Progressive Failure Mode and Stability Reliability of Strain-Softening Slope
-
摘要: 针对现有考虑应变软化效应的边坡渐进破坏分析模型中计算假定条件不符合实际情况的不足,以三峡库区赵树岭滑坡为研究对象,考虑地下水位波动和地震力的影响,提出用于分析多场耦合条件下应变软化边坡渐进破坏模式及稳定性可靠度的方法.结果表明,地下水位波动和地震力会不同程度地影响滑坡的渐进破坏模式和破坏概率.滑坡在145 m、175 m水位和库水位从175 m陡降为145 m三种工况下整体稳定,但分别有14.119%、20.266%和21.797%的概率发生局部渐进破坏;在烈度为Ⅶ的地震力作用下同时考虑3种蓄水工况,该滑坡分别有34.067%、38.061%和38.405%的概率发生整体渐进破坏;根据滑坡渐进破坏模式指出最佳加固位置应在沿江大道前沿.该分析方法具备可靠性,可为边坡的渐进破坏模式及稳定性评价研究提供参考.Abstract: Aiming at the shortcomings of the calculation assumptions proposed in the existing slope progressive failure analysis model considering the effect of strain-softening, the Zhaoshuling landslide in the Three Gorges Reservoir area is taken as the research object, and the influence of groundwater level fluctuations and seismic forces is considered to propose the progressive failure mode and stability reliability analysis method of strain-softening slope under multi-field coupling conditions.The results show that the groundwater level fluctuation and seismic force would affect the progressive failure mode and failure probability of the landslide to various degrees.The landslide was stable at 145 m, 175 m water level and the steeply reduced reservoir water level from 175 m to 145 m, but it had a local progressive failure probability with 14.119%, 20.266% and 21.797% respectively. And the landslide had a total progressive failure probability with 34.067%, 38.061% and 38.405% respectively under the action of seismic force with intensity VII, also three kinds of water storage conditions were considered. Moreover, according to the progressive failure mode of landslide, it is pointed out that the best reinforcement position should be at the front of Yanjiang Avenue. The analysis method is reliable and can provide a reference for the progressive failure mode and stability evaluation of slopes.
-
表 1 滑坡物理-力学参数统计值
Table 1. Statistics of landslide physical-mechanical parameters
物理参数 天然密度(kg∙m-3) 饱和密度(kg∙m-3) 2 500 2 600 力学参数 天然内聚力(MPa) 残余内聚力(MPa) 饱和内聚力(MPa) 饱和残余内聚力(MPa) 天然内摩擦系数 残余内摩擦系数 饱和内摩擦系数 饱和残余内摩擦系数 0.020 0.015 0.015 0.010 0.364 0.325 0.325 0.287 变异系数 $ {\delta }_{{\mathrm{c}}_{\mathrm{p}}} $ $ {\delta }_{{\mathrm{c}}_{\mathrm{r}}} $ $ {\delta }_{{\mathrm{c}}_{\mathrm{s}\mathrm{p}}} $ $ {\delta }_{{\mathrm{c}}_{\mathrm{s}\mathrm{r}}} $ $ {\delta }_{{\mathrm{f}}_{\mathrm{p}}} $ $ {\delta }_{{\mathrm{f}}_{\mathrm{r}}} $ $ {\delta }_{{\mathrm{f}}_{\mathrm{s}\mathrm{p}}} $ $ {\delta }_{{\mathrm{f}}_{\mathrm{s}\mathrm{r}}} $ 0.13 0.13 0.18 0.18 0.19 0.19 0.20 0.20 相关系数 $ {\rho }_{{\mathrm{c}}_{\mathrm{p}}, {\mathrm{f}}_{\mathrm{p}}}={\rho }_{{\mathrm{c}}_{\mathrm{r}}, {\mathrm{f}}_{\mathrm{r}}}={\rho }_{{\mathrm{c}}_{\mathrm{s}\mathrm{p}}, {\mathrm{f}}_{\mathrm{s}\mathrm{p}}}={\rho }_{{\mathrm{c}}_{\mathrm{s}\mathrm{t}}, {\mathrm{f}}_{\mathrm{s}\mathrm{r}}}=-0.3 $ 注:变异系数与相关系数是根据现有研究成果进行的合理取值,其实际值应通过统计分析获得. 表 2 滑坡计算工况及滑体条分情况
Table 2. Calculation conditions of landslide and slice details of sliding body
滑坡计算工况 滑体条分情况 145 m水库蓄水 145 m水库蓄水+地震作用 175 m水库蓄水 175 m水库蓄水+地震作用 175 m库水位陡降为145 m库水位 175 m库水位陡降为145 m库水位+地震作用 注:红色实线为地下水位线;库水位陡降时,不考虑坡体内孔隙水压力的消散,即假定坡体内的地下水位线与降落前相同,仅考虑库水位的变动(郑颖人等,2004). 表 3 各工况条件下滑坡峰值稳定性系数及渐进破坏路径
Table 3. Stability coefficient for peak parameters and progressive failure path of landslide under various working conditions
