Segmentation Features of Geomorphology and Sedimentary Structure of Zhongjian Canyon
-
摘要: 中建海底峡谷具有分段性,但分段的关键地貌特征、各段沉积充填及其控制因素缺乏精细描述和系统论证.综合利用高分辨率二维和三维地震资料,结合水深地貌数据,对中建海底峡谷地貌及沉积特征进行了详细分析,总结了其南北段沉积过程的主控因素.中建海底峡谷呈NW向顺直展布于广乐隆起与西沙隆起之间,以华光礁附近的地貌高点为拐点被分为南北两段.中建海底峡谷北段沉积体系包括重力流沉积(水道、席状沉积、滑塌体)和底流沉积(漂积体、环槽、谷槽),南段以重力流水道和海底扇为主.北段沉积体系受底流和重力流交互作用控制,底流自中中新世开始出现,改造重力流水道,使其出现侧向迁移或翼部不对称现象,上新世以后重力流作用减弱,底流作用增强,沉积物波和漂积体广泛发育;峡谷南段水道表现出侵蚀-沉积-废弃的沉积旋回,未见底流沉积现象.相对海平面变化导致碳酸盐生产率变化影响物源供应,从而控制水道沉积演化,碳酸盐台地的“高位溢流”作用决定水道在高水位时发育.Abstract: The Zhongjian Canyon is segmented, but the key geomorphic features of the segmentation, the sedimentary filling of each segment and its controlling factors lack detailed description and systematic demonstration. The integrated analysis of high-resolution 2D/3D seismic data and bathymetric data were used to study the geomorphology and sedimentary features of the Zhongjian Canyon, and the main controlling factors of the sedimentation process in both of the north and south segmentations of the Zhongjian Canyon are summarized. The Zhongjian Canyon extends in NW direction between the Guangle and Xisha uplifts, a knick point as the high point near the Huaguang reef separates the Zhongjian Canyon into southern and northern segmentations. The sedimentary system in the northern segmentation of the Zhongjian Canyon consists of gravity flow deposits (channels, sheets and slumps) and bottom current deposits (drifters, moats and troughs), and the northern segmentation is dominated by gravity channels and submarine fans. Sedimentary system of the northern segmentation is controlled by the interaction between bottom currents and gravity flows, of which the bottom currents came out in Middle Miocene, reworking the gravity channels, leading to migration of the axes or asymmetry wings; gravity flows became weakened while bottom currents strengthened after Pliocene, and sediment waves and drift bodies are widely developed. The channel in the southern segmentation of the canyon shows a depositional cycle of erosion-deposition-abandonment, and no bottom flow deposition was observed. The relative sea level changes, leading to the change of carbonate productivity, affect the provenance supply, so the highstand shedding of carbonate platform promotes the development of channel at high sea level.
