Biostratigraphic Characteristics of Black Graptolite Shale in Wufeng Formation and Longmaxi Formation in Jianshi Area of West Hubei
-
摘要: 鄂西建始地区五峰组-龙马溪组黑色页岩发育,尚未建立古生物地层序列.基于建地1井及湘鄂渝地区23个穿越奥陶系和志留系钻井、剖面资料,研究建始地区五峰组-龙马溪组黑色页岩笔石序列,分析湘鄂水下高地演化模式及其对页岩气成藏影响.建地1井从奥陶系Dicellograptus complexus(WF2)带至志留系Stimulograptus sedgwickii(LM8)带,共包含8个笔石带,缺失了Perculpto gr. perculptus(LM1)、Akidograptus ascensus(LM2)和Parakido gr.acuminatus(LM3)三个笔石带,表明建始地区在赫南特期至鲁丹早期处在湘鄂水下高地范围内.受控于全球海平面变化和广西运动双重作用,湘鄂水下高地整体呈现出自凯迪期至鲁丹早期不断隆升、影响范围逐渐扩大,鲁丹中晚期再逐渐回缩的演化模式;在其范围内普遍缺失WF3-LM4部分笔石带富有机质页岩,导致页岩气藏抗构造破坏能力差,勘探风险较大.Abstract: The black shale of Wufeng Formation of Upper Ordovician and Longmaxi Formation of Lower Silurian is developed in Jianshi area of West Hubei, but no paleontological stratigraphic sequence has been established. Based on drill core of Well JD-1, the top and bottom boundaries and black graptolite shale sequences from the Wufeng Formation to the Longmaxi Formation in Jianshi area are studied. The evolution model of Xiang'e underwater highland during the Ordovician-Silurian boundary period and its influence on shale gas exploration are discussed. Well JD-1 occured eight graptolitic biozones between Late Ordovican (Katian) Dicellograptus complexus Zone and Llandovery (Aeronian) Stimulograptus sedgwicki Zone, missing three graptolitic biozones, including the Perculpto gr. perculptus Zone, Akidograptus ascensus Zone and Parakido gr. acuminatus Zone. It is confirmed that Jianshi area was located in the Xiang'e underwater highland during the period from the Hernant to the early Ludan. The Xiang'e underwater highland is developed in the border area of Hubei and Hunan provinces, which is mainly controlled by global sea level change and the Guangxi movement caused by agglomeration and ablation of Gondwana continental glacier, and the overall situation shows that the evolution is constantly rising from the Kaidi to the Early Rhuddanian, the influence scope is gradually expanding, and then gradually shrinks back in the Early-Middle Rhuddanian. The results suggest that the ability of shale gas reservoirs to resist structural damage is weak and the exploration risk is high in Jianshi area, due to the lack of organic-rich shale from WF3 to LM4.
-
Key words:
- Well JD-1 /
- Jianshi area /
- Wufeng Formation /
- Longmaxi Formation /
- Xiang'e underwater highland /
- shale gas /
- petroleum geology
-
图 2 扬子区五峰组(WF)、龙马溪组(LM)和南江组(N)的笔石带划分
据陈旭等(2015). WF1为Dicellograptus complanatus带;各笔石带底界的同位素年龄值引自Gradstein et al.(2012)
Fig. 2. Graptolite biozonation of the Wufeng and Longmaxi formations in Yangtze region
图 4 建地1井典型笔石化石图版
a. Rectograptus abbreviatus(Elles and Wood), 1 777.7 m; b. Normalograptus extraordinarius(Sobolevskaya), 1 772.9 m; c. Anticostia sp., 1 772.5 m; d. Normalograptusex gr. angustus(Perner), 1 774.9 m; e.Rectograptus cf. socialis(Lapworth); f. Climacograptus tatianae Keller, 1 778.5 m; g. Monograptus gemmatus(Barrande), 1 763.1 m; h.Huttagraptus praestrachani(Hutt and Rickards), 1 771.3 m; i. Rastrites longispinus(Perner), 1 770.3 m; j. Appendispinograptus supernus(Elles and Wood), 1 775.9 m; k.Appendispinograptus supernus(Elles and Wood), 1 777.5 m; l. Normalograptus sp., 1 773.1 m; m. Normalograptus biformis(Wang), 1 769.1 m; n. Coronograptus gregarius(Lapworth), 1 770.1 m; o. Rectograptus cf. socialis(Lapworth), 1 778.95 m; p.Stimulograptus cf. sedgwickii(Portlock), 1 761.9 m; q.Pribylograptus incommodus(Tornquist), 1 765.1 m
