榴石边部、基质中硬绿泥石和蓝晶石为代表,十字石、绿泥石消失,形成的矿物组合为:Grtm/r+Ky2+Phe2+Cld2+Qz,形成这种转变可能的变质反应有:
(Ⅰ):Chl+Qtz=Cld+Grt+H2O,
(Ⅱ):St+Cld=Grt+Ky.
峰期阶段也可能伴随硬绿泥石的消耗过程,可能的反应为:
(Ⅲ):Cld+Qtz=Ky+Grt+H2O.
(3) 退变质阶段矿物组合:以变质基质中出现较为自形的十字石和绿泥石为特征,形成的矿物组合主要为Grt r+Cld3+Chl3+Phe3+St3+Ky3/Sil3+Qz.在基质中局部还可观察到蓝晶石与十字石伴生(图 2e),并且蓝晶石呈残余体被较自形的十字石所包裹(图 2f).形成这些矿物组合转变的反应可能为(Ⅱ)的逆反应:Grt+Ky=St+Cld; 或反应:Cld+Ky=St+Qz.部分样品中蓝晶石已部分或全部退变为毛发状夕线石,记录了近等温减压过程蓝晶石向夕线石的相变反应.
3. 变质P-T条件
3.1 矿物化学特征
矿物成分测试由中国地质大学(武汉)电子探针分析实验室JXA⁃8230型电子探针仪完成,工作条件为加速电压15 kV,电子束流20 nA,代表性矿物化学成分分析结果见附表1.
研究分析结果显示:
(1) 石榴石呈现较明显的生长环带特征,自核部至边部,XFe(边0.94→核0.87)降低,XMg轻微增高(边0.07→核0.1),而XCa和XMn变化较小.
(2) 多硅白云母经历退变质改造,自核部至边部,Si4+逐渐降低(核3.15→边3.08),Al3+则渐次增高(核2.69→边2.85),而Fe2+和Mg2+则呈平坦变化特征;探针结果显示云母中Na2O含量为1.62%~2.46%,K2O含量为8.31%~8.85%,根据云母分子式标准化,Na+为0.26~0.31,K+为0.69~0.74,反映Na+部分取代K+占位,样品中的云母实际为钠云母与白云母的固溶体(见表附1).
(3) 硬绿泥石中的Fe2+和Mg2+呈镜像变化关系,基质中较自形硬绿泥石从核部至边部,Fe2+略微增高(核0.82→边0.87),Mg2+轻微降低(核0.14→边0.13).
3.2 变质相平衡模拟计算
岩相学特征分析表明,石榴石-蓝晶石-硬绿泥石云母片岩样品发育完好的平衡矿物组合,为变质P⁃T条件的估算奠定了基础.本文基于全岩化学成分,利用热力学计算软件Perple_X(Connolly,2005)模拟计算了MnNCKFMASHT体系下样品的变质相平衡P-T视剖面图(见图 3a),得出Grt-Ky-Cld峰期变质组合稳定压力至少在14 kbar以上.采用热力学计算软件Thermocalc version 3.33(Holland and Powell, 2004)中的Average P-T计算方法对样品不同变质阶段P-T条件进行评估,得出峰期变质条件为571±16~576±11 ℃,19.2±2.5~21.8±3.4 kbar;退变质早期阶段为578±18~582±13 ℃,14.8±2.6~15.9±1.8 kbar,晚期为575±15~582±8 ℃,11.3±3.4~11.9±2.9 kbar(见图 3a).由图 3a可知,峰期阶段对应的白云母Si值为3.22~3.28,高于所测样品中白云母Si最高值(3.15),表明白云母受到退变质减压过程的改造.综合上述结果,推测变泥质岩经历了一个包含近等温减压阶段的顺时针型变质P-T轨迹.