-
Key words:
- geomorphology /
- sedimentary feature /
- bottom current /
- gravity flow /
- Zhongjian Canyon /
- northern South China Sea /
- marine geology
-
图 1 南海西北陆缘水深地形图
据Chen et al.(2014)、Zhu et al.(2010)修改
Fig. 1. Bathytopographic map of the northwestern margin of the South China Sea
图 10 中建海底峡谷沉积体平面展布示意图
底图为中中新世古地貌图.黑色虚线表示可能的底流流向,据Sun et al.(2017)修改
Fig. 10. Sketch map of the sedimentary systems in the Zhongjian Canyon
表 1 中建海底峡谷各段剖面形态学参数统计
Table 1. Morphology parameter statistics of different sections of the Zhongjian Canyon
剖面号 横截面形态 宽度(km) 下切深度(m) 宽深比 3c V型 28 150 186.67 3d U型 26 80 328.75 3e UV型 17 50 340.00 3f UV型 18 62 289.60 3g U型 20 76 267.11 -
[1] Betzler, C. , Fürstenau, J. , Lüdmann, T. , et al. , 2013. Sea-Level and Ocean-Current Control on Carbonate-Platform Growth, Maldives, Indian Ocean. Basin Research, 25(2): 172-196. https://doi.org/10.1111/j.1365-2117.2012.00554.x [2] Chen, H. , Xie, X. N. , Mao, K. N. , et al. , 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z [3] Chen, H. , Xie, X. N. , van Rooij, D. , et al. , 2014. Depositional Characteristics and Processes of Alongslope Currents Related to a Seamount on the Northwestern Margin of the Northwest Sub-Basin, South China Sea. Marine Geology, 355: 36-53. https://doi.org/10.1016/j.margeo.2014.05.008 [4] Cronin, B. T. , Akhmetzhanov, A. M. , Mazzini, A. , et al. , 2005. Morphology, Evolution and Fill: Implications for Sand and Mud Distribution in Filling Deep-Water Canyons and Slope Channel Complexes. Sedimentary Geology, 179(1-2): 71-97. https://doi.org/10.1016/j.sedgeo.2005.04.013 [5] Fenner, P. , Kelling, G. , Stanley, D. J. , 1971. Bottom Currents in Wilmington Submarine Canyon. Nature Physical Science, 229(2): 52-54. https://doi.org/10.1038/physci229052a0 [6] Glaser, K. S. , Droxler, A. W. , 1991. High Production and Highstand Shedding from Deeply Submerged Carbonate Banks, Northern Nicaragua Rise. SEPM Journal of Sedimentary Research, 61(1): 128-142. https://doi.org/10.1306/d42676a4-2b26-11d7-8648000102c1865d [7] Gong, C. L. , Wang, Y. M. , Zhu, W. L. , et al. , 2013. Upper Miocene to Quaternary Unidirectionally Migrating Deep-Water Channels in the Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 97(2): 285-308. https://doi.org/10.1306/07121211159 [8] Hall, R. , 2002. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 20(4): 353-431. https://doi.org/10.1016/s1367-9120(01)00069-4 [9] He, Y. , Zhong, G. F. , Wang, L. L. , et al. , 2014. Characteristics and Occurrence of Submarine Canyon-Associated Landslides in the Middle of the Northern Continental Slope, South China Sea. Marine and Petroleum Geology, 57: 546-560. https://doi.org/10.1016/j.marpetgeo.2014.07.003 [10] Klaucke, I. , Masson, D. G. , Kenyon, N. H. , et al. , 2004. Sedimentary Processes of the Lower Monterey Fan Channel and Channel-Mouth Lobe. Marine Geology, 206(1-4): 181-198. https://doi.org/10.1016/j.margeo.2004.02.006 [11] Lewis, K. B. , Pantin, H. M. , 2002. Channel-Axis, Overbank and Drift Sediment Waves in the Southern Hikurangi Trough, New Zealand. Marine Geology, 192(1-3): 123-151. https://doi.org/10.1016/s0025-3227(02)00552-2 [12] Li, J. , Li, W. , Alves, T. M. , et al. , 2019. Different Origins of Seafloor Undulations in a Submarine Canyon System, Northern South China Sea, Based on Their Seismic Character and Relative Location. Marine Geology, 413: 99-111. https://doi.org/10.1016/j.margeo.2019.04.007 [13] Liu, C. S. , Lundberg, N. , Reed, D. L. , et