Igneous Rock Records and Genesis of the Early Jurassic Magmatic Arc in Heihe Area of Heilongjiang Province
-
摘要: 黑河地区广泛发育中生代火成岩类,但是其形成时代、不同阶段的火成岩组合、岩石成因以及形成的大地构造背景还有争议.对黑河卧牛湖一带的侵入岩开展详细的野外地质学、岩石学、地球化学、年代学等研究,以揭示岩石的时代、成因等.对卧牛湖附近产出的闪长岩及二长花岗岩开展的LA-ICP-MS锆石测年结果表明其形成于175.53±0.53 Ma和177.25±0.45 Ma,即早侏罗世.该区这一时期火成岩主要为深成相侵入岩、少量脉岩,岩石类型主要为(二长)花岗岩、花岗闪长岩及少量的二长岩类,脉岩主要为花岗质、闪长质岩脉等,是含有英云闪长岩(T1)-奥长花岗岩(T2)-花岗闪长岩(G1)的T1T2G1G2岩石组合,上述岩石在TAS图上主要是亚碱性系列,硅钾图上主要为高钾钙碱系列,Peacock指数为钙碱性或碱钙性,准铝质-过铝质,硅镁图中多为MA系列,微量元素蛛网图一般富集Rb、K、Pb等大离子亲石元素,亏损Nb、Ta、La、Ce、Ti等元素,稀土元素配分曲线为右倾型,轻稀土较陡,重稀土较平缓.上述岩石组合及其特征均指示岛弧岩浆岩的特征.结合构造环境判别认为该花岗岩类形成于与洋俯冲有关的环境,岩浆可能形成于俯冲玄武质洋壳的局部熔融并与上覆地幔楔发生过反应以及兴安弧下地壳的局部熔融,认为与北部蒙古-鄂霍次克洋的演化有关.
-
关键词:
- 黑河卧牛湖 /
- 洋俯冲 /
- 岩浆弧 /
- T1T2G1G2岩石组合 /
- 年代学
Abstract: Mesozoic igneous rocks are widely developed in Heihe area, but the age of formation, igneous rock assemblages at different stages, petrogenesis, and the geotectonic background of the formation are still controversial. This article conducts detailed field, petrology, geochemistry, and chronology studies on intrusive rocks around the Woniu Lake in Heihe area to reveal the age and genesis of the rocks. LA-ICP-MS zircon dating of diorite and monzogranite shows that they formed at 175.53±0.53 Ma and 177.25±0.45 Ma.Igneous rocks in this area during this period were mainly intrusive rocks and some dike rocks, intrusive rocks are mainly granite, granodiorite, and a small amount of monzonite, dike rocks are mainly granitic dikes and dioritic dikes.Plutonic facies rocks were T1T2G1G2 rock assemblage contained some Tonalite(T1)-Trondhjemite(T2) rocks and more Granodiorite(G1)-Granite(G2) rocks.The rock assemblage were mainly subalkaline series on SiO2-(Na2O+K2O) diagram and on SiO2-K2O diagram were mainly high-potassium calcium-alkali series, were calcium alkali or alkali calcium series on SiO2-(Na2O+K2O-CaO)diagram.They were metaluminums-peraluminous series rocks. Most of the rocks in SiO2-MgO diagram were similar to magnesium andesite(MA) series.Trace elements spider diagrams were generally enriched in LILE, such as Rb, K, Pb, depleted in Nb, Ta, La, Ce, Ti. The REE patterns were right-inclined, LREE were steeper and HREE were gentler. The rock assemblages and their characteristics all indicated the characteristics of island arc magmatic rocks. Based on the discrimination of the tectonic environment, it is considered that the rock assemblages were formed in the environment related to ocean subduction. Magma may have formed in the local melting of the subducting basaltic crust reacted with the overlying mantle wedge and the local melting of the crust under the Xing'an arc.It is considered to be related to the evolution of the northern Mongolia-Okhotsk Ocean.-
Key words:
- Woniu Lake in Heihe area /
- ocean subduction /
- magmatic arc /
- T1T2G1G2 rock assemblage /
- chronology
-
图 1 研究区大地构造位置图(a)及区域地质图(b)
据赵焕利等(2009)修改
Fig. 1. Geotectonic location map(a) and regional geological map(b) of the study area
图 4 卧牛湖岩体岩石地球化学特征
a. TAS分类图(据Eric, 1994, 图中虚线为碱性和亚碱性分界线, 据
Irvine and Baragar,1971 ); b. SiO2-K2O图解(据Peccerillo and Taylor, 1976); c. A/CNK-A/NK图解(据Maniar and Piccoli, 1989); d. SiO2-(Na2O+K2O-CaO)图解(据Frost et al., 2001);图中:A.碱性; AC.碱钙性; CA.钙碱性; C.钙性Fig. 4. Diagrams of geochemical characteristics of the rocks in Woniu Lake area
图 5 痕量元素原始地幔标准化蛛网图(a)及稀土元素球粒陨石标准化配分模式图(b)
Fig. 5. Primitive mantle normalized trace element spider diagrams(a) and chondrite-normalized REE patterns(b)