图 3 黄陵穹隆石榴石-蓝晶石-硬绿泥石组合高压变泥质岩变质P-T条件a.MnNCKFMASHT体系下变质相平衡模拟计算P-T视剖面图,图中投点为Thermocalc 3.33平均温压法计算的变质P-T结果;b.水月寺混杂岩中石榴石-蓝晶石-硬绿泥石高压变泥质岩与全球不同造山带中类似样品峰期变质P-T对比.图b中Grt+Ky+Cld组合稳定域引自Smye et al. (2010).数据来源:1.Turkey (24±3 kbar,430±30 ℃;Okay,2002);2.Iberian Massif,Spain(21~22 kbar,520 ℃;19~21 kbar,440±20 ℃;López-Carmona et al., 2013);3.Gran Paradiso,Italy,West Alps(18~20 kbar,490 ℃;Chopin,1981;Le Bayon et al., 2006);4.Sardinia,Italy(16~19 kbar,480±20 ℃,Cruciani et al., 2013);5和6.Tauern Window,Eastern Alps(24.6 kbar,575 ℃;26.2 kbar,553 ℃;Holland,1979;Hoschek et al., 2010;Smye et al., 2010;Hoschek,2013);7.Betic Cordillera,Spain(20.8 kbar,580 ℃;Smye et al., 2010);8.Bohemian Massif(27.2 kbar,546 ℃;Konopásek,2001;Smye et al., 2010);9.Raspas Complex,Andes(20.3 kbar,569 ℃;Gabriele et al., 2004;Smye et al., 2010);10.Bughea Complex,Carpathians(21 kbar,560 ℃;24.6 kbar,590 ℃;Negulescu et al., 2009, 2018;Smye et al., 2010);11.Sesia zone,Western Alps(29.9 kbar,544 ℃;Zucali et al., 2002;Smye et al., 2010);12.Susong complex,Dabie orogenic belt(19.6~24.7 kbar,551~569 ℃;石永红等,2016);13和14.Chuacus Complex,Central Guatemala(∼19.5~20 kbar,580~600 ℃;23~25 kbar and 620~690 ℃;Maldonado et al., 2016, 2018)Fig. 3. Metamorphic P-T condition of the garnet-kyanite-chloritoid assemblage high-pressure metapelites from the Huangling dome4. 年代学
4.1 分析方法
锆石测年分析样品分选工作在河北省廊坊宇能公司完成.锆石测年制靶和阴极发光(CL)显微照相在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成,阴极发光分析电压为10 kV.LA-ICP-MS锆石U-Pb年代学测试在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成.LA-ICP-MS激光剥蚀系统为GeoLas 2005,电感耦合等离子质谱(ICP-MS)为Agilent 7500a,激光斑束直径为24 μm,载气为He.实验过程采用Nist 610,GJ-1外标和91500内标控制的方法,每5个样品数据点插入2个91500标样用以校正,详细仪器操作条件和数据处理方法参见Liu et al.(2008, 2010).采用软件ICPMSDataCal (Ver. 8.3)对测年数据进行分析处理,并以29Si作为内标校正锆石微量元素(Liu et al., 2010),普通Pb校正参照Andersen (2002)方法.锆石U-Pb年龄谐和图的绘制和MSWD计算均采用Isoplot/Ex_ver3 Ludwig (2003)软件分析处理,测试结果见附表2.
4.2 锆石U-Pb测试结果
锆石颗粒大多为浅棕色-棕色或无色透明粒状、短柱状,粒度一般为80~120 μm.阴极发光图像显示锆石普遍具有明显的核-边结构,锆石边缘普遍出现斑杂状、补丁状增生边(见图 4),反映后期变质增生作用的改造.总共分析测试了40个锆石点,结果如下.
锆石边部15个分析点,Th/U比值较低,除个别测试点外,均小于0.1,属于变质成因锆石特征.15个测试点较为集中地分布在不一致曲线上,获得的上交点年龄为1991±20 Ma (MSWD=1.4,n=15,见图 5),207Pb/206Pb加权平均年龄为1979±22 Ma(MSWD=0.98,n=15),上交点年龄1991±20 Ma代表榴辉岩相变泥质岩的近峰期变质年龄.
锆石核部25个点,锆石Th、U含量变化较大,分别为(21~407)×10-6和(76~1 111)×10-6,除个别测试点外,Th/U比值均大于0.2,属于典型岩浆锆石成因特征(Corfu et al., 2003).除去个别协和度较低的分析点(< 95%),207Pb/206Pb年龄小于2 100 Ma,绝大部分测试点的年龄值介于2 100~2 816 Ma,主要集中于2.1~2.2 Ga(见图 5).
5. 讨论
5.1 高压变泥质岩成因及大地构造意义
目前,世界上石榴石-硬绿泥石-蓝晶石组合榴辉岩相高压变泥质岩均发现于显生宙汇聚板块边缘俯冲-碰撞造山带形成的HP-UHP变质地体中.如东阿尔卑斯的Tauern window(Holland,1979;Stöckhert et al., 1997;Hoschek et al., 2010, 2013;Smye et al., 2010)、西阿尔卑斯的Sesia高压变质带(Zucali et al., 2002;Smye et al., 2010)、喀尔巴阡山(The Carpathians; Negulescu et al., 2009)、安第斯(Raspas Complex;Gabriele et al., 2004);波西米亚地块(The Bohemian Massif; Konopásek,2001);柴北缘(张建新等,2003;Zhang et al., 2004)和南大别宿松变质岩(石永红等,2016).扬子克拉通黄陵穹隆北部古元古代水月寺混杂岩带Grt-Ky-Cld变质矿物组合低温-高压榴辉岩相(571~576 ℃,19.2~21.8 kbar)的发现表明,古元古代水月寺混杂岩带中部分沉积岩曾伴随俯冲板片一起深俯冲到60~70 km深度发生了低温-高压榴辉岩相变质,然后经构造折返退变质剥露于地表,这为古元古代存在现代板块俯冲-碰撞构造体制提供了变质地质学的关键证据.
前人及本次研究显示,扬子克拉通崆岭杂岩水月寺混杂岩带变沉积岩中碎屑锆石年龄谱变化于2.1~3.4 Ga之间,碎屑锆石主峰期年龄介于2.1~2.2 Ga,沉积岩主微量元素构造环境分析显示其形成于活动大陆边缘环境(Gao et al., 2011;Yin et al., 2013;Li et al., 2016;Qiu et al., 2018),并且碎屑锆石U-Pb年龄、锆石Hf及全岩Nd同位素与代表古元古代洋壳残片的变镁铁质岩(2.15 Ga)、岛弧安山岩(2.12 Ga)Hf-Nd同位素特征相似或相近(Han et al., 2017, 2018),这表明变沉积岩原岩是以古元古代活动大陆边缘弧岩浆岩等新生地壳(2.0~2.2 Ga)为主要物源近源剥蚀形成的碎屑沉积岩(Li et al., 2016;Han et al., 2017, 2018;Qiu et al., 2018).因此,高压变泥质岩原岩应形成于俯冲带之上的活动大陆边缘弧前沉积构造环境.