al. , 1993. Morphological and Seismic Characteristics of the Kaoping Submarine Canyon. Marine Geology, 111(1-2): 93-108. https://doi.org/10.1016/0025-3227(93)90190-7 [14] Liu, J. , Su, M. , Qiao, S. H. , et al. , 2016. Forming Mechanism of the Slope-Confined Submarine Canyons in the Baiyun Sag, Pearl River Mouth Basin. Acta Sedimentologica Sinica, 34(5): 940-950(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201605013.htm [15] Lu, Y. T. , Li, W. , Wu, S. G. , et al. , 2018. Morphology, Architecture, and Evolutionary Processes of the Zhongjian Canyon between Two Carbonate Platforms, South China Sea. Interpretation, 6(4): 1-15. https://doi.org/10.1190/int-2017-0222.1 [16] Lüdmann, T. , Wong, H. K. , Berglar, K. , 2005. Upward Flow of North Pacific Deep Water in the Northern South China Sea as Deduced from the Occurrence of Drift Sediments. Geophysical Research Letters, 32(5): L05614. https://doi.org/10.1029/2004gl021967 [17] Luo, W. D. , Zhou, J. , Li, X. J. , et al. , 2018. Morphology and Structure and Evolution of West Basin Canyon, South China Sea. Earth Science, 43(6): 2172-2183(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201806029.htm [18] Migeon, S. , Savoye, B. , Babonneau, N. , et al. , 2004. Processes of Sediment-Wave Construction along the Present Zaire Deep-Sea Meandering Channel: Role of Meanders and Flow Stripping. Journal of Sedimentary Research, 74(4): 580-598. https://doi.org/10.1306/091603740580 [19] Mulder, T. , Ducassou, E. , Hanquiez, V. , et al. , 2019. Contour Current Imprints and Contourite Drifts in the Bahamian Archipelago. Sedimentology, 66(4): 1192-1221. https://doi.org/10.1111/sed.12587 [20] Posamentier, H. W., Vail, P. R., 1988. Eustatic Controls on Clastic Deposition II: Sequence and Systems Tract Models. In: Wilgus, C.K., Hastings, B.S., Posamentier, H.W., et al., eds., Sea-Level Changes. SEPM Society for Sedimentary Geology, Tulsa. https://doi.org/10.2110/pec.88.01.0125 [21] Puga-Bernabéu, Á. , Webster, J. M. , Beaman, R. J. , et al. , 2011. Morphology and Controls on the Evolution of a Mixed Carbonate-Siliciclastic Submarine Canyon System, Great Barrier Reef Margin, North-Eastern Australia. Marine Geology, 289(1-4): 100-116. https://doi.org/10.1016/j.margeo.2011.09.013 [22] Puga-Bernabéu, Á. , Webster, J. M. , Beaman, R. J. , et al. , 2013. Variation in Canyon Morphology on the Great Barrier Reef Margin, North-Eastern Australia: The Influence of Slope and Barrier Reefs. Geomorphology, 191: 35-50. https://doi.org/10.1016/j.geomorph.2013.03.001 [23] Schwarz, E. , Arnott, R. W. C. , 2007. Anatomy and Evolution of a Slope Channel-Complex Set (Neoproterozoic Isaac Formation, Windermere Supergroup, Southern Canadian Cordillera): Implications for Reservoir Characterization. Journal of Sedimentary Research, 77(2): 89-109. https://doi.org/10.2110/jsr.2007.015 [24] Su, M. , Xie, X. N. , Li, J. L. , et al. , 2011. Gravity Flow on Slope and Abyssal Systems in the Qiongdongnan Basin, Northern South China Sea. Acta Geologica Sinica, 85(1): 243-253. https://doi.org/10.1111/j.1755-6724.2011.00394.x [25] Su, M. , Xie, X. N. , Xie, Y. H. , et al. , 2014. The Segmentations and the Significances of the Central Canyon System in the Qiongdongnan Basin, Northern South China Sea. Journal of Asian Earth Sciences, 79: 552-563. https://doi.org/10.1016/j.jseaes.2012.12.038 [26] Sun, M. J. , Gao, H. F. , Li, X. J. , 2018. Sedimentary Characteristics