• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价

    周超 殷坤龙 曹颖 李远耀

    周超, 殷坤龙, 曹颖, 李远耀, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价. 地球科学, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071
    引用本文: 周超, 殷坤龙, 曹颖, 李远耀, 2020. 基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价. 地球科学, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071
    Zhou Chao, Yin Kunlong, Cao Ying, Li Yuanyao, 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071
    Citation: Zhou Chao, Yin Kunlong, Cao Ying, Li Yuanyao, 2020. Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area. Earth Science, 45(6): 1865-1876. doi: 10.3799/dqkx.2020.071

    基于集成学习与径向基神经网络耦合模型的三峡库区滑坡易发性评价

    doi: 10.3799/dqkx.2020.071
    基金项目: 

    国家自然科学基金 41907253

    国家自然科学基金 41702330

    国家重点研发计划 2018YFC0809402

    详细信息
      作者简介:

      周超(1989-), 男, 副教授, 博士, 主要从事地质灾害监测预警与风险评价研究

    • 中图分类号: P954

    Landslide Susceptibility Assessment by Applying the Coupling Method of Radial Basis Neural Network and Adaboost: A Case Study from the Three Gorges Reservoir Area

    • 摘要: 准确的滑坡易发性评价结果是滑坡风险评价的重要基础.为提升滑坡易发性评价精度,以三峡库区龙驹坝为例,选取坡度等10个因子构建滑坡易发性评价指标体系,应用频率比方法定量分析各指标与滑坡发育的关系.在此基础上,随机选取70%/30%的滑坡数据作为训练/测试样本,应用径向基神经网络和Adaboost集成学习耦合模型(RBNN-Adaboost),径向基神经网络和逻辑回归模型分别开展易发性评价.结果显示:水系距离、坡度等是滑坡发育的主控因素;RBNN-Adaboost耦合模型的预测精度最高(0.820),优于RBNN模型和LR模型的0.781和0.748.Adaboost集成算法能进一步提升模型的预测性能,所提出的耦合模型结合了两者的优点,具有更强的预测能力,是一种可靠的滑坡易发性评价模型.

       

    • 图  1  径向基神经网络结构

      Fig.  1.  The structure of radical basis neural network

      图  2  RBNN-Adaboost耦合模型流程图

      Fig.  2.  The flow chart of the RBNN-Adaboost method

      图  3  (a) 三峡库区地图和(b)研究区高程及滑坡分布图

      Fig.  3.  The map of Three Gorges reservoir area (a) and the landslide distribution map with elevation (b)