5.2 早前寒武纪板块构造体制启动时间及机制启示
早期板块构造体制特征、启动时间及动力学机制是地球科学前缘研究领域的重大地质问题.早前寒武纪造山带高压变质岩,尤其是低地温梯度“冷俯冲”构造环境下形成的低温-高压变质岩(dT/dP < 375 ℃/GPa),是确立早期板块构造体制启动及机制的重要证据(Ganne et al., 2012;Wan et al., 2015;Weller and St-Onge, 2017;Brown and Johnson, 2018;François et al., 2018;Xu et al., 2018).近年来,国内外学者对早前寒武纪高压变质岩区,例如华北北缘古元古代(~1.9 Ga)高压榴辉岩相变质杂岩(Wan et al., 2015)、俄罗斯白海地区古元古代高压榴辉岩(Mints et al., 2010;Li et al., 2017;Yu et al., 2019)以及非洲Barberton太古宙(3.2 Ga)高压麻粒岩(Moyen et al., 2006)的研究显示,现代板块构造体制在古元古代,甚至太古宙可能已开启.
黄陵穹隆北部水月寺蛇绿混杂岩带中古元古代石榴石-蓝晶石-硬绿泥石泥质片岩变质P-T演化轨迹的研究表明,其变质峰期温压条件为:571~576 ℃,19.2~21.8 kbar,已达榴辉岩相(图 3b),这也是华南前寒武纪变质基底中目前发现的最老榴辉岩相变质岩,其形成可能与全球古元古代Nuna/Columbia超大陆的聚合相关(Zhao et al., 2002).此外,目前的研究表明,黄陵穹隆北部古元古代水月寺蛇绿混杂岩带发育有两类典型变质岩:低温-高压型(本研究)和低压-高温型(以基性麻粒岩、泥质麻粒岩为代表;峰期T=830~930 ℃,P=0.8~1.2 GPa; Yin et al., 2013;Liu et al., 2019)变质岩,其形成时代基本一致,并且在空间上呈现出明显的北西、南东分带性,显示出现代板块构造俯冲体制双变质带的典型特征(Miyashiro,1961),为黄陵穹隆北部古元古代板块俯冲由北西向南东的俯冲极性提供了关键证据(Han et al., 2017, 2018).更为重要的是,本研究估算的高压变泥质岩变质峰期对应地温梯度约为300 ℃/GPa,相当于10 ℃/km,属于典型的低温-高压变质岩(Brown and Johnson, 2018),暗示至少从古元古代开始,类似新元古代(或显生宙)以来“冷俯冲”特征的现代板块构造体制已经启动.
6. 结论
(1) 扬子克拉通黄陵穹隆北部古元古代水月寺混杂岩带变沉积岩系中首次发现Grt-Ky-Cld变质矿物组合为特征的低温-高压榴辉岩相变泥质岩,其近峰期变质时代为1 991±20 Ma,变质温压条件为:571~576 ℃,19.2~21.8 kbar,俯冲深度达60~70 km.
(2) 黄陵穹隆北部古元古代水月寺混杂岩带内发育的Grt-Ky-Cld组合低温-高压榴辉岩相变泥质岩,是板块俯冲带陆缘沉积物在低地温梯度条件(≈300 ℃/GPa)俯冲-构造折返变质演化的产物,表明现今板块构造体制至少在古元古代已开启.
附表见本刊官网(http://www.earth-science.net).