Fig. 4. Typical graptolite fossils of Well JD-1
图 6 奥陶-志留纪之交湘鄂水下高地的范围
据陈旭等(2018)修编. 剖面点:1.湖北巴东沿渡河; 2.湖北恩施太阳河; 3.湖北巴东思阳桥; 4.湖北秭归新滩; 5.湖北宜昌黄花场; 6.湖北宜昌王家湾; 7.湖北长阳大堰; 8.五峰小河村; 9.湖北五峰沙子垭; 10.湖北宜都潘家湾; 11. 湖北五峰石灰厂; 12.湖北五峰桥河; 13.湖北五峰湾潭; 14.湖北五峰卸甲坪; 15.湖南石门龙池河; 16.湖北荆州西斋; 17.湖北鹤峰官屋; 18.湖北宣恩高罗; 19.湖北来凤三堡岭; 20.湖北咸丰干河沟; 21.湖南张家界温塘; 22.湖南慈利二坊坪; 23.湖南常德九溪.剖面点化石资料2、3、18、19樊隽轩等(2012),7、8、9、10、11、12、13、17王怿等(2013),4、5、6、14、15、16、20、21、22、23陈旭等(2018). S. 志留纪;O. 奥陶纪
Fig. 6. The range of Xiang'e underwater highland from Ordovician to Silurian
表 1 湘鄂西地区五峰-龙马溪组地层发育特征与页岩气显示情况
Table 1. Stratigraphic characteristics and shale gas display in Wufeng and Longmaxi formations in the western region of Hunan and Hubei provinces
序号 井名 构造类型 地层发育特征 底界埋深
(m)TOC≥2.0%页岩
厚度(m)页岩气显示情况 1 鄂宜页2井 单斜构造 WF2-LM4带发育完整 2 722.0 21.0 水平井日产气量3.15×104 m3 2 咸地2井 残留向斜 WF2-LM4带发育完整 1 520.0 28.0 现场解吸含气量最高3.50 m3/t,平均2.56 m3/t 3 鄂秭页1井 单斜构造 WF2-LM4带发育完整 2 060.0 20.4 现场解吸含气量最高4.20 m3/t,平均3.00 m3/t 4 桑页1井 单斜构造 缺失WF4-LM4带 1 595.0 12.0 现场解吸含气量平均0.10 m3/t 5 建地1井 背斜 缺失LM1-LM3带 1 782.3 24.5 现场解吸含气量最高0.92 m3/t 6 河页1井 背斜 缺失WF4-LM4带 2 165.0 12.6 测井解释含气量最高1.40 m3/t 7 来地1井 残留向斜 缺失WF3-LM3带 948.0 18.0 现场解吸含气量最高1.72 m3/t 8 湘龙地1井 残留向斜 缺失WF3-LM3带 1 504.0 11.0 现场解吸含气量平均0.43 m3/t 9 永页1井 残留向斜 缺失WF4-LM3带 532.0 19.0 现场解吸含气量最高0.59 m3/t -
[1] Brenchley, P. J., Marshall, J. D., Carden, G. A. F., et al., 1994. Bathymetric and Isotopic Evidence for a Short-Lived Late Ordovician Glaciation in a Greenhouse Period. Geology, 22(4): 295-298. https://doi.org/10.1130/0091-7613(1994)0220295:baiefa>2.3.co;2 doi: 10.1130/0091-7613(1994)0220295:baiefa>2.3.co;2 [2] Chen, X., Chen, Q., Zhen, Y. Y., et al., 2018. Circumjacent Distribution Pattern of the Lungmachian Graptolitic Black Shale(Early Silurian) on the Yichang Uplift and Its Peripheral Region. Scientia Sinica Terrae, 48(9): 1198-1206(in Chinese). doi: 10.1360/N072017-00445 [3] Chen, X., Fan, J. X., Wang, W. H., et al., 2017. Stage-Progressive Distribution Pattern of the Lungmachi Black Graptolitic Shales from Guizhou to Chongqing, Central China. Scientia Sinica Terrae, 47(6): 720-732(in Chinese). doi: 10.1360/N072016-00186 [4] Chen, X., Fan, J. X., Zhang, Y. D., et al., 2015. Subdivision and Delineation of the Wufeng and Lungmachi Black Shales in the Subsurface Areas of the Yangtze Platform. Journal of Stratigraphy, 39(4): 351-358(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DCXZ201504001.htm [5] Chen, X., Rong, J. Y., Li, Y., et al., 2004. Facies Patterns and Geography of the Yangtze Region, South China, through the Ordovician and Silurian Transition. Palaeogeography, Palaeoclimatology, Palaeoecology, 204(3-4): 353-372. https://doi.org/10.1016/s0031-0182(03)00736-3 [6] Chen, X., Rong, J. Y., Zhou, Z. Y., et al., 2001. The Central Guizhou and Yichang Uplifts, Upper Yangtze Region, between Ordovician and Silurian. Chinese Science Bulletin, 46(12): 1052-1056(in Chinese). doi: 10.1360/csb2001-46-12-1052 [7] Chen, X. H., Zhang, B. M., Zhang, G. T., et al., 2018. High Shale Gas Industry Flow Obtained from the Ordovician Wufeng Formation and the Silurian Longmaxi Formation of Yichang Area, Hubei Province. Geology in China, 45(1): 199-200(in Chinese with English abstract). [8] Dong, D. Z., Shi, Z. S., Guan, Q. Z., et al., 2018. Progress, Challenges and Prospects of Shale Gas Exploration in the Wufeng-Longmaxi