Sedimentary Evolution and Coastal Currents Variations of the Yangtze River Mouth(East China Sea) since Last Deglaciation
-
摘要: 长江口附近的沿岸流和水团变化对研究长江三角洲沉积物的“源-汇”机制具有重要意义.对HZK2孔沉积物的粒度、年龄和有孔虫分布特征进行了研究分析.结果表明:HZK2孔52.5 m以上有孔虫均有分布,底栖有孔虫丰度在12 m以上和26.0~52.5 m含量超过40枚/g,代表不同沿岸流和水团的有孔虫属种含量在垂向上呈现明显的分带性.HZK2孔全新世以来经历了河口湾和水下三角洲两大沉积体系,并在全新世早期发育潮流沙脊.末次冰消期,钻孔所在位置受长江冲淡水和苏北沿岸流共同影响.全新世早期,则受苏北沿岸流影响为主;在此之后,长江口冲淡水的作用减弱,苏北、黄海沿岸流影响较强.全新世中晚期,苏北沿岸流、长江冲淡水、江浙沿岸流和东海外海水团多种水体共同作用钻孔所在海域,全新世晚期长江冲淡水作用占绝对优势.Abstract: The study of coastal currents variations in the Yangtze River mouth has significance for the understanding of riverine sediment 'source to sink' processes in this region. The post-glacial core sediments from the northern Yangtze River mouth, along with sedimentary structures and distributions of grain size and benthic foraminifera, show an estuarine depositional system characterized by tidal sand ridge in Early Holocene and a deltaic system consists of prodelta, delta front slope and delta front. Based on changes in the dominant microfauna species, two main current patterns prevailed in this region during most of the Holocene:one is the Yellow Sea coastal current (YSCC) and the other is the Yangtze dilute water (YDW). in Early Holocene, the YSCC dominated this area and the effect of YDW gradually strengthened. The YDW clearly weakened due to the sea level rise in early Middle Holocene. Then the East China Sea water mass (ESWM) penetrated the area dominated by mixed water mass consists of YDW, YSCC, Zhe-Min coastal current (ZMCC) and Yellow Sea cold water (YSCW), yet the Yangtze plume prevailed due to the rapid seaward migration of the Yangtze mouth.The YDW dominated this area again in Late Holocene.
-
Key words:
- last deglaciation /
- Yangtze Estuary /
- sedimentary evolution /
- coastal current /
- foraminifera /
- sedimentology
-
图 5 有孔虫图版
1, 2.中华假圆旋虫Pseudogyroidinasinensis Zheng;3,4.多变假小九字虫Pseudononionellavariabilis Zheng;5, 6.孔缝筛九字虫Cribrononionporisuturalis Zheng;7, 8.江苏小希望虫Elphidiella.kiangsuensis (Ho, Hu et Wang);9, 10.亚异变筛诺宁虫Cribrononionsubincertum(Asano); 11, 12.缝裂希望虫Elphidium magellanicum Heron⁃Allen et Eerland; 13, 14.异地希望虫Elphidium advenum (Cushman); 15, 16.拉玛克五玦虫Quinqueloculinalamarckianad’Orbigny; 17, 18, 19.优美花朵虫Florilusdecorus (Cushman et McCulloch); 20.大西洋花朵虫Florilusatlanticus(Cushman); 21.奈良小上口虫Epistominellanaraensis (Kuwano); 22, 23.具缘小泡虫Buliminamarginatad'Orbigny; 24.强壮箭头虫Bolivinarobusta Brady; 25, 26, 27.少室卷转虫Ammonia.pauciloculata; 28.塔斯曼星诺宁虫Astrononion tasmanensis Carter;比例尺长度100 μm
Fig. 5. Plate of foraminifer
表 1 HZK2孔AMS 14C测年及校正结果
Table 1. AMS 14C ages of peat and shell samples from core HZK2
钻孔编号 深度(m) 测年材料 δ13C 常规年龄 校正年龄(cal a BP) 实验室编号 (‰) a BP error 2 sigma Prob. HZK2 30.10 贝壳 -1.4 5 760 40 5 900~6 170 1 379324 31.35 贝壳 -0.5 4 890 40 4 845~5 220 1 379325 34.10 贝壳 0.5 5 630 30 5 730~5 990 1 345596 41.60 贝壳 -9.3 10 120 40 11 075~11 210 1 345597 42.70 植物碎屑 -26.7 10 840 50 12 800~12 900 1 345598 51.92 富有机质泥 -23.1 18 670 70 22 415~22 625 1 381436 57.14 植物碎屑 -22.6 23 230 90 27 380~27 615 1 381437 表 2 HZK2孔OSL测年结果
