Diagenetic Characteristics and Porosity Evolution of Low Permeability Sandstone Reservoir in Zhuhai Formation, Wenchang A Sag
-
摘要: 基于薄片鉴定分析、扫描电镜、物性分析、X射线衍射分析、碳酸盐碳氧同位素分析等实验手段, 研究文昌A凹陷珠海组低渗砂岩储层岩石学特征和成岩作用特征, 通过定量化分析, 评价压实、胶结、溶蚀作用对储层孔隙演化的影响, 实现成岩相预测及储层分类评价.结果表明:(1)研究区珠三南断裂带以岩屑砂岩和长石岩屑砂岩为主, 中、粗砂岩含量高; 6号断裂带以长石岩屑砂岩和岩屑石英砂岩为主, 细砂岩含量高.储集空间以次生溶孔为主, 物性变化大, 纵向及平面均表现出明显的分带性.(2)机械压实造成珠海组原生粒间孔隙大量丧失; 含铁碳酸盐、自生伊利石、硅质胶结等使粒间孔进一步减少, 早期绿泥石则能抑制石英次生加大; 溶蚀作用使深部储层物性得以改善, 研究区珠海组发育两个次生溶蚀带.成岩相预测结果表明, 发育厚层粗粒级砂岩的水下分流河道是研究区的有利储集相带.(3)通过孔隙演化定量分析, 认为成岩作用对粗粒砂岩和细-中粒砂岩的孔隙度演化的影响具有差异性.Abstract: Petrology and diagenesis of low permeability sandstone reservoirs in Zhuhai Formation were studied by means of thin sections identification, scanning electron microscopy (SEM), physical property, X-ray diffraction (XRD) analysis and carbon and oxygen isotope. The research of Wenchang A sag, Zhuhai Group of low permeability sandstone reservoir petrology characteristics and characteristics of diagenesis and the quantitative analysis was carried out on the rock strength, compaction, cementation, dissolution, the impact on the reservoir pore evolution. Quantitative analysis of diagenetic strength was carried out to evaluate the effects of compaction, cementation and dissolution on reservoir pore evolution. The results show as follows. (1) The Zhu-3 south fault zone is mainly composed of lithic sandstone and feldspar lithic sandstone with high content of medium and coarse sandstone. However the 6th fault zone is mainly feldspar lithic sandstone and lithic quartz sandstone with high fine sandstone content. The storage space is dominated by secondary dissolution pores, and the physical properties change greatly and show obvious zonation in both longitudinal and plane. (2) Mechanical compaction caused a large number of loss of primary intergranular pores in Zhuhai Formation. Iron-bearing carbonate, authigenic illite and siliceous cement further reduced the intergranular pores, while early chlorite inhibited quartz overgrowth. The dissolution improves the physical properties of deep reservoirs and two secondary dissolution zones developed in the Zhuhai Formation. According to the diagenetic facies prediction, the subaqueous distributary channel with thick layers, coarse-grained sandstones is a high-quality reservoir development zone in the study area.(3) Through quantitative analysis of porosity evolution, it is concluded that diagenesis has different effects on the porosity evolution of coarse and fine-medium grained sandstones.
-
Key words:
- low permeability sandstone /
- diagenesis /
- diagenetic facies /
- porosity evolution /
- petroleum geology
-
图 5 文昌A凹陷珠海组储层储集空间类型
a.WC9-2-1井, 3 668.30 m, 长石溶孔, 粒内缝(箭头所示), ×50(-); b.WC9-2-1井, 3 787.40 m, 长石溶孔, ×25(-); c.WC10-2-1井, 3 341.70 m, 长石溶孔, ×50(-); d.WC10-3-1井, 3 333.70 m, 生物壳溶孔, ×50(-); e.WC14-3-1井, 2 247.59 m, 粒间孔、有孔虫体腔孔, ×200(-); f.WC10-3-1井, 3 761.75 m, 粒间孔, 颗粒表面附着片状绿泥石(SEM)
Fig. 5. Storage space types of Zhuhai Formation in Wenchang A sag
图 6 文昌A凹陷珠海组压实作用特征
a.WC9-2-1井, 3 667.10 m, 凹凸-线接触, 云母弯曲变形, ×100(-); b.WC9-2-3井, 3 787.40 m, 线接触, 颗粒破裂发育粒内缝, ×50(-); c.WC14-3-1井, 2 385.6 m, 基质充填, ×50(-); d.WC9-3-1井, 3 829 m, 云母等变形、海绿石化, ×100(-); e.WC9-2-3井, 3 994.20 m, 碎屑颗粒凹凸接触, ×50(-); f.WC9-2-1井, 3 668.16 m, 碎屑颗粒凹凸接触, 石英次生加大, ×500(+)
Fig. 6. Compaction characteristics of Zhuhai Formation in Wenchang A sag
图 7 文昌A凹陷珠海组胶结作用特征