致谢: 感谢三位匿名审稿人提出的修改意见. -
图 1 扬子克拉通黄陵穹隆北部崆岭杂岩地质简图
Fig. 1. Simplified geological map of the Kongling complex in the northern Huangling dome, Yangtze craton
图 2 变泥质岩野外露头及岩相学显微照片
a.变泥质岩显微结构特征,石榴石变斑晶中早期十字石包裹体;b.半自形蓝晶石、硬绿泥石周缘分别被十字石、绿泥石等环绕分布,显示退变质结构特征(单偏光);c.毛发状夕线石集合体围绕蓝晶石残留斑晶生长;d.多硅白云母沿着石榴石裂隙分布(正交光);e.退变质阶段自形十字石取代峰期蓝晶石斑晶(单偏光);f.BSE显微结构图像显示晚期退变质阶段十字石取代峰期阶段蓝晶石,金红石边部退变为钛铁矿.矿物简写据Whitney and Evans(2010);Chl.绿泥石; Cld.硬绿泥石; Grt.石榴石; Ilm.钛铁矿; Ky.蓝晶石; Pa.钠云母;Phe.多硅白云母;Qz.石英; Rt.金红石; Sil.夕线石; St.十字石
Fig. 2. Petrographic photomicrographs for the metapelites
图 3 黄陵穹隆石榴石-蓝晶石-硬绿泥石组合高压变泥质岩变质P-T条件
a.MnNCKFMASHT体系下变质相平衡模拟计算P-T视剖面图,图中投点为Thermocalc 3.33平均温压法计算的变质P-T结果;b.水月寺混杂岩中石榴石-蓝晶石-硬绿泥石高压变泥质岩与全球不同造山带中类似样品峰期变质P-T对比.图b中Grt+Ky+Cld组合稳定域引自Smye et al. (2010).数据来源:1.Turkey (24±3 kbar,430±30 ℃;Okay,2002);2.Iberian Massif,Spain(21~22 kbar,520 ℃;19~21 kbar,440±20 ℃;López-Carmona et al., 2013);3.Gran Paradiso,Italy,West Alps(18~20 kbar,490 ℃;Chopin,1981;Le Bayon et al., 2006);4.Sardinia,Italy(16~19 kbar,480±20 ℃,Cruciani et al., 2013);5和6.Tauern Window,Eastern Alps(24.6 kbar,575 ℃;26.2 kbar,553 ℃;Holland,1979;Hoschek et al., 2010;Smye et al., 2010;Hoschek,2013);7.Betic Cordillera,Spain(20.8 kbar,580 ℃;Smye et al., 2010);8.Bohemian Massif(27.2 kbar,546 ℃;Konopásek,2001;Smye et al., 2010);9.Raspas Complex,Andes(20.3 kbar,569 ℃;Gabriele et al., 2004;Smye et al., 2010);10.Bughea Complex,Carpathians(21 kbar,560 ℃;24.6 kbar,590 ℃;Negulescu et al., 2009, 2018;Smye et al., 2010);11.Sesia zone,Western Alps(29.9 kbar,544 ℃;Zucali et al., 2002;Smye et al., 2010);12.Susong complex,Dabie orogenic belt(19.6~24.7 kbar,551~569 ℃;石永红等,2016);13和14.Chuacus Complex,Central Guatemala(∼19.5~20 kbar,580~600 ℃;23~25 kbar and 620~690 ℃;Maldonado et al., 2016, 2018)
Fig. 3. Metamorphic P-T condition of the garnet-kyanite-chloritoid assemblage high-pressure metapelites from the Huangling dome
-
[1] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [2] Brown, M., Johnson, T., 2018.Secular Change in Metamorphism and the Onset of Global Plate Tectonics.American Mineralogist, 103(2):181-196. https://doi.org/10.2138/am-2018-6166 [3] Cen, Y., Peng, S.B., Kusky, T.M., et al., 2012.Granulite Facies Metamorphic Age and Tectonic Implications of BIFs from the Kongling Group in the Northern Huangling Anticline.Journal of Earth Science, 23(5):648-658. https://doi.org/10.1007/s12583-012-0286-x [4] Chen, K., Gao, S., Wu, Y.B., et al., 2013.2.6-2.7 Ga Crustal Growth in Yangtze Craton, South China.Precambrian Research, 224:472-490. https://doi.org/10.1016/j.precamres.2012.10.017 [5] Chopin, C., 1981.Talc-Phengite:A Widespread Assemblage in High-Grade Pelitic Blueschists of the Western Alps.Journal of Petrology, 22(4):628-650. https://doi.org/10.1093/petrology/22.4.628 [6] Coleman, R.G., Lee, D.E., Beatty, L.B., et al., 1965.Eclogites and Eclogites:Their Differences and Similarities.Geological Society of America Bulletin, 76(5):483-508. doi: 10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2 [7] Connolly, J.A.D., 2005.Computation of Phase Equilibria by Linear Programming:A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation.Earth and Planetary Science Letters, 236(1-2):524-541. https://doi.org/10.1016/j.epsl.2005.04.033 [8] Corfu, F., 2003.Atlas of Zircon Textures.Reviews in Mineralogy and Geochemistry, 53(1):469-500. https://doi.org/10.2113/0530469 [9] Cruciani, G., Franceschelli, M., Massonne, H.J., et al., 2013.Pressure-Temperature and Deformational Evolution of High-Pressure Metapelites from Variscan NE Sardinia, Italy.Lithos, (175-176):272-284. https://doi.org/10.1016/j.lithos.2013.05.001 [10] François, C., Debaille, V., Paquette, J.L., et al., 2018.The Earliest Evidence for Modern-Style Plate Tectonics Recorded by HP-LT Metamorphism in the Paleoproterozoic of the Democratic Republic of the Congo.Scientific Reports, 8(1):15452. https://doi.org/10.1038/s41598-018-33823-y [11] Gabriele, P., Ballèvre, M., Jaillard, E., et al., 2004.Garnet-Chloritoid-Kyanite Metapelites from the Raspas Complex (SW Ecuador) a Key Eclogite-Facies Assemblage.European Journal of Mineralogy, 15(6):977-989. https://doi.org/10.1127/0935-1221/2003/0015-0977 [12] Ganne, J., de