Reservoirs in the Sichuan Basin. Natural Gas Industry, 38(4): 67-76(in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_natural-gas-industry_thesis/0201218476547.html [9] Fan, J. X., Melchin, M. J., Chen, X., et al., 2011. Biostratigraphy and Geography of the Ordovician-Silurian Lungmachi Black Shales in South China. Scientia Sinica Terrae, 42(1): 130-139(in Chinese). [10] Finnegan, S., Bergmann, K., Eiler, J. M., et al., 2011. The Magnitude and Duration of Late Ordovician-Early Silurian Glaciation. Science, 331(6019): 903-906. https://doi.org/10.1126/science.1200803 [11] Ghienne, J. F., 2003. Late Ordovician Sedimentary Environments, Glacial Cycles, and Post-Glacial Transgression in the Taoudeni Basin, West Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 189(3-4): 117-145. https://doi.org/10.1016/s0031-0182(02)00635-1 [12] Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., 2012. The Geologic Time Scale. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-59425-9.05001-0 [13] Guo, T. L., Zhang, H. R., 2014. Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 28-36(in Chinese with English abstract). http://www.cqvip.com/QK/90664X/201401/48354956.html [14] Guo, X. S., Hu, D. F., Li, Y. P., et al., 2017. Geological Factors Controlling Shale Gas Enrichment and High Production in Fuling Shale Gas Field. Petroleum Exploration and Development, 44(4): 481-491(in Chinese with English abstract). [15] Jin, Z. J., Hu, Z. Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1): 1-10(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/dxqy201601001 [16] Ma, X. H., Xie, J., 2018. The Progress and Prospects of Shale Gas Exploration and Exploitation in Southern Sichuan Basin, NW China. Petroleum Exploration and Development, 45(1): 161-169(in Chinese with English abstract). http://www.researchgate.net/publication/327250477_The_progress_and_prospects_of_shale_gas_exploration_and_exploitation_in_southern_Sichuan_Basin_SW_China [17] Nie, H. K., Jin, Z. J., 2016. Source Rock and Cap Rock Controls on the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation Shale Gas Accumulation in the Sichuan Basin and Its Peripheral Areas. Acta Geologica Sinica, 90(3): 1059-1060. https://doi.org/10.1111/1755-6724.12752 [18] Nie, H. K., Jin, Z. J., Bian, R. K., et al., 2016. The "Source-Cap Hydrocarbon-Controlling" Enrichment of Shale Gas in Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation of Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 37(5): 557-571(in Chinese with English abstract). [19] Nie, H. K., Jin, Z. J., Zhang, J. C., 2018. Characteristics of Three Organic Matter Pore Types in the Wufeng-Longmaxi Shale of the Sichuan Basin, Southwest China. Scientific Reports, 8(1): 7014. https://doi.org/10.1038/s41598-018-25104-5 [20] Nie, H. K., Wang, H., He, Z. L., et al., 2019. Formation Mechanism, Distribution and Exploration Prospect of Normal Pressure Shale Gas Reservoir: A Case Study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 40(2): 131-143, 164(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYXB201902001.htm [21] Rong, J. Y., 1999. Ordovician-Silurian Brachiopod Turnover in South China. Geoscience, 13(2): 194(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ199904004.htm [22] Rong, J. Y., Chen, X., Wang, Y., et al., 2011. Transition of the Central Guizhou Continent at the Turn of the Ordovician and Silurian: Evidence and Revelation. Scientia Sinica Terrae, 41(10): 1407-1415(in Chinese). doi: 10.1360/zd-2011-41-10-1407 [23] Rong, J. Y., Zhan, R. B., Xu, H. G., et al., 2010. Expansion of the Cathaysian Oldland through the Ordovician-Silurian Transition: Emerging Evidence and Possible Dynamics. Scientia Sinica Terrae, 40(1): 1-17(in Chinese). doi: 10.1360/zd2010-40-1-1 [24] Sheehan, P. M., 2001. The Late Ordovician Mass Extinction. Annual Review of Earth and Planetary Sciences, 29(1): 331-364. https://doi.org/10.1146/annurev.earth.29.1.331 [25] Sun, Y. C., 1943. Bases of the Chronological Classification with Special Reference to the Palaeozoic Stratigraphy of China. Bulletin of the Geological Society of China, 23(1-2): 35-56. https://doi.org/10.1111/j.1755-6724.1943.mp231-2003.x [26] Shi, Y. H., 2013. Assessment on Shale Gas Logging Display Interpretation from Heye No. 1 Well in Hunan-Hubei West Area. Journal of Jianghan Petroleum University of Staff and Workers, 26(4): 10-12(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSZD201304006.htm [27] Wang, C., Zhang, B. Q., Shu, Z. G., et al., 2019. Shale Lamination and Its Influence on Shale Reservoir Quality of Wufeng Formation-Longmaxi Formation in Jiaoshiba Area. Earth Science, 44(3): 972-982(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201903024.htm [28] Wang, J., Bao, H. Y., Lu, Y. Q., et al., 2019. Quantitative Characterization and Main Controlling Factors of Shale Gas Occurrence in Jiaoshiba Area, Fuling. Earth Science, 44(3): 1001-1011(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201903027.htm [29] Wang, P. W., Zou, C., Li, X. J., et al., 2018. Main Geological Controlling Factors of Shale Gas Enrichment and High Yield in Zhaotong Demonstration Area. Acta Petrolei Sinica, 39(7): 744-753(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201807002.htm [30] Wang, Y., Rong, J. Y., Zhan, R. B., et al., 2013. On the Ordovician-Silurian Boundary Strata in Southwestern Hubei, and the Yichang Uplift. Journal of Stratigraphy, 37(3): 264-274(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ201303003.htm [31] Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects(I). Petroleum Exploration and Development, 42(6): 689-701(in Chinese with English abstract). http://www.cqvip.com/main/zcps.aspx?c=1&id=666793013 [32] Zou, C. N., Gong, J. M., Wang, H. Y., et al., 2019. Importance of Graptolite Evolution and Biostratigraphic Calibration on Shale Gas Exploration. China Petroleum Exploration, 24(1): 1-6(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KTSY201901001.htm [33] Zhao, W. Z., Li, J. Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4): 499-510(in Chinese with English abstract). [34] Zhou, Z., Ren, S. M., Bao, S. J., et al., 2018. The Discovery of Tight Gas and Shale Gas in Silurian Strata in Jianshi, Hubei Province. Geology in China, 45(4): 855-856(in Chinese with English abstract). http://www.cqvip.com/QK/72537X/20181/6100196502.html [35] Zhou, Z., Zhai, G. Y., Shi, D. S., et al., 2019. Shale Gas Reservoir Geology of the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in Western Hubei and Northeastern Chongqing. Petroleum Geology & Experiment, 41(1): 1-9(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201901002.htm [36] 陈孝红, 张保民, 张国涛, 等, 2018. 湖北宜昌地区奥陶系五峰组-志留系龙马溪组获页岩气高产工业气流. 中国地质, 45(1): 199-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201801021.htm [37] 陈旭, 陈清, 甄勇毅, 等, 2018. 