图 8 SiO2-MgO图
实线范围为实验的MA, 虚线为实验的玄武岩局部熔浆(即非MA); 点划线范围为阿留申弧MA, 双点划线为巴拿马弧MA; 上、下两条实线PQ和RS分别为HMA/MA、MA/非MA之边界, 虚线表示SiO2含量为52%, 为玄武岩与安山岩的分界线; (据邓晋福等,2018)
Fig. 8. SiO2 vs. MgO diagram
图 11 构造环境判别图解
a.Y+Nb-Rb图;b.Y+Ta-Rb图;c.Yb-Ta图;d.Y-Nb图;VAG.火山弧花岗岩;WPG.板内花岗岩;syn-COLG.同碰撞花岗岩;ORG.洋中脊玄武岩; 据Pearce(1984)
Fig. 11. Discrimination diagrams of tectonic setting
表 1 闪长岩锆石LA-ICP-MS定年分析结果
Table 1. Results of zircon LA-ICP-MS dating analysis of diorite
测点号 U Th Th/U 普通Pb校正同位素比值(±1σ) 普通Pb校正同位素年龄(Ma) (±1σ) (10-6) 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206Pb 207Pb/235U 206Pb/238U 比值 误差 比值 误差 比值 误差 比值 误差 比值 误差 比值 误差 SJF-3 01 1077 283 0.26 0.048 02 0.001 05 0.181 46 0.003 91 0.027 43 0.000 21 100 36 169 3 174 1 SJF-3 02 315 242 0.77 0.046 17 0.002 31 0.181 35 0.007 82 0.026 77 0.000 40 7 63 169 7 170 3 SJF-3 03 345 264 0.76 0.051 20 0.002 87 0.209 67 0.011 18 0.027 51 0.000 61 250 82 193 9 175 4 SJF-3 04 475 989 2.08 0.050 16 0.001 79 0.187 47 0.006 47 0.027 42 0.000 31 202 59 174 6 174 2 SJF-3 05 162 119 0.74 0.049 45 0.004 15 0.183 24 0.010 99 0.027 92 0.000 51 169 103 171 9 177 3 SJF-3 06 275 476 1.73 0.054 69 0.003 16 0.205 92 0.010 01 0.028 04 0.000 72 400 64 190 8 178 5 SJF-3 07 259 413 1.59 0.050 38 0.002 55 0.189 13 0.008 52 0.027 67 0.000 41 213 77 176 7 176 3 SJF-3 08 326 80.3 0.25 0.051 18 0.002 09 0.189 95 0.007 32 0.027 35 0.000 34 249 66 177 6 174 2 SJF-3 09 342 124 0.36 0.050 64 0.003 28 0.193 33 0.010 62 0.027 67 0.000 43 224 98 179 9 176 3 SJF-3 10 236 449 1.90 0.052 24 0.001 84 0.198 40 0.006 86 0.027 82 0.000 37 296 55 184 6 177 2 SJF-3 11 165 232 1.40 0.052 28 0.004 24 0.190 39 0.014 20 0.026 63 0.000 42 298 141 177 12 169 3 SJF-3 12 234 329 1.41 0.051 84 0.002 61 0.191 70 0.009 49 0.027 26 0.000 41 278 86 178 8 173 3 SJF-3 13 244 473 1.94 0.048 98 0.002 68 0.197 49 0.00941 0.027 98 0.000 45 147 80 183 8 178 3 SJF-3 14 560 1 033 1.84 0.047 64 0.001 49 0.184 07 0.005 32 0.027 74 0.000 34 81 45 172 5 176 2 SJF-3 15 269 316 1.17 0.050 60 0.002 08 0.193 41 0.007 71 0.028 03 0.000 38 223 67 180 7 178 2 SJF-3 16 188 294 1.56 0.049 89 0.002 59 0.189 05 0.009 29 0.027 86 0.000 41 190 86 176 8 177 3 SJF-3 17 255 222 0.87 0.050 85 0.002 85 0.193 93 0.010 03 0.028 17 0.000 39 234 94 180 9 179 2 SJF-3 18 341 603 1.77 0.050 34 0.001 98 0.188 78 0.007 02 0.027 49 0.000 31 211 65 176 6 175 2 SJF-3 19 262 162 0.62 0.047 26 0.002 51 0.188 80 0.008 76 0.027 46 0.000 51 62 68 176 7 175 3 SJF-3 20 185 227 1.23 0.048 72 0.002 10 0.186 31 0.007 84 0.027 97 0.000 40 134 71 173 7 178 2 表 2 粗粒二长花岗岩锆石LA-ICP-MS定年分析结果
Table 2. Results of zircon LA-ICP-MS dating analysis of coarse-grained monzogranite
测点号 U Th Th/U 普通Pb校正同位素比值(±1σ) 普通Pb校正同位素年龄(Ma) (±1σ) (10-6) 207Pb/206Pb 207Pb/235U 206Pb/238U 207Pb/206 Pb 207Pb/235U 206Pb/238U 比值 误差 比值 误差 比值 误差 比值 误差 比值 误差 比值 误差 SJF-5 01 746 466 0.62 0.049 48 0.001 45 0.194 33 0.005 56 0.028 60 0.000 32 171 46 180 5 182 2 SJF-5 02 877 582 0.66 0.051 76 0.001 48 0.200 98 0.005 60 0.028 24 0.000 26 275 47 186 5 180 2 SJF-5 03 1 002 577 0.58 0.051 20 0.001 21 0.199 38 0.004 73 0.028 22 0.000 27 250 37 185 4 179 2 SJF-5 04 913 623 0.68 0.050 74 0.001 37 0.195 99 0.005 34 0.027 99 0.000 27 229 45 182 5 178 2 SJF-5 05 568 313 0.55 0.050 30 0.001 91 0.196 03 0.006 54 0.027 83 0.000 39 209 51 182 6 177 2 SJF-5 06 696 434 0.62 0.048 23 0.001 78 0.186 46 0.006 17 0.027 35 0.000 36 111 53 174 