Andrade, V., Weinberg, R.F., et al., 2012.Modern-Style Plate Subduction Preserved in the Palaeoproterozoic West African Craton.Nature Geoscience, 5(1):60. https://doi.org/10.1038/ngeo1321 [13] Gao, S., Yang, J., Zhou, L., et al., 2011.Age and Growth of the Archean Kongling Terrain, South China, with Emphasis on 3.3 Ga Granitoid Gneisses.American Journal of Science, 311(2):153-182. https://doi.org/10.2475/02.2011.03 [14] Gao, S., Zhang, B.R., 1990.The Discovery of Archean TTG Gneisses in the Northern Yangtze Platform and Their Implications.Earth Science, 15(6):675-679(in Chinese with English abstract) http://www.researchgate.net/publication/284789764_The_discovery_of_Archean_TTG_gneisses_in_northern_Yangtze_craton_and_their_implications [15] Guillot, S., de Sigoyer, J., Lardeaux, J.M., et al., 1997.Eclogitic Metasediments from the Tso Morari Area (Ladakh, Himalaya):Evidence for Continental Subduction during India-Asia Convergence.Contributions to Mineralogy and Petrology, 128(2-3):197-212. https://doi.org/10.1007/s004100050303 [16] Guo, J.L., Gao, S., Wu, Y.B., et al., 2014.3.45 Ga Granitic Gneisses from the Yangtze Craton, South China:Implications for Early Archean Crustal Growth.Precambrian Research, 242:82-95. https://doi.org/10.1016/j.precamres.2013.12.018 [17] Guo, J.W, Zheng, J.P., Ping, X.Q., et al., 2018.Paleoproterozoic Porphyries and Coarse-Grained Granites Manifesting a Vertical Hierarchical Structure of Archean Continental Crust beneath the Yangtze Craton Precambrian Research 318: 288-305.https://doi.org/10.1016/j.precamres.2018.06.012 [18] Han, Q.S., Peng, S.B., 2020.Paleoproterozoic Subduction within the Yangtze Craton:Constraints from Nb-Enriched Mafic Dikes in the Kongling Complex.Precambrian Research, 340:105634. https://doi.org/10.1016/j.precamres.2020.105634 [19] Han, Q.S., Peng, S.B., Kusky, T.M., et al., 2017.A Paleoproterozoic Ophiolitic Mélange, Yangtze Craton, South China:Evidence for Paleoproterozoic Suturing and Microcontinent Amalgamation.Precambrian Research, 293:13-38. https://doi.org/10.1016/j.precamres.2017.03.004 [20] Han, Q.S., Peng, S.B., Kusky, T.M., et al., 2019.Petrogenesis and Geochronology of Paleoproterozoic Magmatic Rocks in the Kongling Complex:Evidence for a Collisional Orogenic Event in the Yangtze Craton.Lithos, 342-343:513-529. https://doi.org/10.1016/j.lithos.2019.05.015 [21] Han, Q.S., Peng, S.B., Polat, A., et al., 2018.A ca.2.1 Ga Andean-Type Margin Built on Metasomatized Lithosphere in the Northern Yangtze Craton, China:Evidence from High-Mg Basalts and Andesites.Precambrian Research, 309:309-324. https://doi.org/10.1016/j.precamres.2017.05.015 [22] Holder, R.M., Viete, D.R., Brown, M., et al., 2019.Metamorphism and the Evolution of Plate Tectonics.Nature, 572:378-381. https://doi.org/10.1038/s41586-019-1462-2 [23] Holland, T.J.B., 1979.Experimental Determination of the Reaction Paragonite=Jadeite+Kyanite+H2O, and Internally Consistent Thermodynamic Data for Part of the System Na2O-Al2O3-SiO2-H2O, with Applications to Eclogites and Blueschists.Contributions to Mineralogy and Petrology, 68(3):293-301. https://doi.org/10.1007/bf00371551 [24] Holland, T.J.B., Powell, R., 2004.An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest.Journal of Metamorphic Geology, 16(3):309-343. https://doi.org/10.1111/j.1525-1314.1998.00140.x [25] Hoschek, G., 2013.Garnet Zonation in Metapelitic Schists from the Eclogite Zone, Tauern Window, Austria:Comparison of Observed and Calculated Profiles.European Journal of Mineralogy, 25(4):615-629. https://doi.org/10.1127/0935-1221/2013/0025-2310 [26] Hoschek, G., Konzett, J., Tessadri, R., 2010.Phase Equilibria in Quartzitic Garnet-Kyanite-Chloritoid Micaschist from the Eclogite Zone, Tauern Window, Eastern Alps.European Journal of Mineralogy, 22(5):721-732. https://doi.org/10.1127/0935-1221/2010/0022-2049 [27] Konopásek, J., 2001.Eclogitic Micaschists in the Central Part of the Krušné Hory Mountains (Bohemian Massif).European Journal of Mineralogy, 13(1):87-100. https://doi.org/10.1127/0935-1221/01/0013-0087 [28] Koons, P.O., Thompson, A.B., 1985.Non-Mafic Rocks in the Greenschist, Blueschist and Eclogite