志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式. 中国科学: 地球科学, 48(9): 1198-1206. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201809006.htm [38] 陈旭, 樊隽轩, 王文卉, 等, 2017. 黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式. 中国科学: 地球科学, 47(6): 720-732. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201706005.htm [39] 陈旭, 樊隽轩, 张元动, 等, 2015. 五峰组及龙马溪组黑色页岩在扬子覆盖区内的划分与圈定. 地层学杂志, 39(4): 351-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201504001.htm [40] 陈旭, 戎嘉余, 周志毅, 等, 2001. 上扬子区奥陶-志留纪之交的黔中隆起和宜昌上升. 科学通报, 46(12): 1052-1056. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200112020.htm [41] 董大忠, 施振生, 管全中, 等, 2018. 四川盆地五峰组-龙马溪组页岩气勘探进展、调整和前景. 地质勘探, 38(4): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201804013.htm [42] 樊隽轩, Melchin, M. J., 陈旭, 等, 2012. 华南奥陶-志留系龙马溪组黑色页岩的生物地层学. 中国科学: 地球科学, 42(1): 130-139. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201201015.htm [43] 郭彤楼, 张汉荣, 2014. 四川盆地焦石坝页岩气田形成与富集高产模式. 石油勘探与开发, 41(1): 28-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201401003.htm [44] 郭旭升, 胡东风, 李宇平, 等, 2017. 涪陵页岩气田富集高产主控地质因素. 石油勘探与开发, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm [45] 金之钧, 胡宗全, 高波, 等, 2016. 川东南地区五峰组-龙马溪组页岩气富集与高产控制因素. 地学前缘, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm [46] 马新华, 谢军, 2018. 川南地区页岩气勘探开发进展及发展前景. 石油勘探与开发, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htm [47] 聂海宽, 金之钧, 边瑞康, 等, 2016. 四川盆地及其周缘上奥陶统五峰组-下志留统龙马溪组页岩气"源-盖控藏"富集. 石油学报, 37(5): 557-571. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201605001.htm [48] 聂海宽, 汪虎, 何治亮, 等, 2019. 常压页岩气形成机制、分布规律及勘探前景: 以四川盆地及其周缘五峰组-龙马溪组为例. 石油学报, 40(2): 131-143, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201902001.htm [49] 戎嘉余, 1999. 华南奥陶、志留纪腕足动物群的更替: 兼论奥陶纪末冈瓦纳冰川活动的影响. 现代地质, 13(2): 194. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ902.014.htm [50] 戎嘉余, 陈旭, 王怿, 等, 2011. 奥陶-志留纪之交黔中古陆的变迁: 证据与启示. 中国科学: 地球科学, 41(10): 1407-1415. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201110003.htm [51] 戎嘉余, 詹仁斌, 许红根, 等, 2010. 华夏古陆于奥陶-志留纪之交的扩展证据和机制探索. 中国科学: 地球科学, 40(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201001001.htm [52] 石元会, 2013. 湘鄂西地区河页1井页岩气录井显示解释评价. 江汉石油职工大学学报, 26(4): 10-12. https://www.cnki.com.cn/Article/CJFDTOTAL-JSZD201304006.htm [53] 王超, 张柏桥, 舒志国, 等, 2019. 焦石坝地区五峰组-龙马溪组页岩纹层发育特征及其储集意义. 地球科学, 44(3): 972-982. doi: 10.3799/dqkx.2019.018 [54] 王进, 包汉勇, 陆亚秋, 等, 2019. 涪陵焦石坝地区页岩气赋存特征定量表征及其主控因素. 地球科学, 44(3): 1001-1011. doi: 10.3799/dqkx.2018.388 [55] 王鹏万, 邹辰, 李娴静, 等, 2018. 昭通示范区页岩气富集高产的地质主控因素. 石油学报, 39(7): 744-753. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201807002.htm [56] 王怿, 戎嘉余, 詹仁斌, 等, 2013. 鄂西南奥陶系-志留系交界地层研究兼论宜昌上升. 地层学杂志, 37(3): 264-274. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201303003.htm [57] 邹才能, 董大忠, 王玉满, 等, 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689-701. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201506002.htm [58] 邹才能, 龚剑明, 王红岩, 等, 2019. 笔石生物演化与地层年代标定在页岩气勘探开发中的重大意义. 中国石油勘探, 24(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201901001.htm [59] 赵文智, 李建忠, 杨涛, 等, 2016. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm [60] 周志, 任收麦, 包书景, 等, 2018. 湖北建始地区志留系钻获致密砂岩气和页岩气. 中国地质, 45(4): 855-856. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201804018.htm [61] 周志, 翟刚毅, 石砥石, 等, 2019. 鄂西-渝东北地区五峰组-龙马溪组页岩气成藏地质条件分析. 石油实验地质, 41(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201901002.htm