5 174 2 SJF-5 07 960 501 0.52 0.051 72 0.001 50 0.201 69 0.005 25 0.027 93 0.000 37 273 36 187 4 178 2 SJF-5 08 751 409 0.54 0.050 50 0.001 38 0.193 83 0.005 21 0.027 90 0.000 29 218 43 180 4 177 2 SJF-5 09 397 377 0.95 0.048 05 0.002 29 0.184 64 0.008 44 0.027 45 0.000 41 102 76 172 7 175 3 SJF-5 10 305 195 0.64 0.051 29 0.002 18 0.197 33 0.007 97 0.028 17 0.000 40 254 66 183 7 179 3 SJF-5 11 569 315 0.55 0.052 41 0.001 88 0.204 63 0.006 84 0.028 03 0.000 40 303 50 189 6 178 3 SJF-5 12 582 313 0.54 0.052 67 0.001 56 0.201 07 0.005 79 0.027 81 0.000 35 314 43 186 5 177 2 SJF-5 13 590 340 0.58 0.048 85 0.001 86 0.185 34 0.006 51 0.027 74 0.000 29 141 62 173 6 176 2 SJF-5 14 664 380 0.57 0.050 08 0.001 58 0.193 39 0.005 82 0.028 06 0.000 30 198 50 180 5 178 2 SJF-5 15 969 566 0.58 0.052 22 0.001 50 0.201 23 0.005 44 0.028 09 0.000 25 295 45 186 5 179 2 SJF-5 17 667 477 0.72 0.048 61 0.001 77 0.183 87 0.006 63 0.027 54 0.000 30 129 64 171 6 175 2 SJF-5 18 852 527 0.62 0.049 78 0.001 46 0.188 94 0.005 23 0.027 68 0.000 28 185 46 176 4 176 2 SJF-5 19 700 399 0.57 0.049 69 0.001 55 0.188 08 0.005 70 0.027 48 0.000 27 181 52 175 5 175 2 SJF-5 20 727 411 0.57 0.049 29 0.001 60 0.186 73 0.005 80 0.027 54 0.000 29 162 53 174 5 175 2 表 3 卧牛湖岩体岩石主量元素数据(%)
Table 3. Major element datas of rocks in Wuniu Lake area
样品号 SJF-12 WNH-2 WNH-3 SJF-5 16S13 SJF-6 SJF-8 16S18 SJF-3 WNH-1 SJF-7 SJF-11 岩体 卧牛湖岩体 脉岩 岩性 细粒花岗岩 粗粒二长花岗岩 黑云母二长花岗岩 英云闪长岩 二长花岗岩 花岗闪长岩 花岗闪长岩 英云闪长岩 二长闪长岩 奥长花岗岩 花岗闪长岩 花岗闪长岩 SiO2 68.36 69.48 76.36 66.78 71.89 68.00 61.76 60.73 51.55 60.94 64.36 60.13 TiO2 0.41 0.49 0.17 0.55 0.41 0.55 0.85 0.99 1.62 0.79 0.74 0.78 Al2O3 14.69 13.60 12.05 15.58 14.28 14.46 16.18 16.97 18.31 14.17 15.48 15.22 TFe2O3 3.09 3.18 0.86 3.92 2.69 3.52 5.18 6.36 9.85 5.71 4.49 5.86 Fe2O3 1.25 1.89 FeO 1.30 4.02 MnO 0.06 0.05 0.06 0.08 0.05 0.06 0.09 0.11 0.11 0.10 0.09 0.09 MgO 1.06 1.24 0.26 1.47 0.77 1.48 2.32 2.74 4.68 3.08 1.58 3.99 CaO 2.44 1.90 0.74 3.46 1.46 2.56 4.55 5.21 7.60 3.84 3.51 4.93 Na2O 3.74 3.46 3.61 4.66 3.23 3.64 4.19 4.28 3.84 4.10 4.00 4.34 K2O 3.67 4.51 4.36 1.63 5.01 3.85 3.09 2.35 1.41 3.20 3.85 2.59 P2O5 0.17 0.11 0.03 0.19 0.10 0.13 0.23 0.26 0.13 0.23 0.28 0.26 LOI 1.45 1.33 0.53 1.08 0.49 0.92 1.00 1.00 1.22 3.38 0.98 1.59 Total 99.15 99.37 99.04 99.38 100.38 99.17 99.44 101.00 100.33 99.54 99.37 99.77 A/CNK 1.01 0.97 1.00 0.99 1.06 0.98 0.87 0.89 0.84 0.82 0.90 0.80 A/NK 1.45 1.28 1.13 1.65 1.33 1.42 1.58 1.77 2.33 1.39 1.44 1.53 Q 26.84 27.09 37.37 24.82 29.97 25.23 14.29 13.19 2.74 14.70 18.16 11.29 来源 自测 自测 自测 自测 文献 自测 自测 文献 自测 自测 自测 自测 注:LOI.烧失量;A/CNK. (Al2O3)n/(CaO+Na2O+K2O)n; A/NK. (Al2O3)n/(Na2O+K2O)n. 表 4 卧牛湖岩体岩石微量元素数据(10-6)
Table 4. Trace element datas of rocks in Wuniu Lake area
样品号 SJF-12 WNH-2 WNH-3 SJF-5 16S13 SJF-6 SJF-8 16S18 SJF-3 WNH-1 SJF-7 SJF-11 岩体 卧牛湖岩体 脉岩 岩性 细粒花岗岩 粗粒二长花岗岩 黑云母二长花岗岩 英云闪长岩 二长花岗岩 花岗闪长岩 花岗闪长岩 英云闪长岩 二长闪长岩 奥长花岗岩 花岗闪长岩 花岗闪长岩 La 32.76 35.04 30.52 18.70 46.70 65.40 32.38 35.90 13.54 25.84 42.00 30.28 Ce 64.66 72.64 58.30 36.02 94.90 117.84 69.30 73.50 31.76 54.50 86.10 61.62 Pr 7.22 8.67 6.34 3.78 9.82 12.45 8.21 9.62 4.25 6.47 10.08 7.16 Nd 24.8 29.44 20.04 12.52 35.20 41.24 31.20 37.60 17.77 24.20 36.82 26.34 Sm 4.48 5.52 3.43 2.01 6.03 7.15 6.11 6.89 4.05 4.74 6.85 4.73 Eu 1.04 0.91 0.63 0.78 0.84 1.09 1.47 1.58 1.38 1.18 1.71 1.35 Gd 3.63 4.43 2.72 1.68 5.16 5.77 5.11 5.58 4.01 4.11 5.84 3.72 Tb 0.50 0.67 0.40 