[1] |
Alam, R. , McPhedran, K. , 2019. Applications of Biological Sulfate Reduction for Remediation of Arsenic—A Review. Chemosphere, 222: 932-944. https://doi.org/10.1016/j.chemosphere.2019.01.194
|
[2] |
Bostick, B. C. , Fendorf, S. , 2003. Arsenite Sorption on Troilite (FeS) and Pyrite (FeS2). Geochimica et Cosmochimica Acta, 67(5): 909-921. https://doi.org/10.1016/S0016-7037(02)01170-5
|
[3] |
Burnol, A. , Garrido, F. , Baranger, P. , et al. , 2007. Decoupling of Arsenic and Iron Release from Ferrihydrite Suspension under Reducing Conditions: A Biogeochemical Model. Geochemical Transactions, 8: 12. https://doi.org/10.1186/1467-4866-8-12
|
[4] |
Burton, E. D. , Johnston, S. G. , Bush, R. T. , 2011. Microbial Sulfidogenesis in Ferrihydrite-Rich Environments: Effects on Iron Mineralogy and Arsenic Mobility. Geochimica et Cosmochimica Acta, 75(11): 3072-3087. https://doi.org/10.1016/j.gca.2011.03.001
|
[5] |
Burton, E. D. , Johnston, S. G. , Planer-Friedrich, B. , 2013. Coupling of Arsenic Mobility to Sulfur Transformations during Microbial Sulfate Reduction in the Presence and Absence of Humic Acid. Chemical Geology, 343: 12-24. https://doi.org/10.1016/j.chemgeo.2013.02.005
|
[6] |
Buschmann, J. , Berg, M. , 2009. Impact of Sulfate Reduction on the Scale of Arsenic Contamination in Groundwater of the Mekong, Bengal and Red River Deltas. Applied Geochemistry, 24(7): 1278-1286. https://doi.org/10.1016/j.apgeochem.2009.04.002
|
[7] |
Coleman, M. L. , Hedrick, D. B. , Lovley, D. R. , et al. , 1993. Reduction of Fe(III) in Sediments by Sulphate-Reducing Bacteria. Nature, 361(6411): 436-438. https://doi.org/10.1038/361436a0
|
[8] |
Deng, Y. M. , Wang, Y. X. , Li, H. J. , et al. , 2015. Seasonal Variation of Arsenic Speciation in Shallow Groundwater from Endemic Arsenicosis Area in Jianghan Plain. Earth Science, 40(11): 1876-1886 (in Chinese with English abstract). http://www.researchgate.net/publication/288228393_Seasonal_variation_of_arsenic_speciation_in_shallow_groundwater_from_endemic_arsenicosis_area_in_Jianghan_Plain
|
[9] |
Deng, Y. M. , Zheng, T. L. , Wang, Y. X. , et al. , 2018. Effect of Microbially Mediated Iron Mineral Transformation on Temporal Variation of Arsenic in the Pleistocene Aquifers of the Central Yangtze River Basin. Science of the Total Environment, 619-620: 1247-1258. https://doi.org/10.1016/j.scitotenv.2017.11.166
|
[10] |
Duan, Y. H. , Gan, Y. Q. , Wang, Y. X. , et al. , 2017. Arsenic Speciation in Aquifer Sediment under Varying Groundwater Regime and Redox Conditions at Jianghan Plain of Central China. The Science of the Total Environment, 607-608: 992-1000. https://doi.org/10.1016/j.scitotenv.2017.07.011
|
[11] |
Fendorf, S. , Michael, H. A. , van Geen, A. , 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science, 328(5982): 1123-1127. https://doi.org/10.1126/science.1172974
|
[12] |
Fu, Y. H. , Qin, Z. H. , Yu, W. B. , et al. , 2018. Nanomineral-Aqueous Solution Interfacial Processes. Earth Science, 43(5): 1408-1424 (in Chinese with English abstract). http://www.researchgate.net/publication/326345898_Nanomineral-Aqueous_Solution_Interfacial_Processes?_sg=-GHzjV0bPRQFp8Mzbs6ayHDWFLqZ7APETmosh4SVzRmZ2a9j4ANHmW58E2nkec7-6FJt1xFu7dzijp4
|
[13] |
Gan, Y. Q. , Wang, Y. X. , Duan, Y. H. , et al. , 2014. Hydrogeochemistry and Arsenic Contamination of Groundwater in the Jianghan Plain, Central China. Journal of Geochemical Exploration, 138: 81-93. https://doi.org/10.1016/j.gexplo.2013.12.013