Table 2. OSL ages of sediments from core HZK2
实验编号 采样深度(m) U(μg/g) Th(μg/g) K(%) 质量含水量(%) 等效剂量(Gy) 年龄(Ka) 2012A615 6.1 2.07 12.20 1.43 13.0% 1.9 0.5 2012A616 16.0 2.64 15.60 1.98 30.0% 10.1 2.2 2012A617 26.0 2.59 15.50 1.99 40.6% 13.4 3.1 2012A618 29.8 1.91 9.13 1.52 53.4% 18.7 6.8 2012A619 37.5 1.64 8.77 1.46 22.0% 29.8 9.3 2012A620 45.5 1.34 6.81 1.43 22.6% 28.9 10.3 2012A621 53.1 2.59 14.10 1.26 20.1% 113.8 27.2 -
[1] Hori, K., Saito, Y., Zhao, Q. H., et al., 2001a. Sedimentary Facies of the Tide-Dominated Paleo-Changjiang (Yangtze) Estuary during the Last Transgression. Marine Geology, 177(3/4):331-351. https://doi.org/10.1016/s0025-3227(01)00165-7 [2] Hori, K., Saito, Y., Zhao, Q. H., et al., 2001b. Sedimentary Facies and Holocene Progradation Rates of the Changjiang (Yangtze) Delta, China. Geomorphology, 41(2/3):233-248. https://doi.org/10.1016/s0169-555x(01)00119-2 [3] Hori, K., Saito, Y., Zhao, Q., et al. 2002. Control of Incised-Valley Fill Stacking Patterns by Accelerated and Decelerated Sea-Level Rise:the Chang Jiang Example during the Last Deglaciation. Geo-Marine Letter, 22:127-132. https://doi.org/10.1007/s00367-002-0105-y [4] Hu, B.Q., Yang, Z.S., Zhao, M.X., et al., 2012. Grain Size Records Reveal Variability of the East Asian Winter Monsoon since the Middle Holocene in the Central Yellow Sea Mud Area, China. Science China:Earth Sciences, 42(10):1568-1581(in Chinese). [5] Jian, Z. M., Wang, P. X., Saito, Y., et al., 2000. Holocene Variability of the Kuroshio Current in the Okinawa Trough, Northwestern Pacific Ocean. Earth and Planetary Science Letters, 184(1):305-319. https://doi.org/10.1016/s0012-821x(00)00321-6 [6] Kong, G.S., Lee, C.W., 2005. Marine Reservoir Corrections (ΔR) for Southern Coastal Waters of Korea. Journal of the Korean Society of Oceanography, 10:124-128. [7] Li, C. X., Chen, Q. Q., Zhang, J. Q., et al., 2000. Stratigraphy and Paleoenvironmental Changes in the Yangtze Delta during the Late Quaternary. Journal of Asian Earth Sciences, 18(4):453-469. https://doi.org/10.1016/s1367-9120(99)00078-4 [8] Li, C. X., Wang, P., Sun, H. P., et al., 2002. Late Quaternary Incised-Valley Fill of the Yangtze Delta (China):Its Stratigraphic Framework and Evolution. Sedimentary Geology, 152(1/2):133-158. https://doi.org/10.1016/s0037-0738(02)00066-0 [9] Li, C. X., Zhang, J. Q., Fan, D. D., et al., 2001. Holocene Regression and the Tidal Radial Sand Ridge System Formation in the Jiangsu Coastal Zone, East China. Marine Geology, 173(1/2/3/4):97-120. https://doi.org/10.1016/s0025-3227(00)00169-9 [10] Li, T.G., Jiang, B., Sun. R.T., et al., 2007. Evolution Pattern of Warm Current System of the East China Sea and the Yellow Sea since the Last Deglaciation.Quaternary Sciences, 27(6):945-954(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200706009 [11] Li, T.G., Li, S.Q., Cang, S.X., et al., 2000. Paleo-Hydrological