      图  4  堆积层滑坡野外调查现场

      Fig.  4.  Field investigation site of colluvial landslide

      图  5  滑坡指标分布图

      a.高程;b.坡度;c.坡向;d.径流强度指数;e.地形湿度指数;f.地层岩性;g.斜坡结构;h.构造距离;i.水系距离;j.道路距离;A~F意义见附表 2

      Fig.  5.  Landslide causal factors of the study area

      图  6  非滑坡样本空间分布

      Fig.  6.  The distribution of non-landslide samples

      图  7  滑坡易发性分级图

      a. RBNN-Adaboost模型;b.RBNN模型;c. LR模型

      Fig.  7.  The susceptibility maps

      图  8  ROC精度曲线

      a.训练样本;b.测试样本

      Fig.  8.  ROC curves of the three used models

    • [1] Bai, S.B., Wang, J., Lü, G.N., et al., 2010.GIS-Based Logistic Regression for Landslide Susceptibility Mapping of the Zhongxian Segment in the Three Gorges Area, China.Geomorphology, 115(1-2):23-31. https://doi.org/10.1016/j.geomorph.2009.09.025
      [2] Bui, D.T., Ho, T.C., Pradhan, B., et al., 2016.GIS-Based Modeling of Rainfall-Induced Landslides Using Data Mining-Based Functional Trees Classifier with AdaBoost, Bagging, and MultiBoost Ensemble Frameworks.Environmental Earth Sciences, 75(14):1101. https://doi.org/10.1007/s12665-016-5919-4
      [3] Cao, Y., Yin, K.L., Zhou, C., et al., 2020.Establishment of Landslide Groundwater Level Prediction Model Based on GA-SVM and Influencing Factor Analysis.Sensors, 20(3):845. https://doi.org/10.3390/s20030845
      [4] Corominas, J., Westen, C.V., Frattini, P., et al., 2014.Recommendations for the Quantitative Analysis of Landslide Risk.Bulletin of Engineering Geology and the Environment, 73(2):209-263. https://doi.org/10.1007/s10064-013-0538-8
      [5] Fell, R., Corominas, J., Bonnard, C., et al., 2008.Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning.Engineering Geology, 102(3-4):85-98. https://doi.org/10.1016/j.enggeo.2008.03.022
      [6] Feng, H.J., Zhou, A.G., Yu, J.J., et al., 2016.A Comparative Study on Plum-Rain-Triggered Landslide Susceptibility Assessment Models in West Zhejiang Province.Earth Science, 41(3):403-415(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.032
      [7] Freund, Y., Schapire, R.E., 1997.A Decision-Theoretic Generalization of Online Learning and an Application to Boosting.Journal of Computer and System Sciences, 55(1):119-139. https://doi.org/10.1006/jcss.1997.1504
      [8] Guo, Z.Z., Yin, K.L., Fu, S., et al., 2019.Evaluation of Landslide Susceptibility Based on GIS and WOE-BP Model.Earth Science, 44(12):4299-4312(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.555
      [9] Hong, H., Chen, W., Xu, C., et al., 2016.Rainfall-Induced Landslide Susceptibility Assessment at the Chongren Area (China) Using Frequency Ratio, Certainty Factor, and Index of Entropy.Geocarto International, 32(2):139-154. https://doi.org/10.1080/10106049.2015.1130086
      [10] Li, S.L., Xu, Q., Tang, M.G., et al., 2020.Study on Spatial Distribution and Key Influencing Factors of Landslides in Three Gorges Reservoir Area.Earth Science, 45(1):341-354(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.576
      [11] Krawczyk, B., Minku, L.L., Gama, J., et al., 2017.Ensemble Learning for Data Stream Analysis:A Survey.Information Fusion, 37:132-156. https://doi.org/10.1016/j.inffus.2017.02.004
      [12] Ma, S.Y., Qiu, H.J., Hu, S., et al., 2019.Quantitative Assessment of Landslide Susceptibility on the Loess Plateau in China.Physical Geography. https://doi.org/10.1080/02723646.2019.1674559
      [13] Moore, I.D., Grayson, R.B., Ladson, A.R., 1991.Digital Terrain Modelling:A Review of Hydrological, Geomorphological, and Biological Applications.Hydrological Processes, 5(1):3-30. https://doi.org/10.1002/hyp.3360050103
      [14] Paisitkriangkrai, S., Shen, C.H., van den Hengel, A., 2016.Pedestrian Detection with Spatially Pooled Features and Structured Ensemble Learning.IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(6):1243-1257. https://doi.org/10.1109/tpami.2015.2474388
      [15] Pham, B.T., Bui, D.T., Prakash, I., et al., 2017.Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS.Catena, 149:52-63. https://doi.org/10.1016/j.catena.2016.09.007
      [16] Qiu, H.J., Cao, M.M., Liu, W., et al., 2014.The Susceptibility Assessment of Landslide and Its Calibration of the Models Based on Three Different Models.Scientia Geographica Sinica, 34(1):110-115(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201401016
      [17] Shi, J.S., Zhang, Y.S., Dong, C., et al., 2005.Based Landslide Hazard Zonation of the New Badong County Site.Acta Geoscientica Sinica, 26(3):275-282(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200503014
      [18] Wang, J., Guo, J., Wang, W.D., et al., 2012.Application and Comparison of Weighted Linear Combination Model and Logistic Regression Model in Landslide Susceptibility Mapping.Journal of Central South University (Science and Technology), 43(5):1932-1939(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zngydxxb201205050