0.24 0.87 0.83 0.70 0.93 0.59 0.58 0.83 0.47 Dy 2.69 3.82 2.40 1.44 4.52 4.67 3.89 4.62 3.41 3.32 4.82 2.49 Ho 0.50 0.76 0.49 0.30 0.87 0.89 0.72 0.80 0.67 0.67 0.99 0.47 Er 1.37 2.15 1.46 0.98 2.48 2.52 1.95 2.16 1.8 1.88 2.85 1.26 Tm 0.20 0.32 0.23 0.16 0.44 0.35 0.26 0.33 0.25 0.27 0.43 0.18 Yb 1.28 2.10 1.62 1.17 2.72 2.24 1.63 2.11 1.53 1.81 2.86 1.15 Lu 0.19 0.29 0.24 0.19 0.40 0.31 0.23 0.29 0.22 0.27 0.43 0.17 Rb 109.70 179.58 130.34 54.80 225.00 124.38 124.52 70.20 51.24 116.80 88.42 60.72 Ba 676.40 680.20 935.80 513.60 505.00 636.20 757.80 628.00 368.00 756.20 1 122.40 1 109.40 Th 22.34 30.04 12.92 7.50 44.50 28.04 7.41 9.31 2.17 7.79 11.05 7.78 U 4.94 4.78 2.45 2.30 17.00 2.26 2.72 3.69 0.55 2.29 2.53 1.68 Nb 23.64 24.53 15.71 21.29 30.50 22.03 20.79 23.30 10.59 9.93 16.72 7.91 Ta 1.58 1.94 1.08 1.22 3.76 1.26 1.23 2.01 0.63 0.62 1.04 0.50 K 118.64 161.92 171.44 74.50 166.36 172.08 143.20 78.03 49.46 108.96 130.80 81.52 Pb 16.25 14.44 17.68 9.06 22.50 12.42 9.38 12.10 5.04 14.06 19.72 11.21 Sr 475.40 298.60 135.00 595.80 260.00 379.60 630.60 510.00 795.00 557.60 631.60 980.40 P 10.51 8.57 3.20 14.63 4.59 10.28 18.36 11.95 8.74 15.17 17.91 15.54 Zr 179.95 270.75 123.61 272.84 131.00 354.60 318.82 20.30 194.37 191.90 300.96 173.74 Hf 4.40 6.63 3.08 6.41 4.57 8.45 7.70 0.91 4.40 4.54 7.19 4.16 Ti 2.02 2.31 0.90 3.21 1.89 3.11 5.01 4.57 7.90 3.74 3.52 3.46 Y 14.86 23.52 16.03 8.47 25.80 22.45 17.75 22.08 18.05 19.16 28.00 12.99 ΣREE 145.32 166.78 128.83 79.96 210.95 262.76 163.16 181.91 85.23 129.84 202.61 141.02 LREE/HREE 13.03 10.47 12.47 11.98 11.08 13.95 10.26 9.82 5.83 9.06 9.64 13.27 (La/Yb)N 17.20 11.23 12.67 10.75 11.58 19.72 13.39 11.47 5.96 9.65 9.90 17.74 Eu/Eu* 0.79 0.56 0.63 1.29 0.46 0.52 0.81 0.78 1.05 0.82 0.83 0.98 来源 自测 自测 自测 自测 文献 自测 自测 文献 自测 自测 自测 自测 注:ΣREE.稀土总量;LREE/HREE.轻重稀土比值;(La/Yb)N.经标准化后的La与Yb的比值;Eu/Eu*=经标准化后的Eu与Sm和Gd乘积的平方根的比值. -
[1] Arculus, R., 2003. Use and Abuse of the Terms Calcalkaline and Calcakalic. Journal of Petrology, 44(5):929-935. https://doi.org/10.1093/petrology/44.5.929 [2] Chen, C, H., Lee, C. Y., et al., 2008. Was There Jurassic Paleo-Pacific Subduction in South China? Constraints from 40Ar/39Ar Dating, Elemental and Sr-Nd-Pb Isotopic Geochemistry of the Mesozoic Basalts. Lithos, 106:83-92. https://doi.org/10.1016/j.lithos.2008.06.009 [3] Chu, S.X., Liu, J.M., Xu, J.H., et al., 2012. Zircon U-Pb Dating, Petrogenesis and Tectonic Significance of the Granodiorite in the Sankuanggou Skarn Fe-Cu Deposit, Heilongjiang Province. Acta Petrologica Sinica, 28(2):433-450(in Chinese with English abstract). [4] Deng, J.F., Feng, Y.F., Di, Y.J., et al., 2015. Geotechnical Map of Intrusive Rocks in China (1:2.5 Million). Geological Publishing House, Beijing, 1-81(in Chinese with English abstract). [5] Deng, J.F., Liu, C., Di, Y.J., et al., 2016. Crustal Convergent and Accretional Consumption Zones, and Continent-Continent Collisional Orogenes and Subduction-Accretional Orogenes:Records from the Igneous Petrotectonic Assemblages. Earth Science Frontiers, 23(6):34-4(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201606010.htm [6] Deng, J.F., Liu, C., Di, Y.J., et al., 2018. Discussion on the Tonalite-Trondhjemite-Granodiorite (TTG) Petrotectonic Assemblage and Its Subtype. Earth Science Frontiers, 25(6):42-50(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201806005 [7] Deng, J.F., Liu, C., Feng, Y.F., et