Facies.Chemical Geology, 50(1-3):3-30. https://doi.org/10.1016/0009-2541(85)90109-3 [29] Le Bayon, B., Pitra, P., Ballevre, M., et al., 2006.Reconstructing P-T Paths during Continental Collision Using Multi-Stage Garnet (Gran Paradiso Nappe, Western Alps).Journal of Metamorphic Geology, 24(6):477-496. https://doi.org/10.1111/j.1525-1314.2006.00649.x [30] Li, H.Q., Zhou, W.X., Wei, Y.X., et al., 2020.Two Extensional Events in the Early Evolution of the Yangtze Block, South China:Geochemical and Isotopic Evidence from Two Sets of Paleoproterozoic Alkali Porphyry in the Northern Kongling Terrane.Geological Journal. https://doi.org/10.1002/gj.3802 [31] Li, X.L., Zhang, L.F., Wei, C.J., et al., 2017.Neoarchean-Paleoproterozoic Granulite-Facies Metamorphism in Uzkaya Salma Eclogite-Bearing Mélange, Belomorian Province (Russia).Precambrian Research, 294:257-283. https://doi.org/10.1016/j.precamres.2017.03.031 [32] Li, Y.H., Zheng, J.P., Xiong, Q., et al., 2016.Petrogenesis and Tectonic Implications of Paleoproterozoic Metapelitic Rocks in the Archean Kongling Complex from the Northern Yangtze Craton, South China.Precambrian Research, 276:158-177. https://doi.org/10.1016/j.precamres.2016.01.028 [33] Ling, W.L., Gao, S., Zhang, B.R., et al., 2001.The Recognizing of ca.1.95 Ga Tectono-Thermal Event in Kongling Nucleus and Its Significance for the Evolution of Yangtze Block, South China.Chinese Science Bulletin, 46(4):326-329. https://doi.org/10.1007/bf03187196 [34] Liu, B., Zhai, M.G., Zhao, L., et al., 2019.Metamorphism, P-T Path and Zircon U-Pb Dating of Paleoproterozoic Mafic and Felsic Granulites from the Kongling Terrane, South China.Precambrian Research, 333:105403. https://doi.org/10.1016/j.precamres.2019.105403 [35] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [36] Liu, Y.S., Hu, Z.C., Gao, S., et al., 2008.In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard.Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [37] López-Carmona, A., Pitra, P., Abati, J., 2013.Blueschist-Facies Metapelites from the Malpica-Tui Unit (NW Iberian Massif):Phase Equilibria Modelling and H2O and Fe2O3 Influence in High-Pressure Assemblages.Journal of Metamorphic Geology, 31(3):263-280. https://doi.org/10.1111/jmg.12018 [38] Ludwig, K.R., 2003.User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication, 70. [39] Maldonado, R., Ortega-Gutiérrez, F., Hernández-Uribe, D., 2016.Garnet-Chloritoid-Paragonite Metapelite from the Chuacús Complex (Central Guatemala):New Evidence for Continental Subduction in the North America-Caribbean Plate Boundary.European Journal of Mineralogy, 28(6):1169-1186. https://doi.org/10.1127/ejm/2016/0028-2578 [40] Maldonado, R., Weber, B., Ortega-Gutiérrez, F., et al., 2018.High-Pressure Metamorphic Evolution of Eclogite and Associated Metapelite from the Chuacús Complex (Guatemala Suture Zone):Constraints from Phase Equilibria Modelling Coupled with Lu-Hf and U-Pb Geochronology.Journal of Metamorphic Geology, 36(1):95-124. https://doi.org/10.1111/jmg.12285 [41] Mints, M.V., Belousova, E.A., Konilov, A.N., et al., 2010.Mesoarchean Subduction Processes:2.87 Ga Eclogites from the Kola Peninsula, Russia.Geology, 38(8):739-742. https://doi.org/10.1130/G31219.1 [42] Miyashiro, A., 1961.Evolution of Metamorphic Belts.Journal of Petrology, 2(3):277-311. https://doi.org/10.1093/petrology/2.3.277 [43] Moyen, J.F., Stevens, G., Kisters, A., 2006.Record of Mid-Archaean Subduction from Metamorphism in the Barberton Terrain, South Africa.Nature, 442(7102):559-562. https://doi.org/10.1038/nature04972 [44] Negulescu, E., Săbău, G., Massonne, H.J., 2009.Chloritoid-Bearing Mineral Assemblages in High-Pressure Metapelites from the Bughea Complex, Leaota Massif (South Carpathians).Journal of Petrology, 50(1):103-125. https://doi.org/10.1093/petrology/egn075 [45] Negulescu, E., Săbău, G., Massonne, H.J., 2018.Growth of Chloritoid and Garnet along a Nearly Isothermal Burial Path to 70 km Depth:An Example from the Bughea Metamorphic Complex, Leaota Massif, South Carpathians.Mineralogy and Petrology, 112(4):535-553. https://doi.org/10.1007/s00710-017-0552-9 [46] Okay, A.I., 