计算工况 峰值强度参数下滑坡稳定性系数 渐进破坏路径 145 m水库蓄水 中前部 中后部 1.217 1.322 145 m水库蓄水+地震作用 中前部 中后部 / 0.840 175 m水库蓄水 中前部 中后部 1.112 1.322 175 m水库蓄水+地震作用 中前部 中后部 / 0.840 175 m库水位陡降为145 m库水位 中前部 中后部 1.044 1.322 175 m库水位陡降为145 m库水位+地震作用 中前部 中后部 / 0.840 注:稳定性系数不唯一且小于0.840. 表 4 滑坡最大概率发生的渐进破坏事件及概率值
Table 4. Progressive failure events with maximum probability and their probability values of landslide
计算工况 渐进破坏事件 发生概率(%) 145 m水库蓄水 整体渐进破坏 2.067×10-13 局部渐进破坏:16#条块发生破坏且破坏停止传递 14.119 145 m水库蓄水+地震作用 整体渐进破坏 34.067 175 m水库蓄水 整体渐进破坏 2.796×10-11 局部渐进破坏:16#条块发生破坏且破坏停止传递 20.266 175 m水库蓄水+地震作用 整体渐进破坏 38.061 175 m库水位陡降为145 m库水位 整体渐进破坏 4.104×10-10 局部渐进破坏:20#条块发生破坏且破坏停止传递 21.797 175 m库水位陡降为145 m库水位+地震作用 整体渐进破坏 38.405 注:计算所得概率值并非真实概率值,但计算结果具备较强的参考性. -
[1] Bishop, A.W., 1967.Progressive Failure with Special Reference to the Mechanism Causing It. In: Proceedings of the Geotechnical Conference on Shear Strength Properties of Natural Soil and Rocks. Norwegian Geotechnical Institute, Oslo, 142-150. [2] Bishop, A. W. , 1971. The Influence of Progressive Failure on the Choice of the Method of Stability Analysis. Géotechnique, 21(2): 168-172. https://doi.org/10.1680/geot.1971.21.2.168 [3] Chen, G. Q. , Huang, R. Q. , Zhou, H. , et al. , 2013. Research on Progressive Failure for Slope Using Dynamic Strength Reduction Method. Rock and Soil Mechanics, 34(4): 1140-1146(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YTLX201304038.htm [4] Chen, J. H. , Li, J. L. , Xu, X. L. , et al. , 2017. Algorithm for Generation Correlative Variables and Monte Carlo Simulation of Slope Reliability. Rock and Soil Mechanics, 38(11): 3341-3346(in Chinese with English abstract). http://www.researchgate.net/publication/322338618_Algorithm_for_generation_correlative_variables_and_Monte_Carlo_simulation_of_slope_reliability [5] Chen, L. H. , Chen, Z. Y. , Liu, J. M. , 2005. Probability Distribution of Soil Strength. Rock and Soil Mechanics, 26(1): 37-40, 45(in Chinese with English abstract). http://www.researchgate.net/publication/293256313_Probability_distribution_of_soil_strength [6] Chowdhury, R. N. , Tang, W. H. , Sidi, I. , 1987. Reliability Model of Progressive Slope Failure. Géotechnique, 37(4): 467-481. https://doi.org/10.1680/geot.1987.37.4.467 [7] Fan, M. Q. , Sheng, J. B. , 1997. Cross-Correlation of Soil Strength Indicators φ, c. Chinese Journal of Geotechnical Engineering, 19(4): 100-104(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=YTGC704.016 [8] Hu, X. W. , Tang, H. M. , Liu, Y. R. , 2005. Physical Model Studies on Stability of Zhaoshuling Landslide in Area of Three Gorges Reservoir. Chinese Journal of Rock Mechanics and Engineering, 24(12): 2089-2095(in Chinese with English abstract). http://www.oalib.com/paper/1484206 [9] Jiang, S. H. , Yao, C. , Yang, J. H. , et al. , 2018. Model Correction Factor Method Based Approach for Reliability Analysis of Spatially Variable Slopes. Engineering Mechanics, 35(8): 154-161(in Chinese with English abstract). http://www.researchgate.net/publication/328651101_Model_correction_factor_method_based_approach_for_reliability_analysis_of_spatially_variable_slopes [10] Li, D. Q. , Jiang, S. H. , Zhou, C. B. , et al. , 2013. Reliability Analysis of Slopes Considering Spatial Variability of Soil Parameters Using Non-Intrusive Stochastic Finite Element Method. Chinese Journal of Geotechnical Engineering, 35(8): 1413-1422(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC201308008.htm [11] Li, D. Q. , Xiao, T. , Cao, Z. J. , et