Genetic Mechanism of Allogenic Migrated Sequence Stratigraphic Architecture in Gaobei Area of Nanpu Sag and Its Significance for Sedimentation
-
摘要: 受到区域性幕式构造活动的影响,南堡凹陷高北地区沙河街组时期发育典型的“异迁移”型层序地层构型.充分利用钻井、测井和高分辨率三维地震等资料,运用层序地层学和沉积盆地分析相关理论和方法,系统地研究了“异迁移”型层序构型的特征和成因机制.结果表明,南堡凹陷高北地区沙河组为3个二级层序、7个三级层序(SQ1~SQ7),在地震剖面上呈现出独特的“跷跷板式”交替增厚的横向叠加特征.其中,SQ1~SQ2层序主要发育于盆地西侧,SQ3~SQ4层序在盆地两侧均匀发育,SQ5~SQ7层序主要发育于盆地东侧.多重因素相互叠加形成了这种独特的层序构型:(1)幕式运动造成边界断层活动性发生东西转换,从而导致层序沉积中心自西向东大范围迁移;(2)不同时期板块活动引起区域应力场的方向发生顺时针旋转,使得控凹断层由早期的NW-SE向逐渐变为N-S向;(3)不同类型的断层组合样式也影响着沉积中心发育的位置和规模,从而导致了研究区沙河街组时期层序发生大范围的迁移.“异迁移”型层序在侧向迁移过程中,不同层序内发育的沉积相特征和充填样式均发生自西向东规律性的转移,提出“异迁移”型层序构型成因机制的研究可以更好地为幕式构造活动背景下陆相断陷湖盆沉积层序演化提供新的思路和见解.
-
关键词:
- 南堡凹陷 /
- 高北地区 /
- 幕式构造活动 /
- “异迁移”型层序构型 /
- 沉积
Abstract: Due to the effect of regional episodic tectonic activity, typical allogenic migrated sequence stratigraphic architecture is developed in the Shahejie Formation in Gaobei area of Nanpu sag. Based on the drilling, logging and high-resolution 3D seismic data, the characteristics and genetic mechanism of allogenic migrated sequence stratigraphic architecture are systematically studied, using structural sedimentology and sequence stratigraphy theories and methods. The results show that Shahejie Formation in the Gaobei area of Nanpu sag can be divided into three second-level sequences, which can be subdivided into seven third-level sequences(from SQ1 to SQ7). The SQ1-SQ7 sequences of Shahejie Formation present a continuous lateral stacking patterns of "see-saw" alternating thickening in the seismic profile. Among them, SQ1-SQ2 sequences are mainly developed in the west side of the basin, SQ3-SQ4 sequences are evenly developed on both sides of the basin, and SQ5-SQ7 sequences are mainly developed in the east side of the basin. Multiple factors result in this unique sequence architecture. (1) Episodic movement causes east-west differences in boundary fault activity, which leads to a large scale migration of sedimentary center from west to east.(2) The direction of the regional stress field caused by plate activities in different periods rotates clockwise, making the subsag controlling fault gradually change from the NW-SE direction in the early stage to the N-S direction.(3) Different types of fault assemblage patterns affect the location and scale of depositional center development, and thus control the migration and evolution of allogenic sequence stratigraphic architecture. In the process of lateral migration, the characteristics of sedimentary facies and filling patterns under the control of sequence stratigraphic units in different transition stages all move from west to east regularly. It is concluded that research on the genetic mechanism of allogenic migrated sequence stratigraphic architecture can provide new insights into the evolution of lacustrine rift basin sedimentary sequence under the background of episodic tectonic activity. -
图 1 南堡凹陷高北地区构造纲要(a~c)和地层格架图(d)
A-A'剖面位置见图 1c所示
Fig. 1. Structure outline (a-c) and stratigraphic framework map (d) of the Gaobei area
图 10 高北地区各洼陷断层组合样式分类表(剖面位置见图 1c)
Fig. 10. Classification of structural styles of all subsags in Gaobei area
-
[1] Deibert, J.E., Camilleri, P.A., 2006. Sedimentologic and Tectonic Origin of an Incised-Valley-Fill Sequence along an Extensional Marginal-Lacustrine System in the Basin and Range Province, United States:Implications for Predictive Models of the Location of Incised Valleys.AAPG Bulletin, 90(2):209-235. https://doi.org/10.1306/09140505028 [2] Deng, H.W., Guo, J.Y., Wang, R.J., et al., 2008. Tectono-sequence Stratigraphic Analysis in Continental Faulted Basins.Earth Science Frontiers, 15(2):1-7(in Chinese with English abstract). https://www.researchgate.net/publication/248597721_Tectono-Sequence_Stratigraphic_Analysis_in_Continental_Faulted_Basins [3] Fan, X.S., 