and Origin of Taitung Canyon in Eastern Waters of Taiwan Island. Earth Science, 43(10): 3709-3718(in Chinese with English abstract). http://www.researchgate.net/publication/329983998_Sedimentary_Characteristics_and_Origin_of_Taitung_Canyon_in_Eastern_Waters_of_Taiwan_Island [27] Sun, Q. L. , Cartwright, J. , Lüdmann, T. , et al. , 2017. Three-Dimensional Seismic Characterization of a Complex Sediment Drift in the South China Sea: Evidence for Unsteady Flow Regime. Sedimentology, 64(3): 832-853. https://doi.org/10.1111/sed.12330 [28] Tian, J. , Wu, S. G. , Lü, F. , et al. , 2015. Middle Miocene Mound-Shaped Sediment Packages on the Slope of the Xisha Carbonate Platforms, South China Sea: Combined Result of Gravity Flow and Bottom Current. Deep Sea Research Part II: Topical Studies in Oceanography, 122: 172-184. https://doi.org/10.1016/j.dsr2.2015.06.016 [29] Tian, J. , Wu, S. G. , Wang, D. W. , et al. , 2016. Characteristics of Periplatform Channels of the Xisha Area, Northern South China Sea. Marine Sciences, 40(6): 101-109(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-HYKX201606015.htm [30] Tournadour, E. , Mulder, T. , Borgomano, J. , et al. , 2017. Submarine Canyon Morphologies and Evolution in Modern Carbonate Settings: The Northern Slope of Little Bahama Bank, Bahamas. Marine Geology, 391: 76-97. https://doi.org/10.1016/j.margeo.2017.07.014 [31] Viana, A. R. , Faugères, J. C. , Stow, D. A. V. , 1998. Bottom-Current-Controlled Sand Deposits: A Review of Modern Shallow- to Deep-Water Environments. Sedimentary Geology, 115(1-4): 53-80. https://doi.org/10.1016/s0037-0738(97)00087-0 [32] Wang, P. X. , Li, Q. Y. , Tian, J. , 2014. Pleistocene Paleoceanography of the South China Sea: Progress over the Past 20 Years. Marine Geology, 352: 381-396. https://doi.org/10.1016/j.margeo.2014.03.003 [33] Webster, J. M. , Beaman, R. J. , Puga-Bernabéu, Á. , et al. , 2012. Late Pleistocene History of Turbidite Sedimentation in a Submarine Canyon off the Northern Great Barrier Reef, Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 331-332: 75-89. https://doi.org/10.1016/j.palaeo.2012.02.034 [34] Wu, J. P. , Wang, Y. M. , Wang, H. R. , et al. , 2012. The Interaction between Deep-Water Turbidity and Bottom Currents: A Review. Geological Review, 58(6): 1110-1120(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201206013.htm [35] Wu, S. G. , Yang, Z. , Wang, D. W. , et al. , 2014. Architecture, Development and Geological Control of the Xisha Carbonate Platforms, Northwestern South China Sea. Marine Geology, 350: 71-83. https://doi.org/10.1016/j.margeo.2013.12.016 [36] Zhu, M. Z. , Graham, S. , Pang, X. , et al. , 2010. Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic Circulation, Northern South China Sea. Marine and Petroleum Geology, 27(1): 307-319. https://doi.org/10.1016/j.marpetgeo.2009.05.005 [37] 刘杰, 苏明, 乔少华, 等, 2016. 珠江口盆地白云凹陷陆坡限制型海底峡谷群成因机制探讨. 沉积学报, 34(5): 940-950. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201605013.htm [38] 罗伟东, 周娇, 李学杰, 等, 2018. 南海海盆盆西峡谷的形态与结构及形成演化. 地球科学, 43(6): 2172-2183. doi: 10.3799/dqkx.2017.615 [39] 孙美静, 高红芳, 李学杰, 2018. 台湾东部海域台东峡谷沉积特征及其成因. 地球科学, 43(10): 3709-3718. doi: 10.3799/dqkx.2017.515 [40] 田洁, 吴时国, 王大伟, 等, 2016. 西沙海域碳酸盐台地周缘水道沉积体系. 海洋科学, 40(6): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-HYKX201606015.htm [41] 吴嘉鹏, 王英民, 王海荣, 等, 2012. 深水重力流与底流交互作用研究进展. 地质论评, 58(6): 1110-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201206013.htm