al., 2010. High Magnesian Andesitic/Dioritic Rocks(HMA) and Magnesian Andesitic/Dioritic Rocks(MA):Two Igneous Rock Types Related to Oceanic Subduction. Geology in China, 37(4):1112-1118(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201004027.htm [8] Eric, A.K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37:215-224. https://doi.org/10.1016/0012-8252(94)90029-9 [9] Feng, Y.F., Deng, J.F., Xiao, Q.H., et al., 2011. Recognizing the TTG Rock Types:Discussion and Suggestion. Geological Journal of China Universities, 17(3):406-414(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GXDX201103007.htm [10] Frost, B.R., Barnes, C.G., Collins, W.J., et al., 2001. A Geochemical Classification for Granitoids Rocks. Journal of Petrology, 42(11):2033-2048. https://doi.org/10.1093/petrology/42.11.2033 [11] Ge, W.C., Lin, Q., Sun, D.Y., et al., 1999. Geochemical Characteristics of the Mesozoic Basalts in Da Hinggan Ling:Evidence of the Mantle-Crust Interaction. Acta Petrologica Sinica, 15(3):396-407(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98199903008 [12] Ge, W.C., Lin, Q., Sun, D.Y., et al., 2000. Geochemical Research into Origins of Two Types of Mesozoic Rhyolites in Daxing'anling. Earth Science, 25(2):172-178(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200002012.htm [13] Ge, W.C., Wu, F.Y., Zhou, C.Y., et al., 2007. Metallogenic Age of Porphyry Cu and Mo Deposits in the Eastern Section of Xingmeng Orogenic Belt and Its Geodynamic Significance. Chinese Science Bulletin, 20:2407-2417(in Chinese with English abstract). [14] Gou, J., Sun, D.Y., Li, R., et al., 2013. Geochronology, Geochemistry and Petrogenesis of the Early Mesozoic Granites in the Sunwu-Jiayin Area, Heilongjiang Province. Journal of Jilin Unviersity, 43(1):119-133(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201301016.htm [15] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canad.J.Earth Sci., 8(5):523-548. doi: 10.1139/e71-055 [16] Li, J.Y., 2006. Permian Geodynamic Setting of Northeast China and Adjacentregions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 26(3/4):207-224. https://www.sciencedirect.com/science/article/pii/S1367912005001598 [17] Li, J.Y., Qu, J.F., Zhang, J., et al., 2013. New Developments on the Reconstruction of Phanerozoic Geological History and Research of Metallogenic Geological Settings of the Northern China Orogenic Region. Geologcal Bulletin of China, 32(Z1):207-219(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgqydz201302001 [18] Lin, Q., Ge, W.C., Sun, D.Y., et al., 2000. Genetic Relationships between Two Types of Mesozoic Rhyolite and Basalts in Great Xing'an Ridge. Journal of Changchun University of Science and Technolog, 4:322-328(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ccdz200004002.htm [19] Lin, Q., Ge, W.C., Wu, F.Y., et al., 2004. Geochemistry of Mesozoic Granites in Da Hinggan Ling Ranges. Acta Petrologica Sinica, 20(3):403-412(in Chinese with English abstract). https://www.researchgate.net/publication/279699322_Geochemistry_of_Mesozoic_granites_in_Da_Hinggan_Ling_Ranges [20] Liu, C., Deng, J.F., Xu, L.Q., et al., 2011. A Preliminary Frame of Magma-Tectonic-Mo Metallogenic Events of Mesozoic Era in DaHinggan Mountains and Xiao Hinggan Mountains Areas.Earth Science Frontiers, 18(3):166-178(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY201103018.htm [21] Maniar, P.D., Piccoli, P.M., 1989. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101 < 0635:TDOG > 2.3.CO; 2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [22] O'Connor, J.T., 1965. A Classification for Quartz-Rich Igneous Rocks Based on Feldspar Ratios. U.S.Geol. Surv. Prof. Paper, 525:79-84. https://ci.nii.ac.jp/naid/10003543275 [23] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitoids. Journal of Petrology, 25:956-983. https://doi.org/10.1093/petrology/25.4.956 [24] Peccerillo, R., Taylor, S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1):63-81. https://doi.org/10.1007/BF00384745 [25] Rubatto, D., 2002. Zircon Trace Element Geochemistry:Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 184(1-2):123-138. doi: 10.1016/S0009-2541(01)00355-2 [26] Schulz, B., Klemd, R., Brtz, H., 2006. Host Rock Compositional Controls on Zircon Trace Element Signatures in Metabasites from the Austroalpine Basement. Geochimica et Cosmochimica Acta, 70(3):697-710. https://doi.org/10.1016/j.gca.2005.10.001 [27] Shao, J.A., Zhang, L.Q., Xiao, Q.H., et al., 2005. Rising of Da Hinggan Mts in Mesozoic:A Possible Mechanism of Intracontinental Orogeny. Acta Petrologica Sinica, 21(3):789-794(in Chinese with English abstract). https://core.ac.uk/display/155322299 [28] Shao, S., 2017. Characteristics and Significance of Early Cretaceous Volcanic Rocks in Heihe Region(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [29] Shao, S., Deng, J.F., Liu, C., et al., 2018. Geochemical Characteristics and Tectonic Setting of Early Cretaceous Volcanic Rocks in the Heihe Area, Heilongjiang Province, China. Earth Science Frontiers, 25(3):215-229(in Chinese with English abstract). [30] Sui, Z.M., Ge, W.C., Wu, F.Y., et al., 2007. Zircon U-Pb Ages, Geochemistry and Its Petrogenesis of Jurassic Granites in Northeastern Part of the Da Hinggan Mts. Acta Petrologica Sinica, 23(2):461-480(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb200702024.htm [31] Sun, M.D., Xu, Y.G., Wilde, S.A., et al., 2015. The Permian Dongfanghong Island-Arc Gabbro of the Wandashan Orogen, NE China:Implications for Paleo-Pacific Subduction. Tectonophysics, 659:122-136. https://doi.org/10.1007/BF00384745 doi: 10.1016/j.tecto.2015.07.034 [32] Sun, D.Y., Wu, F.Y., Li, H.M., et al., 2000. The Age of A-Type Granites after Orogeny in the Northwestern Xiaoxing'an Mts and Its Relationship with the Eastward Extension of the Sauron-Hegen Mountain-Zhaut Collision Zone. Chinese Science Bulletin, 20:2217-2222(in Chinese with English abstract). [33] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes, Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1):313 - 345. doi: 10.1144/GSL.SP.1989.042.01.19 [34] Tang, J.X., Xu, W.L., Wang, F., et al., 2013. Geochronology and Geochemistry of Neoproterozoic Magmatism in the Erguna Massif, NE China:Petro-Genesis and Implications for the Breakup of the Rodinia Superconti-Nent. Precambrian Research, 224:597-611. doi: 10.1016/j.precamres.2012.10.019 [35] Wang, B.X., 1993. Geological Map of Volcanic Rocks in China (1:18 million) and Its Description. Geological Publishing House, Beijing(in Chinese with English abstract). [36] Wang, F., Zhou, X.H., Zhang, L.C., et al., 2006. Late Mesozoic Volcanism in the Great Xing'an Range(NE China):Timing and Implications for the Dynamic Setting of NE Asia. Earth and Planetary Science Letters, 251:179-198. doi: 10.1016/j.epsl.2006.09.007 [37] Wu, F.Y., Sun, D.Y., Ge, W.C., et al., 2011. Geochronology of the Phanerozoic Gran-Itoids in Northeastern China. Journal of Asian Earth Sciences, 41(1):1-30. https://doi.org/10.1016/j.jseaes.2010.11.014 https://www.sciencedirect.com/science/article/abs/pii/S1367912010003391 [38] Wu, F.Y., Yang, J.H., Lo, C.H., et al., 2007. The Heilongjiang Group:A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China. Island Arc, 16:156-172. doi: 10.1111/j.1440-1738.2007.00564.x [39] Wu, Y.B., Zheng, Y.F., 2004. Zircon Genetic Mineralogy and Its Constraints on U-Pb Age Interpretation. Chinese Science Bulletin, 49(16):1589-1604(in Chinese with English abstract). doi: 10.1360/csb2004-49-16-1589 [40] Wyllie, P.J., 1984. Constraints Imposed by Experimental Petrology on Possible and Impossible Magma Sources and Products. Philosophical Transactions of the Royal Society of London.Series A, Mathematical and Physical Sciences, A310:439-456. doi: 10.1098/rsta.1984.0003 [41] Xu, W., Ji, W., Pei, F., et al., 2009. Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China:Chronology, Geochemistry, and Tectonic Implications. Journal of Asian Earth Sciences, 34(3):392-402. doi: 10.1016/j.jseaes.2008.07.001 [42] Xu, W.L., Sun, C.Y., Tang, J., et al., 2019. Basement Nature and Tectonic Evolution of the Xing'an-Mongolian Orogenic Belt. Earth Science, 44(5):1620-1646(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201905017 [43] Xu, W.L., Wang, F., Pei, F.P., et al., 2013. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 29(2):339-353(in Chinese with English abstract). https://www.ixueshu.com/document/83b73e57dd554a551efd13c340f6557a318947a18e7f9386.html [44] Zhang, J.H., Ge, W.C., Wu, F.Y., et al., 2008. Large-Scale Early Cretaceous Volcanic Events in the Northern Great Xing'an Range, Northeastern China. Lithos, 102:138-157. https://doi.org/10.1016/j.lithos.2007.08.011 [45] Zhang, L.L., Zhu, D.C., Wang, Q., et al., 2019. Late Cretaceous Volcanic Rocks in the Sangri Area, Southern Lhasa Terrane, Tibet:Evidence for Oceanic Ridge Subduction. Lithos, 326-327:144-157. https://doi.org/10.1016/j.lithos.2018.12.023 [46] Zhang, S., Liu, J.J., Yuan, F., et al., 2019.Zricon U-Pb GeoChronology and Geochemistry of Granites and Pegmatites, and Metallogenesis of Related Uranium from the Chenjiazhuang Deposit, Shaanxi Province.Earth Science Frontiers, 26(4):270-289(in Chinese with English abstract). [47] Zhao, H.L., Li, Y.C., et al., 2009. Regional Geological Survey Report of the People's Republic of China-Map of Heihe. Geological Survey and Research Institute of Heilongjiang Province, Haerbin(in Chinese with English abstract). [48] Zhao, Y.D., 2017. Disintegration of Metamorphic Basement and Petergenesis of Late Paloezoic and Jurassic Granitoids in the Northeastern Xing'an Block(Dissertation).China University of Geoscience, Beijing(in Chinese with English abstract). [49] Zhao, Y.D., Che, J.Y., Wu, D.T., et al., 2017. Early-Middle Jurassic TTG Granites in Northwest of Lesser Xing'an Range:Its Geochronology, Geochemical Characteristics and Tectonic Significance. Journal of Jilin University(Earth Science Edition), 47(4):1119-1137(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201704014.htm [50] Zhou, J.B., Cao, J.L., Wilde, S.A., et al., 2014. Paleo-Pacific Subduction-Accretion:Evidence from Geochemical and U-Pb Zircon Dating of the Nadanhada Accretionary Complex, NE China.Tectonics, 33:2444-2466. doi: 10.1002/2014TC003637 [51] 褚少雄, 刘建明, 徐九华, 等, 2012.