2002.Jadeite-Chloritoid-Glaucophane-Lawsonite Blueschists in North-West Turkey:Unusually High P/T Ratios in Continental Crust.Journal of Metamorphic Geology, 20(8):757-768. https://doi.org/10.1046/j.1525-1314.2002.00402.x [47] Peng, M., Wu, Y.B., Gao, S., et al., 2012.Geochemistry, Zircon U-Pb Age and Hf Isotope Compositions of Paleoproterozoic Aluminous A-Type Granites from the Kongling Terrain, Yangtze Block:Constraints on Petrogenesis and Geologic Implications.Gondwana Research, 22(1):140-151. https://doi.org/10.1016/j.gr.2011.08.012 [48] Peng, M., Wu, Y.B., Wang, J., et al., 2009. Paleoproterozoic Mafic Dyke from Kongling Terrain in the Yangtze Craton and Its Implication.Chinese Sci.Bull., 54:1098-1104. [49] Qiu, X.F., Jiang, T., Zhao, X.M., et al., 2020.Baddeleyite U-Pb Geochronology and Geochemistry of Late Paleoproterozoic Mafic Dykes from the Kongling Complex of the Northern Yangtze Block, South China.Precambrian Research, 337:105537. https://doi.org/10.1016/j.precamres.2019.105537 [50] Qiu, X.F., Zhao, X.M., Yang, H.M., et al., 2018.Geochemical and Nd Isotopic Compositions of the Palaeoproterozoic Metasedimentary Rocks in the Kongling Complex, Nucleus of Yangtze Craton, South China Block:Implications for Provenance and Tectonic Evolution.Geological Magazine, 155(6):1263-1276. https://doi.org/10.1017/S0016756817000048 [51] Qiu, Y.M., Gao, S., McNaughton, N.J., et al., 2000.First Evidence of > 3.2 Ga Continental Crust in the Yangtze Craton of South China and Its Implications for Archean Crustal Evolution and Phanerozoic Tectonics.Geology, 28(1):11-14. doi: 10.1130/0091-7613(2000)028<0011:FEOGCC>2.0.CO;2 [52] Shi, Y.H., Wang, J., Nie, F., et al., 2016.Investigation of P-T Conditions and Geochoronology for Garnet-Kyanite-Chloritoid Schist from the Susong Complex.Acta Petrologica Sinica, 32(2):493-504(in Chinese with English abstract) http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602015 [53] Smye, A.J., Greenwood, L.V., Holland, T.J.B., 2010.Garnet-Chloritoid-Kyanite Assemblages:Eclogite Facies Indicators of Subduction Constraints in Orogenic Belts.Journal of Metamorphic Geology, 28(7):753-768. https://doi.org/10.1111/j.1525-1314.2010.00889.x [54] Stöckhert, B., Massonne, H.J., Nowlan, E.U., 1997.Low Differential Stress during High-Pressure Metamorphism:The Microstructural Record of a Metapelite from the Eclogite Zone, Tauern Window, Eastern Alps.Lithos, 41(1-3):103-118. https://doi.org/10.1016/S0024-4937(97)82007-5 [55] Wan, B., Windley, B.F., Xiao, W.J., et al., 2015.Paleoproterozoic High-Pressure Metamorphism in the Northern North China Craton and Implications for the Nuna Supercontinent.Nature Communications, 6:8344. https://doi.org/10.1038/ncomms9344 [56] Wang, Z.J., Wang, J., Deng, Q., et al., 2015.Paleoproterozoic I-Type Granites and Their Implications for the Yangtze Block Position in the Columbia Supercontinent:Evidence from the Lengshui Complex, South China.Precambrian Research, 263:157-173. https://doi.org/10.1016/j.precamres.2015.03.014 [57] Wei, C.J., Powell, R., 2006.Calculated Phase Relations in the System NCKFMASH (Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O) for High-Pressure Metapelites.Journal of Petrology, 47(2):385-408. https://doi.org/10.1093/petrology/egi079 [58] Weller, O.M., St-Onge, M.R., 2017.Record of Modern-Style Plate Tectonics in the Palaeoproterozoic Trans-Hudson Orogen.Nature Geoscience, 10(4):305. https://doi.org/10.1038/ngeo2904 [59] Whitney, D.L., Evans, B.W., 2010.Abbreviations for Names of Rock-Forming Minerals.American Mineralogist, 95(1):185-187. https://doi.org/10.2138/am.2010.3371 [60] Wu, Y.B., Gao, S., Gong, H.J., et al., 2009.Zircon U-Pb Age, Trace Element and Hf Isotope Composition of Kongling Terrane in the Yangtze Craton:Refining the Timing of Palaeoproterozoic High-Grade Metamorphism.Journal of Metamorphic Geology, 27(6):461-477. https://doi.org/10.1111/j.1525-1314.2009.00826.x [61] Wu, Y.B., Gao, S., Zhang, H.F., et al., 2012.Geochemistry and Zircon U-Pb Geochronology of Paleoproterozoic Arc Related Granitoid in the Northwestern Yangtze Block and Its Geological Implications.Precambrian Research, 