al. , 2016a. Slope Risk Assessment Using Efficient Random Finite Element Method. Rock and Soil Mechanics, 37(7): 1994-2003(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTLX201607021.htm [12] Li, D. Q. , Xiao, T. , Cao, Z. J. , et al. , 2016b. Auxiliary Slope Reliability Analysis Using Limit Equilibrium Method and Finite Element Method. Chinese Journal of Geotechnical Engineering, 38(6): 1004-1013(in Chinese with English abstract). http://www.researchgate.net/publication/305430876_Auxiliary_slope_reliability_analysis_using_limit_equilibrium_method_and_finite_element_method [13] Li, P. , Bai, J. Z. , Griffiths, D. V. , et al. , 2019. Random Finite Element Analysis for the Reliability of Loess Slopes. Journal of Earth Sciences and Environment, 41(1): 116-126(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XAGX201901011.htm [14] Li, Q., 2008.Reliability Analysis of Loess High Slope: Take Baojixia Division Project as an Example (Dissertation).Northwest A & F University, Yangling (in Chinese with English abstract). [15] Li, S. L. , Xu, Q. , Tang, M. G. , et al. , 2018. Study on Spatial Distribution and Key Influencing Factors of Landslides in Three Gorges Reservoir Area. Earth Science, 45(1): 341-354(in Chinese with English abstract). [16] Li, Y. C. , Ling, D. S. , Chen, Y. M. , et al. , 2005. Slope Stability Analysis Using Monte Carlo Technique with Fem. Chinese Journal of Rock Mechanics and Engineering, 24(11): 1933-1941(in Chinese with English abstract). http://www.researchgate.net/publication/289702087_Slope_stability_analysis_using_Monte_Carlo_technique_with_FEM [17] Liang, R. Y. , Nusier, O. K. , Malkawi, A. H. , 1999. A Reliability Based Approach for Evaluating the Slope Stability of Embankment Dams. Engineering Geology, 54(3-4): 271-285. https://doi.org/10.1016/s0013-7952(99)00017-4 [18] Lin, S. , Wang, W. , Deng, X. H. , et al. , 2019. Geophysical Observation of Typical Landslides in Three Gorges Reservoir Area and Its Significance: A Case Study of Sifangbei Landslide in Wanzhou District. Earth Science, 44(9): 3135-3146(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201909026.htm [19] Potts, D. M. , Zdravković, L. , Addenbrooke, T. I. , et al. , 2001. Finite Element Analysis in Geotechnical Engineering: Theory. Thomas Telford, London. [20] Shen, Z. J. , 2000. Theoretical Soil Mechanical. China Water & Power Press, Beijing (in Chinese). [21] Shi, X. G. , Xu, J. H. , Jiang, H. J. , et al. , 2019. Slope Stability State Monitoring and Updating of the Outang Landslide, Three Gorges Area with Time Series InSAR Analysis. Earth Science, 44(12): 4284-4292(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201912038.htm [22] Srbulov, M. M. , 1995. A Simple Method for the Analysis of Stability of Slopes in Brittle Soil. Soils and Foundations, 35(4): 123-127. https://doi.org/10.3208/sandf.35.4_123 [23] Tang, H. M. , Ma, S. Z. , Liu, Y. R. , et al. , 2002. Stability and Control Measures of Zhaoshuling Landslide, Badong County, Three Gorges Reservoir. Earth Science, 27(5): 621-625(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx200205024 [24] Tang, Z. H. , Yu, X. L. , Chai, B. , et al. , 2019. Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide. Earth Science, 1-9(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2019.960 [25] Tu, F. , 2004. Reliability of Progressive Failure of Soil Slope. Rock and Soil Mechanics, 25(1): 87-90(in Chinese with English abstract). http://www.researchgate.net/publication/292877979_Reliability_of_progressive_failure_of_soil_slope [26] Vanmarcke, E. H. , 1977a. Probabilistic Modeling of Soil Profiles. Journal of Geotechnical and Geoenvironmental Engineering, 103(11): 1227-1246. https://doi.org/10.1016/0148-9062(78)90012-8 [27] Vanmarcke, E. H. , 1977b. Reliability of Earth Slopes. Journal of the Geotechnical, 103(11): 1247-1265. https://doi.org/10.1016/0148-9062(78)90159-6 [28] Wang, Y. G. , Ren, W. Z. , Chen, H. , et al. , 2006. First-Order Second-Moment Method and Its Application in Slope Reliability Analysis. Journal of China & Foreign Highway, 26(2): 42-46(in Chinese). [29] Wu, X.M., 2006.Reliability Analysis of Progressive Failure of Homogeneous Earth Slope (Dissertation).Zhejiang University, Hangzhou (in Chinese with English abstract). [30] Xie, X. Y. , Feng, X. , Wu, X. M. , 2015. Reliability Analysis of Progressive Failure of Strain Softening Slope. Rock and Soil Mechanics, 36(S2): 679-684(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX2015S2099.htm [31] Xu, P., 2011. Reliability Study on Stability of Submerged Slide Mass in Three-Gorges Reservoir Area (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract). [32] Xue, H. B. , Dang, F. N. , Yin, X. T. , et al. , 2016. Stability Analysis Methods for Strain-softening Slopes. Chinese Journal of Geotechnical Engineering, 38(3): 570-576(in Chinese with English abstract). [33] Yang, Q. , Jiao, J. K. , Luan, M. T. , et al. , 2000. Reliability Analysis and Risk Evaluation of the Slope Engineering. Journal of Engineering Geology, 8(1): 86-90(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GCDZ200001015.htm [34] Yang, Z. Y. , Li, D. Q. , Cao, Z. J. , et al. , 2018. System Reliability of Soil Slope Using Generalized Subset Simulation. Rock and Soil Mechanics, 39(3): 957-966, 984(in Chinese with English abstract). http://www.researchgate.net/publication/327061016_System_reliability_of_soil_slope_using_generalized_subset_simulation [35] Yin, Y. P. , Wang, W. P. , 2014. Researches on Seismic Landslide Stability Analysis. Journal of Engineering Geology, 22(4): 586-600(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GCDZ201404007.htm [36] Zhang, G. , Zhang, J. M. , 2007. Stability Evaluation of Strain-Softening Slope Based on Swedish Slice Method. Rock and Soil Mechanics, 28(1): 12-16(in Chinese with English abstract). http://www.cqvip.com/QK/94551X/20071/23663872.html [37] Zheng, Y. R. , Shi, W. M. , Kong, W. X. , 2004. Calculation of Seepage Forces and Phreatic Surface under Drawdown Conditions. Chinese Journal of Rock Mechanics and Engineering, 23(18): 3203-3210(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/yslxygcxb200418031 [38] Zhu, B. , Pei, H. F. , Yang, Q. , 2019. Gaussian Process Regression-Based Response Surface Method and Reliability Analysis of Slopes. Chinese Journal of Geotechnical Engineering, 41(S1): 209-212(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTGC2019S1054.htm [39] Zhu, Y. X. , 1993. Reliability Analysis of Slope. Metallurgical Industry Press, Beijing (in Chinese). [40] 陈国庆, 黄润秋, 周辉, 等, 2013. 边坡渐进破坏的动态强度折减法研究. 岩土力学, 34(4): 1140-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201304038.htm [41] 陈将宏, 李建林, 许晓亮, 等, 2017. 相关变量生成算法及边坡可靠度Monte Carlo模拟. 岩土力学, 38(11): 3341-3346. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711034.htm [42] 陈立宏, 陈祖煜, 刘金梅, 2005. 土体抗剪强度指标的概率分布类型研究. 岩土力学, 26(1): 37-40, 45. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200501008.htm [43] 范明桥, 盛金保, 1997. 土强度指标φ, c的互相关性. 岩土工程学报, 19(4): 100-104. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC704.016.htm [44] 胡修文, 唐辉明, 刘佑荣, 2005. 三峡库区赵树岭滑坡稳定性物理模拟试验研究. 岩石力学与工程学报, 24(12): 2089-2095. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200512019.htm [45] 蒋水华, 姚池, 杨建华, 等, 2018. 基于模型修正的空间变异边坡可靠度分析方法. 工程力学, 35(8): 154-161. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201808020.htm [46] 李典庆, 蒋水华, 周创兵, 等, 2013. 考虑参数空间变异性的边坡可靠度分析非侵入式随机有限元法. 岩土工程学报, 35(8): 1413-1422. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308008.htm [47] 李典庆, 肖特, 曹子君, 等, 2016a. 基于高效随机有限元法的边坡风险评估. 岩土力学, 37(7): 1994-2003. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201607021.htm [48] 李典庆, 肖特, 曹子君, 等, 2016b. 基于极限平衡法和有限元法的边坡协同式可靠度分析. 岩土工程学报, 38(6): 1004-1013. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201606005.htm [49] 李萍, 白健忠, Griffiths, D. V. , 等, 2019. 黄土边坡可靠度的随机有限元分析. 地球科学与环境学报, 41(1): 116-126. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201901011.htm [50] 李琦, 2008. 黄土高边坡稳定可靠性分析(硕士学位论文). 杨陵: 西北农林科技大学. [51] 李松林, 许强, 汤明高, 等, 2018. 三峡库区滑坡空间发育规律及其关键影响因子. 地球科学, 45(1): 341-354. doi: 10.3799/dqkx.2017.576 [52] 李育超, 凌道盛, 陈云敏, 等, 2005. 蒙特卡洛法与有限元相结合分析边坡稳定性. 岩石力学与工程学报, 24(11): 1933-1941. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200511022.htm [53] 林松, 王薇, 邓小虎, 等, 2019. 三峡库区典型滑坡地球物理实测及其意义: 以万州区四方碑滑坡为例. 地球科学, 44(9): 3135-3146. doi: 10.3799/dqkx.2019.074 [54] 沈珠江, 2000. 理论土力学. 北京: 中国水利水电出版社. [55] 史绪国, 徐金虎, 蒋厚军, 等, 2019. 时序InSAR技术三峡库区藕塘滑坡稳定性监测与状态更新. 地球科学, 44(12): 4284-4292. doi: 10.3799/dqkx.2019.180 [56] 唐辉明, 马淑芝, 刘佑荣, 等, 2002. 三峡工程库区巴东县赵树岭滑坡稳定性与防治对策研究. 地球科学, 27(5): 621-625. http://www.earth-science.net/article/id/1175 [57] 唐朝晖, 余小龙, 柴波, 等, 2019. 顺层岩质滑坡渐进破坏进入加速的能量学判据. 地球科学, 1-9. https://doi.org/10.3799/dqkx.2019.960 [58] 涂帆, 2004. 土坡渐进破坏的可靠度. 岩土力学, 25(1): 87-90. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200401020.htm [59] 王永刚, 任伟中, 陈浩, 等, 2006. 一次二阶矩法及其在边坡可靠性分析中的应用. 中外公路, 26(2): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL200602012.htm [60] 吴晓明, 2006. 均质土坡渐进破坏可靠性分析(硕士学位论文). 杭州: 浙江大学. [61] 谢新宇, 冯香, 吴晓明, 2015. 应变软化土坡渐进破坏的可靠度分析. 岩土力学, 36(S2): 679-684. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2015S2099.htm [62] 徐平, 2011. 三峡库区涉水滑坡体稳定性的可靠度研究(博士学位论文). 西安: 长安大学. [63] 薛海斌, 党发宁, 尹小涛, 等, 2016. 应变软化边坡稳定性分析方法研究. 岩土工程学报, 38(3): 570-576. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201603026.htm [64] 杨庆, 焦建奎, 栾茂田, 等, 2000. 边坡可靠性与经济风险性分析及其应用. 工程地质学报, 8(1): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200001015.htm [65] 杨智勇, 李典庆, 曹子君, 等, 2018. 基于广义子集模拟的土坡系统可靠度分析. 岩土力学, 39(3): 957-966, 984. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201803024.htm [66] 殷跃平, 王文沛, 2014. 论滑坡地震力. 工程地质学报, 22(4): 586-600. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404007.htm [67] 张嘎, 张建民, 2007. 基于瑞典条分法的应变软化边坡稳定性评价方法. 岩土力学, 28(1): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200701003.htm [68] 郑颖人, 时卫民, 孔位学, 2004. 库水位下降时渗透力及地下水浸润线的计算. 岩石力学与工程学报, 23(18): 3203-3210. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200418038.htm [69] 朱彬, 裴华富, 杨庆, 2019. 基于高斯过程回归的响应面法及边坡可靠度分析. 岩土工程学报, 41(S1): 209-212. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1054.htm [70] 祝玉学, 1993. 边坡可靠性分析. 北京: 冶金工业出版社.