黑龙江三矿沟铁铜矿床花岗闪长岩锆石U-Pb定年、岩石成因及构造意义.岩石学报, 28(20):433-450. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201202009.htm [52] 邓晋福, 冯艳芳, 狄永军, 等, 2015.中国侵入岩大地构造图(1:250万)说明书.北京:地质出版社, 1-81. [53] 邓晋福, 刘翠, 狄永军, 等, 2016.地壳对接消减带和叠接消减带与陆-陆碰撞造山和俯冲增生造山:来自侵入岩构造组合的记录.地学前缘, 23(6):34-4. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201606010.htm [54] 邓晋福, 刘翠, 狄永军, 等, 2018.英云闪长岩-奥长花岗岩-花岗闪长岩(TTG)岩石构造组合及其亚类划分.地学前缘, 25(6):42-50. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201806005.htm [55] 邓晋福, 刘翠, 冯艳芳, 等, 2010.高镁安山岩/闪长岩类(HMA)和镁安山岩/闪长岩类(MA):与洋俯冲作用相关的两类典型的火成岩类.中国地质, 37(4):1112-1118. doi: 10.3969/j.issn.1000-3657.2010.04.025 [56] 冯艳芳, 邓晋福, 肖庆辉, 等, 2011.TTG岩类的识别:讨论与建议.高校地质学报, 17(3):406-414. doi: 10.3969/j.issn.1006-7493.2011.03.005 [57] 葛文春, 林强, 孙德有, 等, 1999.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报, 15(3):396-407. http://www.cnki.com.cn/Article/CJFDTotal-YSXB199903007.htm [58] 葛文春, 林强, 孙德有, 等, 2000.大兴安岭中生代两类流纹岩成因的地球化学研究.地球科学, 25(2):172-178. http://www.earth-science.net/article/id/920 [59] 葛文春, 吴福元, 周长勇, 等, 2007.兴蒙造山带东段斑岩型Cu, Mo矿床成矿时代及其地球动力学意义.科学通报, 20:2407-2417. doi: 10.3321/j.issn:0023-074x.2007.20.012 [60] 苟军, 孙德有, 李蓉, 等, 2013.孙吴嘉荫地区早中生代花岗岩的年代学、地球化学与成因.吉林大学学报, 43(1):119-133. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201301016.htm [61] 李锦轶, 曲军峰, 张进, 等, 2013.中国北方造山区显生宙地质历史重建与成矿地质背景研究进展.地质通报, 32(Z1):207-219. http://d.wanfangdata.com.cn/periodical/zgqydz201302001 [62] 林强, 葛文春, 孙德有, 等, 2000.大兴安岭中生代两类流纹岩与玄武岩的成因联系.长春科技大学学报, 04:322-328. doi: 10.3969/j.issn.1671-5888.2000.04.003 [63] 林强, 葛文春, 吴福元, 等, 2004.大兴安岭中生代花岗岩类的地球化学.岩石学报, 20(3):403-412. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200403004.htm [64] 刘翠, 邓晋福, 徐立权, 等, 2011.大兴安岭-小兴安岭地区中生代岩浆-构造-钼成矿地质事件序列的初步框架.地学前缘.18(3):166-178. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201103018.htm [65] 邵济安, 张履桥, 肖庆辉, 等, 2005.中生代大兴安岭的隆起:一种可能的陆内造山机制.岩石学报, 21(3):789-794. http://d.wanfangdata.com.cn/periodical/ysxb98200503018 [66] 邵帅, 邓晋福, 刘翠, 等, 2018.黑龙江黑河地区早白垩世火山岩岩石地球化学特征及其构造环境意义.地学前缘, 25(3):215-229. [67] 邵帅.2017.黑河地区早白垩世火山岩特征及其意义(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126124.htm [68] 隋振民, 葛文春, 吴福元, 等, 2007.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因.岩石学报, 23(2):461-480. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200702024.htm [69] 孙德有, 吴福元, 李惠民, 等, 2000.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系.科学通报, 20:2217-2222. doi: 10.3321/j.issn:0023-074X.2000.20.019 [70] 王碧香, 1993.中国火山岩地质图(1:1 800万)及其说明书.北京:地质出版社, 17-22. [71] 吴元保, 郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [72] 许文良, 孙晨阳, 唐杰, 等, 2019.兴蒙造山带的基底属性与构造演化过程.地球科学, 44(5):1620-1646. doi: 10.3799/dqkx.2019.036 [73] 许文良, 王枫, 裴福萍, 等, 2013.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约.岩石学报, 29(2):339-353. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?flag=1&journal_id=ysxb&file_no=20130201 [74] 张帅, 刘家军, 袁峰, 等, 2019.陕西商丹陈家庄铀矿区花岗岩体和伟晶岩脉的U-Pb年龄、地球化学特征与铀成矿作用.地学前缘, 26(5):270-289. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201905023.htm [75] 赵焕利, 李仰春.2009.中华人民共和国区域地质调查报告黑河市幅, 哈尔滨: 黑龙江省地质调查研究总院. [76] 赵院冬, 2017.兴安地块东北部变质基底解体以及晚古生代和侏罗纪花岗岩类的成因与构造意义(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1017126126.htm [77] 赵院冬, 车继英, 吴大天, 等, 2017.小兴安岭西北部早-中侏罗世TTG花岗岩年代学、地球化学特征及构造意义.吉林大学学报(地球科学版), 47(4):1119-1137. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201704014.htm