      [19] Wang, J.J., Yin, K.L., Xiao, L.L., 2014.Landslide Susceptibility Assessment Based on GIS and Weighted Information Value:A Case Study of Wanzhou District, Three Gorges Reservoir.Chinese Journal of Rock Mechanics and Engineering, 33(4):797-808(in Chinese with English abstract).
      [20] Xu, Q., Li, W.L., Dong, X.J., et al., 2017.The Xinmocun Landslide on June 24, 2017 in Maoxian, Sichuan:Characteristics and Failure Mechanism.Chinese Journal of Rock Mechanics and Engineering, 36(11):2612-2628(in Chinese with English abstract).
      [21] Yin, K.L., Zhu, L.F., 2001.Landslide Hazard Zonation and Application of GIS.Earth Science Frontiers, 8(2):279-284(in Chinese with English abstract). doi: 10.1080-014311698215865/
      [22] Yu, L.B., Cao, Y., Zhou, C., et al., 2019.Landslide Susceptibility Mapping Combining Information Gain Ratio and Support Vector Machines:A Case Study from Wushan Segment in the Three Gorges Reservoir Area, China.Applied Sciences, 9(22):4756. https://doi.org/10.3390/app9224756
      [23] Zhang, J., Yin, K.L., Wang, J.J., et al., 2016.Evaluation of Landslide Susceptibility for Wanzhou District of Three Gorges Reservoir Chinese Journal of Rock Mechanics and Engineering, 35(2):284-296(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201602009
      [24] Zhang, R.L., Meng, H., Lian, J.F., et al., 2010.Landslide Susceptibility Assessment by Probability Ratio Model Based on GIS.Earth Science Frontiers, 17(6):291-297(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201006039
      [25] Zhou, C., 2018.Landslide Identification and Prediction with the Application of Time Series InSAR (Dissertation).China University of Geosciences, Wuhan(in Chinese with English abstract).
      [26] Zhou, C., Yin, K.L., Cao, Y., et al., 2015.Displacement Prediction of Step-Like Landslide Based on the Response of Inducing Factors and Support Vector Machine.Chinese Journal of Rock Mechanics and Engineering, 34(Suppl.2):4132-4139(in Chinese with English abstract).
      [27] Zhou, C., Yin, K.L., Cao, Y., et al., 2016.Application of Time Series Analysis and PSO-SVM Model in Predicting the Bazimen Landslide in the Three Gorges Reservoir, China.Engineering Geology, 204:108-120. https://doi.org/10.1016/j.enggeo.2016.02.009
      [28] Zhou, C., Yin, K.L., Cao, Y., et al., 2018.Landslide Susceptibility Modeling Applying Machine Learning Methods:A Case Study from Longju in the Three Gorges Reservoir Area, China.Computers and Geosciences, 112:23-37. https://doi.org/10.1016/j.cageo.2017.11.019
      [29] Zięba, M., Tomczak, S.K., Tomczak, J.M., 2016.Ensemble Boosted Trees with Synthetic Features Generation in Application to Bankruptcy Prediction.Expert Systems with Applications, 58:93-101. https://doi.org/10.1016/j.eswa.2016.04.001
      [30] 冯杭建, 周爱国, 俞剑君, 等, 2016.浙西梅雨滑坡易发性评价模型对比.地球科学, 41(3):403-415. doi: 10.3799/dqkx.2016.032
      [31] 郭子正, 殷坤龙, 付圣, 等, 2019.基于GIS与WOE-BP模型的滑坡易发性评价.地球科学, 44(12):4299-4312. doi: 10.3799/dqkx.2018.555
      [32] 李松林, 许强, 汤明高, 等, 2020.三峡库区滑坡空间发育规律及其关键影响因子.地球科学, 45(1):341-354. doi: 10.3799/dqkx.2017.576
      [33] 邱海军, 曹明明, 刘闻, 等, 2014.基于三种不同模型的区域滑坡灾害敏感性评价及结果检验研究.地理科学, 34(1):110-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201401016
      [34] 石菊松, 张永双, 董诚, 等, 2005.基于GIS技术的巴东新城区滑坡灾害危险性区划.地球学报, 26(3):275-282. http://d.old.wanfangdata.com.cn/Periodical/dqxb200503014
      [35] 王佳佳, 殷坤龙, 肖莉丽, 2014.基于GIS和信息量的滑坡灾害易发性评价:以三峡库区万州区为例.岩石力学与工程学报, 33(4):797-808. http://d.old.wanfangdata.com.cn/Periodical/yslxygcxb201404018
      [36] 王进, 郭靖, 王卫东, 等, 2012.权重线性组合与逻辑回归模型在滑坡易发性区划中的应用与比较.中南大学学报(自然科学版), 43(5):1932-1939. http://d.old.wanfangdata.com.cn/Periodical/zngydxxb201205050
      [37] 许强, 李为乐, 董秀军, 等, 2017.四川茂县叠溪镇新磨村滑坡特征与成因机制初步研究.岩石力学与工程学报, 36(11):2612-2628. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201711002
      [38] 殷坤龙, 朱良峰, 2001.滑坡灾害空间区划及GIS应用研究.地学前缘, 8(2):279-284. http://d.old.wanfangdata.com.cn/Periodical/dxqy200102010
      [39] 张俊, 殷坤龙, 王佳佳, 等, 2016.三峡库区万州区滑坡灾害易发性评价研究.岩石力学与工程学报, 35(2):284-296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxygcxb201602009
      [40] 张若琳, 孟晖, 连建发, 等, 2010.基于GIS的概率比率模型的滑坡易发性评价.地学前缘, 17(6):291-297. http://d.old.wanfangdata.com.cn/Periodical/dxqy201006039
      [41] 周超, 2018.集成时间序列InSAR技术的滑坡早期识别与预测研究(博士学位论文).武汉: 中国地质大学.
      [42] 周超, 殷坤龙, 曹颖, 等, 2015.基于诱发因素响应与支持向量机的阶跃式滑坡位移预测.岩石力学与工程学报, 34(增刊2):4132-4139.
    • dqkx-45-6-1865-Table1-5.pdf
    • 加载中
    图(8)
    计量
    • 文章访问数:  1426
    • HTML全文浏览量:  200
    • PDF下载量:  111
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-02
    • 刊出日期:  2020-06-15

    目录

      /

      返回文章
      返回