Reconstruction of the Southern Yellow Sea Inferred from Foraminiferal Fauna in Core YSDP102. Oceanologia et Limnologia Sinica, 31:588-595 (in Chinese with English abstract). [12] Li, X.Y, Jian, Z.M, Shi, X.F., et al., 2012. Foraminifera in Core MZ02 from the Mud Area on the Inner Shelf of the East China Sea and Their Paleoenvironmental Significance during the Holocene. Marine Geology & Quaternary Geology, 32:61-71 (in Chinese with English abstract). [13] Liu, J., Li, S. Q., Wang, S. J., et al., 1999. Sea Level Changes of the Yellow Sea and Formation of the Yellow Sea Warm Current since the Last Deglaciation. Marine Geology & Quaternary Geology, 19(1):13-24 (in Chinese with English abstract). [14] Liu, J., Saito, Y., Kong, X. H., et al., 2010. Sedimentary Record of Environmental Evolution off the Yangtze River Estuary, East China Sea, during the Last ∼13 000 Years, with Special Reference to the Influence of the Yellow River on the Yangtze River Delta during the Last 600 Years. Quaternary Science Reviews, 29(17/18):2424-2438. https://doi.org/10.1016/j.quascirev.2010.06.016 [15] Ma, J., Q., 2017. Study of Identification of Sediment Source from the Yellow River in the Incised Yangtze Esturine Valley and Its Transport Mechanism during the Early to Mid-Holocene(Dissertation). East China Normal University, Shanghai(in Chinese with English abstract). [16] Mei, X., Zhang, X. H., Li, R.H., 2013. Distributions of late Quaternary Benthic Foraminifera in South Yellow Sea and Its Implication of Palo-Water Mass. Geological Review, 59(6):1024-1034 (in Chinese with English abstract). [17] Song, B., Li, Z., Saito, Y., et al., 2013. Initiation of the Changjiang (Yangtze) Delta and Its Response to the Mid-Holocene Sea Level Change. Palaeogeography, Palaeoclimatology, Palaeoecology, 388:81-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e87a97ee9804ce4622d3efcf463961c2 [18] Southon, J., Kashgarian, M., Fontugne, M., et al., 2002. Marine Reservoir Corrections for the Indian Ocean and Southeast Asia. Radiocarbon, 44(1):167-180. https://doi.org/10.1017/s0033822200064778 [19] Stuiver, M., Reimer, P.J., Reimer, R., 2015. CALIB: Radiocarbon Calibration. http://calib.qub.ac.uk/calib/(September 2015). [20] Wang, H. Y., 2012. Benthic Foraminifera Response to Changes in Paleoenviornments of the Yellow Sea Mud Area through the High Resolution of Holocene Stratigraphic Analysis(Dissertation). Ocean University of China, Qingdao, 28-31(in Chinese with English abstract). [21] Wang, P., Zhang, J., Zhao, Q., et al. 1988. Foraminifera and Ostracoda in Bottom Sediments of the East China Sea. China Ocean Press, Beijing, 52-113 (in Chinese). [22] Wang, Z. H., Saito, Y., Zhan, Q., et al., 2018. Three-Dimensional Evolution of the Yangtze River Mouth, China during the Holocene:Impacts of Sea Level, Climate and Human Activity. Earth-Science Reviews, 185:938-955. http://www.sciencedirect.com/science/article/pii/S0012825217305597 [23] Wang, Z. H., Zhan, Q., Long, H. Y., et al., 2013. Early to Mid-Holocene Rapid Sea-Level Rise and Coastal Response on the Southern Yangtze Delta Plain, China. Journal of Quaternary Science, 28(7):659-672. https://doi.org/10.1002/jqs.2662 [24] Wang, Z. H., Xu, H., Zhan, Q., et al., 2010. Lithological and Palynological Evidence of Late Quaternary Depositional Environments in the Subaqueous Yangtze Delta, China. Quaternary Research, 73(3):550-562. https://doi.org/10.1016/j.yqres.2009.11.001 [25] Xiang, R., Li, T.G., Yang, Z.S., et al., 2003. Distribution of Benthic Foraminifera in Surficial Sediments from the Northern Okinawa Trough and Its Relation to Marine Environment. Oceanologia et Limnologia Sinica, 34(6):671-682(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyyhz200306012 [26] Xiang, R., Yang, Z. S., Saito, Y., et al., 2008. Paleoenvironmental Changes during the Last 8 400 Years in the Southern Yellow Sea:Benthic Foraminiferal and Stable Isotopic Evidence. Marine Micropaleontology, 67(1/2):104-119. https://doi.org/10.1016/j.marmicro.2007.11.002 [27] Xu, K. H., Li, A. C., Liu, J. P., et al., 2012. Provenance, Structure, and Formation of the Mud Wedge along Inner Continental Shelf of the East China Sea:A Synthesis of the Yangtze Dispersal System. Marine Geology, 291-294:176-191. https://doi.org/10.1016/j.margeo.2011.06.003 [28] Xu, T. Y., Shi, X. F., Wang, G. Q., et al., 2013. Sedimentary Facies of the Subaqueous Changjiang River Delta since the Late Pleistocene. Chinese Journal of Oceanology and Limnology, 31(5):1107-1119. https://doi.org/10.1007/s00343-013-2281-1 [29] Yang, J. L., Xu, Q. M., Hu, Y. Z., et al., 2018. The Sedi- mentary Evolution Process, Weathering Intensity and Provenance Reconstruction Insight from Borehole Re- cords of Bohai Bay. Earth Science, 43(Suppl.1):287-300 (in Chinese with English abstract). [30] Yoneda, M., Uno, H., Shibata, Y., et al., 2007. Radiocarbon Marine Reservoir Ages in the Western Pacific Estimated by Pre-Bomb Molluscan Shells. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 259(1):432-437. https://doi.org/10.1016/j.nimb.2007.01.184 [31] Yu, J. J., Hu. F., Yang, Z. L., et al., 2014. Identification of Holocene Foraminifera Assemblages in Sijia Town of Nantong City, Jiangsu Province, and Its Geological Significance. Geological Bulletin of China, 33(10):1609-1620(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201410019 [32] Yu, J.J., Peng, B., Lan Y., et al., 2019. Palynological Record Revealed Anthropogenic Deforestation, Sea Level and Climate Changes since Marine Isotope Stage 5a in the Northeastern Coast of Fujian Province. Earth Science, http://kns.cnki.net/kcms/detail/42.1874.P.20191121.1021.008.html (in Chinese with English abstract). [33] Zhan, Q., Wang, Z. H., Xie, Y., et al., 2012. Assessing C/N and Δ13C as Indicators of Holocene Sea Level and Freshwater Discharge Changes in the Subaqueous Yangtze Delta, China. The Holocene, 22(6):697-704. https://doi.org/10.1177/0959683611423685 [34] Zhang, X., Dalrymple, R.W., Lin, C.M., et al., 2017. Facies and Stratigraphic Architecture of the Late Pleistocene to Early Holocene Tide-Dominated Paleo-Changjiang (Yangtze River) Delta. GSA Bulletin, 130(3/4):455-483. https://doi.org/10.1130/b31663.1 [35] Zhao, B. C., Yan, X. X., Wang, Z. H., et al., 2018. Sedimentary Evolution of the Yangtze River Mouth (East China Sea) over the Past 19 000 Years, with Emphasis on the Holocene Variations in Coastal Currents. Palaeogeography, Palaeoclimatology, Palaeoecology, 490:431-449. [36] Zhao, Q.H., Jian, Z.M., Zhang, Z.X., et al., 2009. Holocene Benthic Foraminifera and Ostracoda from the Shelf Mud Area of the East China Sea and Their Paleoenvironmental Implications. Acta Micropalaeontologica Sinica, 26 (2):117-128 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtgswxb200902002 [37] Zhong, F.C., Xiang, R., Yang, Y. P., et al., 2018. Evolution of the Southern Yellow Sea Cold Water Mass during the Last 7 kyr from benthic Foraminiferal Evidence. Science China Earth Sciences, 48(10):1377-1380 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ed201810006 [38] 胡邦琦, 杨作升, 赵美训, 等, 2012.南黄海中部泥质区7200年以来东亚冬季风变化的沉积记录.中国科学:地球科学, 42(10):1568-1581. http://www.cnki.com.cn/Article/CJFDTotal-JDXK201210011.htm [39] 李铁刚, 江波, 孙荣涛, 等, 2007.末次冰消期以来东黄海暖流系统的演化.第四纪研究, 27(6):945-954. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200706009 [40] 李铁刚, 李绍全, 苍树溪, 等, 2000. YSDP102钻孔有孔虫动物群与南黄海东南部古水文重建.海洋与湖沼, 31(6):588-595. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyyhz200006002 [41] 李小艳, 翦知湣, 石学法, 等, 2012.全新世东海内陆架泥质区有孔虫特征及其古环境意义.海洋地质与第四纪地质, 32 (4):61-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz201204008 [42] 刘健, 李绍全, 王圣洁, 等, 1999.末次冰消期以来黄海海平面变化与黄海暖流的形成.海洋地质与第四纪地质, 19:19-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz199901003 [43] 马骏强, 2017.早-中全新世黄河泥沙对长江下切古河谷的影响及其输运机制初探(硕士学位论文).上海: 华东师范大学, 49. [44] 梅西, 张训华, 李日辉, 2013.南黄海北部晚第四纪底栖有孔虫群落分布特征及对古冷水团的指示.地质论评, 59(6):1024-1034. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzlp201306002 [45] 汪品先, 章纪军, 赵泉鸿, 等, 1988.东海底质中的有孔虫和介形虫.北京:海洋出版社, 52-113. [46] 王昊寅, 2012.南黄海泥质区全新世底栖有孔虫及其环境意义(硕士学位论文).青岛: 中国海洋大学, 28-31. [47] 向荣, 李铁刚, 杨作升, 等, 2003.冲绳海槽北部表层沉积物中底栖有孔虫分布及其与海洋环境的关系.海洋与湖沼, 34:671-682. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyyhz200306012 [48] 杨吉龙, 胥勤勉, 胡云壮, 等, 2018.渤海湾西岸钻孔记录的沉积演化过程和沉积物风化强度、物源重建.地球科学, 43(增刊1):287-300. doi: 10.3799/dqkx.2018.137 [49] 于俊杰, 胡飞, 杨祝良, 等, 2014.江苏南通市四甲镇全新世以来有孔虫动物群的发现及其地质意义.地质通报, 33(1):1609-1620. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201410019 [50] 于俊杰, 彭博, 兰佑, 等, 2019.孢粉证据揭示MIS 5a以来福建东北沿海地区人类活动、海平面及气候变化.地球科学, http://kns.cnki.net/kcms/detail/42.1874.P.20191121.1021.008.html [51] 赵泉鸿, 翦知湣, 张在秀, 等, 2009.东海陆架泥质沉积区全新世有孔虫和介形虫及其古环境应用.微体古生物学报, 26 (2), 117-128. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtgswxb200902002 [52] 钟福昌, 向荣, 杨艺萍, 等, 2018.近7 ka来南黄海中部冷水团演化的底栖有孔虫记录.中国科学:地球科学, 48 (10):1377- 1390. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-cd201810009