2015.Tectonic Characteristics of the Third Number of Shahejie Formation and Tectonic Effects on Sedimentary System and Reservoir Forming in Gaoliu Region of Nanpu Sag (Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [4] Feng, Y.L., Jiang, S., Hu, S.Y., et al., 2016.Sequence Stratigraphy and Importance of Syndepositional Structural Slope-Break for Architecture of Paleogene Syn-Rift Lacustrine Strata, Bohai Bay Basin, E.China. Marine and Petroleum Geology, 69:183-204. https://doi.org/10.1016/j.marpetgeo.2015.10.013 [5] Feng, Y.L., Li, S.T., Xie, X.N., 2000. Dynamics of Sequence Generation and Sequence Stratigraphic Model in Continental Rift Subsidence Basin.Earth Science Frontiers, 7(3):119-132(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200003013 [6] Gu, J.Y., Guo, B.C., Zhang, X.Y., 2005. Sequence Stratigraphic Framework and Model of the Continental Basins in China.Petroleum Exploration and Development, 32(5):11-15(in Chinese with English abstract). [7] Guan, H., Zhu, X.M., 2008. Sequence Framework and Sedimentary Facies of Ed Formation in Paleogene, Nanpu Sag, Bohai Bay Basin.Acta Sedimentologica Sinica, 26(5):730-736(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200805003 [8] Ji, Y.L., Zhang, S.W., Wang, Y.S., et al., 2008. The Relationship between the Scales of Petroleum Collective System and the Scales of Sequence Boundary.Acta Sedimentologica Sinica, 26(4):617-623(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB200804012.htm [9] Jiang, H., Wang, H., Lin, Z.L., et al., 2009. Periodic Rifting Activity and Its Controlling on Sedimentary Filling of Paleogene Period in Nanpu Sag.Acta Sedimentologica Sinica, 27(5):976-982(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200905021 [10] Lin, C.S., Liu, J.Y., Zhang, Y.Z., et al., 2005. Sequence Stratigraphy and Tectono-Stratigraphic Analysis of Tectonically Active Basins:A Case Study on the Cenozoic-Mesozoic Lacustrine Basins in China.Earth Science Frontiers, 12(4):365-374(in Chinese with English abstract). [11] Liu, H.L., Mei, L.F., Shi, H.S., et al., 2018.Rift Style Controlled by Basement Attribute and Regional Stress in Zhu I Depression, Pearl River Mouth Basin.Earth Science, 62(3):1-17(in Chinese with English abstract). [12] Liu, H.R., Zhu, H.T., Shi, H.S., et al., 2015. Migrated Sequence Stratigraphic Architecture and Its Geological Significance in Huizhou Depression, Pearl River Mouth Basin.Earth Science, 40(5):840-850(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201505006 [13] Liu, K.X., Gan, H.J., Chen, S., et al., 2019. Evolution of Sedimentary System of Continental Faulted Lacustrine Basin under High-Precision Sequence Framework:A Case from the Third Member of Dongying Formation in Laoyemiao Area, Nanpu Sag.Geological Science and Technology Information, 38(3):88-102(in Chinese with English abstract). [14] Wang, H., Jiang, H., Lin, Z.L., et al., 2011. Relations between Synsedimentary Tectonic Activity and Sedimentary Framework of Dongying Formation in Nanpu Sag.Journal of Earth Sciences and Environment, 33(1):70-77(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201101009 [15] Wang, H., Zhao, S.E., Lin, Z.L., et al., 2012. The Key Control Factors and Its Petroleum and Geological Significance of Extra-Thick Deposition in Dongying Formation, Nanpu Sag.Earth Science Frontiers, 19(1):108-120(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201201015 [16] Wu, K.Q., Wu, J.F., Liu, L.F., et al., 2014. Tectonic Transport and Its Impact on Hydrocarbon Accumulation:Two Cases of Bodong and Miaoxi Sag.China Offshore Oil and Gas, 26(2):6-11(in Chinese with English abstract). [17] Xia, B., Lü, B.F., Wu, G.G., et al., 2007. The Cenozoic Tectonic Transport and Its Control on the Source Rock in the Northern Sourth China Sea.Natural Gas Geoscience, 18(5):629-634(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx200705001 [18] Xu, A.N., Dong, Y.X., Zou, C.N., et al., 2008. Division and Evaluation of Oil-Gas Prolific Zones for Litho-Stratigraphic Reservoirs in the Nanpu Sag.Petroleum Exploration and Development, 35(3):272-280(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200803002 [19] Zhao, R., Chen, S., Wang, H., et al., 2019. Intense Faulting and Downwarping of Nanpu Sag in the Bohai Bay Basin, Eastern China:Response to the Cenozoic Stagnant Pacific Slab.Marine and Petroleum Geology, 109:819-838. https://doi.org/10.1016/j.marpetgeo.2019.06.034 [20] Zhou, H.M., Wei, Z.W., Cao, Z.H., et al., 2000.Relationship between Formation, Evolution and Hydrocarbon in Nanpu Sag.Oil & Gas Geology, 21 (4):345-349(in Chinese with English abstract). [21] Zhou, Y.H., Lan, Z.Q., Feng, J.W., et al., 2018.Simulation of Multi-Phase Tectonic Stress Superimposition and Fault Evolution in the Nanpu Depression.Geology and Exploration, 54(4):772-780(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201804010 [22] Zhu, H.T., Li, S., Liu, H.R., et al., 2016. The Types and Implication of Migrated Sequence Stratigraphic Architecture in Continental Lacustrine Rift Basin:An Example from the Paleogene Wenchang Formation of Zhu I Depression, Pearl River Mouth Basin.Earth Science, 41(3):361-372(in Chinese with English abstract). [23] Zhu, H.T., Liu, K.Y., Zhu, X.M., et al., 2018.Varieties of Sequence Stratigraphic Configurations in Continental Basins.Earth Science, 43(3):770-785(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201803008 [24] 邓宏文, 郭建宇, 王瑞菊, 等, 2008.陆相断陷盆地的构造层序地层分析.地学前缘, 15(2):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200802001 [25] 范雪松, 2015.南堡凹陷高柳地区沙三段构造特征及其对沉积与成藏的控制(硕士学位论文).北京: 中国地质大学(北京). [26] 冯有良, 李思田, 解习农, 2000.陆相断陷盆地层序形成动力学及层序地层模式.地学前缘, 7(3):119-132. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy200003013 [27] 顾家裕, 郭彬程, 张兴阳, 2005.中国陆相盆地层序地层格架及模式.石油勘探与开发, 32(5):11-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200505002 [28] 管红, 朱筱敏, 2008.南堡凹陷东营组层序地层格架与沉积体系.沉积学报, 26(5):730-736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200805003 [29] 纪友亮, 张善文, 王永诗, 等, 2008.断陷盆地油气汇聚体系与层序地层格架之间的关系研究.沉积学报, 26(4):617-623. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200804010 [30] 姜华, 王华, 林正良, 等, 2009.南堡凹陷古近纪幕式裂陷作用及其对沉积充填的控制.沉积学报, 27(5):976-982. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200905021 [31] 林畅松, 刘景彦, 张英志, 等, 2005.构造活动盆地的层序地层与构造地层分析:以中国中、新生代构造活动湖盆分析为例.地学前缘, 12(4):365-374. [32] 刘海伦, 梅廉夫, 施和生, 等, 2018.珠江口盆地珠一坳陷裂陷结构:基底属性与区域应力联合制约.地球科学, 62(3):1-17. [33] 刘浩冉, 朱红涛, 施和生, 等, 2015.珠江口盆地惠州凹陷迁移型层序特征及其意义.地球科学, 40(5):840-850. doi: 10.3799/dqkx.2015.068 [34] 刘可行, 甘华军, 陈思, 等, 2019.高精度层序格架下的陆相断陷湖盆沉积体系演化:以南堡凹陷老爷庙地区东营组三段为例.地质科技情报, 38(3):88-102. [35] 王华, 姜华, 林正良, 等, 2011.南堡凹陷东营组同沉积构造活动性与沉积格局的配置关系研究.地球科学与环境学报, 33(1):70-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xagcxyxb201101009 [36] 王华, 赵淑娥, 林正良, 等, 2012.南堡凹陷东营组巨厚堆积的关键控制要素及其油气地质意义.地学前缘, 19(1):108-120. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201201015 [37] 吴克强, 吴景富, 刘丽芳, 等, 2014.构造迁移及其对油气成藏的影响:以渤海渤东、庙西凹陷为例.中国海上油气, 26(2):6-11. [38] 夏斌, 吕宝凤, 吴国干, 等, 2007.南海北部新生代盆地构造迁移及其对烃源岩的制约作用.天然气地球科学, 18(5):629-634. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx200705001 [39] 徐安娜, 董月霞, 邹才能, 等, 2008.南堡凹陷岩性-地层油气藏区带划分与评价.石油勘探与开发, 35(3):272-280. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf200803002 [40] 周海民, 魏忠文, 曹中宏, 等, 2000.南堡凹陷的形成演化与油气的关系.石油与天然气地质, 21(4):345-349. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syytrqdz200004015 [41] 周延豪, 兰志勤, 冯建伟, 等, 2018.南堡地区多期构造应力叠加模拟及断裂演化研究.地质与勘探, 54(4):772-780. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzykt201804010 [42] 朱红涛, 李森, 刘浩冉, 等, 2016.陆相断陷湖盆迁移型层序构型及意义:以珠Ⅰ坳陷古近系文昌组为例.地球科学, 41(3):361-372. doi: 10.3799/dqkx.2016.028 [43] 朱红涛, 刘可禹, 朱筱敏, 等, 2018.陆相盆地层序构型多元化体系.地球科学, 43(3):770-785. doi: 10.3799/dqkx.2018.906