200:26-37. https://doi.org/10.1016/j.precamres.2011.12.015 [62] Xu, C., Kynický, J., Song, W.L., et al., 2018.Cold Deep Subduction Recorded by Remnants of a Paleoproterozoic Carbonated Slab.Nature Communications, 9(1):2790. https://doi.org/10.1038/s41467-018-05140-5 [63] Yin, C.Q., Lin, S.F., Davis, D.W., et al., 2013.2.1-1.85 Ga Tectonic Events in the Yangtze Block, South China:Petrological and Geochronological Evidence from the Kongling Complex and Implications for the Reconstruction of Supercontinent Columbia.Lithos, 182-183:200-210. https://doi.org/10.1016/j.lithos.2013.10.012 [64] Yu, H.L., Zhang, L.F, Zhang, L.J., et al., 2019.The Metamorphic Evolution of Salma-Type Eclogite in Russia:Constraints from Zircon/Titanite Dating and Phase Equilibria Modeling.Precambrian Research, 326:363-384. https://doi.org/10.1016/j.precamres.2018.01.019 [65] Zhang, J.X., Meng, F.C., Yang, J.S., 2003.Eclogitic Metapelites in the Western Segment of the North Qaidam Basin and Their Geological Implications.Geological Bulletin of China, 22(9):655-657 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200309003 [66] Zhang, J.X., Meng, F.C., Yang, J.S., 2004.Eclogitic Metapelites in the Western Segment of the North Qaidam Mountains:Evidence on "In Situ" Relationship between Eclogite and Its Country Rock.Science China:Earth Sciences, 47(12), 1102-1112. https://doi.org/10.1360/02yd0311 [67] Zhang, S.B., Zheng, Y.F., 2013.Formation and Evolution of Precambrian Continental Lithosphere in South China.Gondwana Research, 23(4):1241-1260. https://doi.org/10.1016/j.gr.2012.09.005 [68] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006a.Zircon Isotope Evidence for ≥ 3.5 Ga Continental Crust in the Yangtze Craton of China.Precambrian Research, 146(1-2):16-34. https://doi.org/10.1016/j.precamres.2006.01.002 [69] Zhang, S.B., Zheng, Y.F., Wu, Y.B., et al., 2006b.Zircon U-Pb Age and Hf-O Isotope Evidence for Paleoproterozoic Metamorphic Event in South China.Precambrian Research, 151(3-4):265-288. https://doi.org/10.1016/j.precamres.2006.08.009 [70] Zhao, G.C., Cawood, P.A., Wilde, S.A., et al., 2002.Review of Global 2.1-1.8 Ga Orogens:Implications for a Pre-Rodinia Supercontinent.Earth-Science Reviews, 59(1-4):125-162. https://doi.org/10.1016/s0012-8252(02)00073-9 [71] Zheng, J.P., Griffin, W.L., O'Reilly, S.Y., et al., 2006.Widespread Archean Basement beneath the Yangtze Craton.Geology, 34(6):417-420. https://doi.org/10.1130/g22282.1 [72] Zheng, Y.F., Zhang, L.F., Liu, L., et al., 2013.Progress in the Study of Continental Deep Subduction and Ultrahigh Pressure Metamorphism.Bulletin of Mineralogy, Petrology and Geochemistry, 32(2):135-158(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201302001 [73] Zucali, M., Spalla, M.I., Gosso, G., 2002.Strain Partitioning and Fabric Evolution as a Correlation Tool:The Example of the Eclogitic Micaschists Complex in the Sesia-Lanzo Zone (Monte Mucrone-Monte Mars, Western Alps, Italy).Schweizerische Mineralogische Und Petrographische Mitteilungen, 82(3):429-454. [74] 高山, 张本仁, 1990.扬子地台北部太古宙TTG片麻岩的发现及其意义.地球科学, 15(6):675-679. http://www.cnki.com.cn/Article/CJFDTotal-DQKX199006012.htm [75] 石永红, 王娟, 聂峰, 等, 2016.宿松变质杂岩中石榴石-蓝晶石-硬绿泥石片岩形成条件及时限研究.岩石学报, 32(2):493-504. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602015 [76] 张建新, 孟繁聪, 杨经绥, 2003.柴达木盆地北缘西段榴辉岩相变质泥质岩的确定及意义.地质通报, 22(9):655-657. doi: 10.3969/j.issn.1671-2552.2003.09.003 [77] 郑永飞, 张立飞, 刘良, 等, 2013.大陆深俯冲与超高压变质研究进展.矿物岩石地球化学通报, 32(2):135-158. doi: 10.3969/j.issn.1007-2802.2013.02.001 期刊类型引用(7)
1. 刘志慧,刘晓春,陈龙耀,郑光高,胡娟. 南秦岭长角坝群低庄沟组的锆石U-Pb年龄及其构造意义. 地质力学学报. 2024(06): 1012-1027 . 百度学术
2. 付强,魏君奇,范堡程,裴康达. 扬子克拉通古元古代变质演化——来自黄陵穹窿石榴斜长角闪岩的证据. 岩石矿物学杂志. 2023(02): 173-190 . 百度学术
3. 孔令耀,韩庆森,郭盼,邓新,李琳静,徐扬,万俊,陈超. 大别造山带古元古代黑云紫苏斜长片麻岩年代学、地球化学特征及其地质意义. 地质学报. 2023(05): 1463-1477 . 百度学术
4. 陈冰寒,卢金祥,熊丽,周舟,裴银,龚银. 黄陵背斜核北部黄凉河组混合岩化作用及泥质变质岩P-T轨迹对石墨成矿的启示. 资源环境与工程. 2023(05): 496-503 . 百度学术
5. 邱啸飞,陈伟雄,徐大良,赵小明,童喜润. 扬子陆核崆岭杂岩太古宙地壳演化. 华南地质. 2022(01): 56-66 . 百度学术
6. 李韵秀,张立飞,许成,KYNICKY Jind?ich,FEI YingWei. 华北克拉通丰镇碳酸岩中榴辉岩捕虏体岩石学研究:现今板块体制古元古代开始启动证据. 岩石学报. 2021(02): 391-416 . 百度学术
7. 陈超,朱江. 黄陵基底北部古元古代洋板块地质与石墨成矿. 资源环境与工程. 2021(06): 769-776 . 百度学术
其他类型引用(3)
-
dqkx-45-6-1986-Table1-2.pdf
-