|
[14] |
Gao, J. , Zheng, T. L. , Deng, Y. M. , et al. , 2017. Indigenous Iron-Reducing Bacteria and Their Impacts on Arsenic Release in Arsenic-Affected Aquifer in Jianghan Plain. Earth Science, 42(5): 716-726 (in Chinese with English abstract). http://www.researchgate.net/publication/318836281_Indigenous_Iron-Reducing_Bacteria_and_Their_Impacts_on_Arsenic_Release_in_Arsenic-Affected_Aquifer_in_Jianghan_Plain
|
[15] |
Guo, H. M. , Ni, P. , Jia, Y. F. , et al. , 2014. Types, Chemical Characteristics and Genesis of Geogenic High-Arsenic Groundwater in the World. Earth Science Frontiers, 21(4): 1-12 (in Chinese with English abstract). http://d.wanfangdata.com.cn/periodical/dxqy201404001
|
[16] |
Guo, H. M. , Zhou, Y. Z. , Jia, Y. F. , et al. , 2016. Sulfur Cycling-Related Biogeochemical Processes of Arsenic Mobilization in the Western Hetao Basin, China: Evidence from Multiple Isotope Approaches. Environmental Science & Technology, 50(23): 12650-12659. https://doi.org/ 10.1021/acs.est.6b03460
|
[17] |
Hassan, Z. , Sultana, M. , van Breukelen, B. M. , et al. , 2015. Diverse Arsenic- and Iron-Cycling Microbial Communities in Arsenic-Contaminated Aquifers Used for Drinking Water in Bangladesh. FEMS Microbiology Ecology, 91(4): fiv026. https://doi.org/10.1093/femsec/fiv026
|
[18] |
Huang, F. G. , Jia, S. Y. , Liu, Y. , et al. , 2015. Reductive Dissolution of Ferrihydrite with the Release of As(V) in the Presence of Dissolved S(-II). Journal of Hazardous Materials, 286: 291-297. https://doi.org/10.1016/j.jhazmat.2014.12.035
|
[19] |
Jong, T. , Parry, D. L. , 2003. Removal of Sulfate and Heavy Metals by Sulfate Reducing Bacteria in Short-Term Bench Scale Upflow Anaerobic Packed Bed Reactor Runs. Water Research, 37(14): 3379-3389. https://doi.org/10.1016/s0043-1354(03)00165-9
|
[20] |
Kocar, B. D. , Borch, T. , Fendorf, S. , 2010. Arsenic Repartitioning during Biogenic Sulfidization and Transformation of Ferrihydrite. Geochimica et Cosmochimica Acta, 74(3): 980-994. https://doi.org/10.1016/j.gca.2009.10.023
|
[21] |
Kwon, M. J. , Boyanov, M. I. , Antonopoulos, D. A. , et al. , 2014. Effects of Dissimilatory Sulfate Reduction on FeIII (Hydr) Oxide Reduction and Microbial Community Development. Geochimica et Cosmochimica Acta, 129: 177-190. https://doi.org/10.1016/j.gca.2013.09.037
|
[22] |
Li, P. , Jiang, Z. , Wang, Y. H. , et al. , 2017. Analysis of the Functional Gene Structure and Metabolic Potential of Microbial Community in High Arsenic Groundwater. Water Research, 123: 268-276. https://doi.org/10.1016/j.watres.2017.06.053
|
[23] |
Li, P. , Li, B. , Webster, G. , et al. , 2014. Abundance and Diversity of Sulfate-Reducing Bacteria in High Arsenic Shallow Aquifers. Geomicrobiology Journal, 31(9): 802-812. https://doi.org/10.1080/01490451.2014.893181
|
[24] |
Li, Y. L. , Vali, H. , Yang, J. , et al. , 2006. Reduction of Iron Oxides Enhanced by a Sulfate-Reducing Bacterium and Biogenic H2S. Geomicrobiology Journal, 23(2): 103-117. https://doi.org/10.1080/01490450500533965
|
[25] |
Lu, Z. J. , Deng, Y. M. , Du, Y. , et al. , 2017. EEMs Characteristics of Dissolved Organic Matter and Their Implication in High Arsenic Groundwater of Jianghan Plain. Earth Science, 42(5): 771-782 (in Chinese with English abstract).
|
[26] |
McArthur, J. M. , Banerjee, D. M. , Hudson-Edwards, K. A. , et al. , 2004. Natural Organic Matter in Sedimentary Basins and Its Relation to Arsenic in Anoxic Ground Water: The Example of West Bengal and Its Worldwide Implications. Applied Geochemistry, 19(8): 1255-1293. https://doi.org/10.1016/j.apgeochem.2004.02.001
|
[27] |
Ouyang, X. X. , Zhang, G. P. , Li, H. X. , et al. , 2014. Removal of Antimony in Synthetic Wastewater by Sulfate-Reducing Bacteria. Earth and Environment, 42(5): 663-668 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDQ201405013.htm
|
[28] |
Pi, K. F. , Wang, Y. X. , Postma, D. , et al. , 2018. Vertical Variability of Arsenic Concentrations under the Control of Iron-Sulfur-Arsenic Interactions in Reducing Aquifer Systems. Journal of Hydrology, 561: 200-210. https://doi.org/10.1016/j.jhydrol.2018.03.049
|
[29] |
Saalfield, S. L. , Bostick, B. C. , 2009. Changes in Iron, Sulfur, and Arsenic Speciation Associated with Bacterial Sulfate Reduction in Ferrihydrite-Rich Systems. Environmental Science & Technology, 43(23): 8787-8793. https://doi.org/10.1021/es901651k
|
[30] |
Smedley, P. L. , Kinniburgh, D. G. , 2002. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Applied Geochemistry, 17(5): 517-568. https://doi.org/10.1016/s0883-2927(02)00018-5
|
[31] |
Sun, J. , Quicksall, A. N. , Chillrud, S. N. , et al. , 2016. Arsenic Mobilization from Sediments in Microcosms under Sulfate Reduction. Chemosphere, 153: 254-261. https://doi.org/10.1016/j.chemosphere.2016.02.117
|
[32] |
Teclu, D. , Tivchev, G. , Laing, M. , et al. , 2008. Bioremoval of Arsenic Species from Contaminated Waters by Sulphate-Reducing Bacteria. Water Research, 42(19): 4885-4893. https://doi.org/10.1016/j.watres.2008.09.010
|
[33] |
Wang, J. N. , Zeng, X. C. , Zhu, X. B. , et al. , 2017. Sulfate Enhances the Dissimilatory Arsenate-Respiring Prokaryotes-Mediated Mobilization, Reduction and Release of Insoluble Arsenic and Iron from the Arsenic-Rich Sediments into Groundwater. Journal of Hazardous Materials, 339: 409-417. https://doi.org/10.1016/j.jhazmat.2017.06.052
|
[34] |
Wang, S. F. , He, X. Y. , Pan, R. R. , et al. , 2016. The Effect of Microbial Sulfidogenesis on the Stability of As-Fe Coprecipitate with Low Fe/As Molar Ratio under Anaerobic Conditions. Environmental Science and Pollution Research, 23(8): 7267-7277. https://doi.org/10.1007/s11356-015-5927-z
|
[35] |
Wang, X. M. , Yang, K. G. , Sun, S. F. , et al. , 2011. The Structure and Composition of Ferrihydrite and Its Environmental Geochemical Behaviors. Earth Science Frontiers, 18(2): 339-347 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201102037.htm
|
[36] |
Yu, F. , Wan, J. F. , Zhao, Y. G. , et al. , 2016. Factors Influencing Arsenic Removal by Sulfate-Reducing Bacteria. Chinese Journal of Environmental Engineering, 10(7): 3898-3904 (in Chinese with English abstract). http://www.researchgate.net/publication/305540225_Factors_influencing_arsenic_removal_by_sulfate-reducing_bacteria
|
[37] |
Zheng, T. L. , Deng, Y. M. , Wang, Y. X. , et al. , 2019. Seasonal Microbial Variation Accounts for Arsenic Dynamics in Shallow Alluvial Aquifer Systems. Journal of Hazardous Materials, 367: 109-119. https://doi.org/10.1016/j.jhazmat.2018.12.087
|
[38] |
邓娅敏, 王焰新, 李慧娟, 等, 2015. 江汉平原砷中毒病区地下水砷形态季节性变化特征. 地球科学, 40(11): 1876-1886. doi: 10.3799/dqkx.2015.168
|
[39] |
傅宇虹, 覃宗华, 于文彬, 等, 2018. 纳米矿物-水溶液界面过程. 地球科学, 43(5): 1408-1424. doi: 10.3799/dqkx.2018.401
|
[40] |
高杰, 郑天亮, 邓娅敏, 等, 2017. 江汉平原高砷地下水原位微生物的铁还原及其对砷释放的影响. 地球科学, 42(5): 716-726. doi: 10.3799/dqkx.2017.059
|
[41] |
郭华明, 倪萍, 贾永锋, 等, 2014. 原生高砷地下水的类型、化学特征及成因. 地学前缘, 21(4): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201404002.htm
|
[42] |
鲁宗杰, 邓娅敏, 杜尧, 等, 2017. 江汉平原高砷地下水中DOM三维荧光特征及其指示意义. 地球科学, 42(5): 771-782. doi: 10.3799/dqkx.2017.065
|
[43] |
欧阳小雪, 张国平, 李海霞, 等, 2014. 用硫酸盐还原菌去除废水中锑的实验研究. 地球与环境, 42(5): 663-668. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDQ201405013.htm
|
[44] |
王小明, 杨凯光, 孙世发, 等, 2011. 水铁矿的结构、组成及环境地球化学行为. 地学前缘, 18(2): 339-347. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201102037.htm
|
[45] |
余飞, 万俊锋, 赵雅光, 等, 2016. 硫酸盐还原菌SRB除砷的影响因素. 环境工程学报, 10(7): 3898-3904. https://www.cnki.com.cn/Article/CJFDTOTAL-HJJZ201607084.htm
|