a.WC9-2-1井, 3 201.70 m, 白云石胶结、交代碎屑颗粒, ×100(-); b.WC10-3-1井, 3 340.93 m, 橘黄色方解石、橘红色含铁方解石充填孔隙, ×50(CL); c.WC10-3-1井, 3 366 m, 含铁方解石基底式胶结, ×100(-); d.WC9-3-1井, 3 852 m, 薄膜状菱铁矿环边, ×200(+); e.WC9-3-1井, 3 852.0 m, 多期次石英次生加大, ×50(+); f.WC11-2E-1井, 3 082.7 m, 丝片状伊利石充填粒间孔隙, ×1630(SEM); g.WC9-2-3井, 3 991.00 m, 颗粒边缘绿泥石膜, ×400(-); h.WC11-2E-1井, 3 339.8 m, 粒表针状绿泥石, ×800(SEM); i.WC10-3-1井, 3 333.80 m, 绒球状绿泥石填充孔隙, ×2080(SEM)
Fig. 7. Characteristics of cementations in Zhuhai Formation of Wenchang A sag
图 9 砂岩储层有机-无机反应与次生孔隙成岩综合图
Ⅰ.生物成气带; Ⅱ.热流体强化生烃带; Ⅲ.主成油Ⅰ带; Ⅳ.主成油Ⅱ带; Ⅴ.深层成气带; 据Surdam et al.(1989)
Fig. 9. Organic-inorganic reactions and secondary pore diagenesis in sandstone reservoirs
图 10 文昌A凹陷珠海组成岩相微观特征
a.弱压实相, WC14-3-1井, 2 245.61 m, ×100(-); b.中等压实中-强溶蚀相, WC9-2-3井, 3 787.40 m, ×25(-); c.中等压实中-强溶蚀相, WC10-2-1井, 3 687.22 m, ×150(SEM); d.强压实强溶蚀相, WC9-2-3井, 3 994.20 m, ×50(-); e.压实-充填相, WC14-3-1井, 2 250.11 m, ×50(-); f.碳酸盐致密胶结相, WC10-3-1井, 3 340.93 m, ×100(CL)
Fig. 10. Microscopic characteristics of diagenetic facies in Zhuhai Formation, Wenchang A sag
-
[1] Beard D.C., Weyl P.K..1973.Influence of Texture on Porosity and Permeability of Unconsolidated Sand.AAPG Bulletin, 57(2):349-369. http://www.doc88.com/p-9075634996439.html [2] Bjø rkum P.A., Walderhaug O., Aase N.E..1993.A Model for the Effect of Illitization on Porosity and Quartz Cementation of Sandstones.Journal of Sedementary Petrology, 63(6):1089-1091. https://doi.org/10.2110/jsr.63.1089 [3] Dixon S.A., Summers D.M., Surdam R.C..1989.Diagenesis and Preservation of Porosity in Norphlet Formation (Upper Jurassic), Southern Alabama.AAPG Bulletin, 73(6):707-728. http://archives.datapages.com/data/bulletns/1988-89/data/pg/0073/0006/0700/0707.htm?doi=10.1306%2F44B4A24E-170A-11D7-8645000102C1865D [4] Dutton S.P., Loucks R.G..2010.Diagenetic Controls on Evolution of Porosity and Permeability in Lower Tertiary Wilcox Sandstones from Shallow to Ultradeep (200-6 700 m) Burial, Gulf of Mexico Basin, U.S.A..Marine and Petroleum Geology, 27(1):69-81. https://doi.org/10.1016/j.marpetgeo.2009.08.008 [5] Fan H.J., Wang H., Yang X.P..2013.Analysis on Main Controlling Factors of Low Permeability Reservoir in Zhuhai Formation in Wenchang A Sag.Shandong Land and Resources, 29(7):25-30(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sddz201307004 [6] Folk R.L..1968.Petrology of Sedimentary Rocks.Hemphill Publishing, Austin. [7] Gan J., Zhang Y.Z., Deng Y., et al.2009.Main Controls over Palaeogene Natural Gas Accumulation and Its Exploration Direction in Wenchang A Sag, the Western Pearl River Mouth Basin.China Offshore Oil and Gas, 21(6):367-371(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc200906002 [8] Henares S., Caracciolo L., Viseras C., et al.2016.Diagenetic Constraints on Heterogeneous Reservoir Quality Assessment:A Triassic Outcrop Analog of Meandering Fluvial Reservoirs.AAPG Bulletin, 100(9):1377-1398. doi: 10.1306/04011615103 [9] Higgs, K.E, Zwingmann H., Reyes A.G., et al.2007.Diagenesis, Porosity Evolution, and Petroleum Emplacement in Tight Gas Reservoirs, Taranaki Basin, New Zealand.Journal of Sedimentary Research, 77(12):1003-1025. https://doi.org/10.2110/jsr.2007.095 [10] Ji H.Q., Wang X.H..2004.The Potential of Oil and Gas Exploration in Wenchang A Sag of the Pearl River Mouth Basin.Natural Gas Geoscience, 15(3):238-242(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TDKX200403007.htm [11] Lu J., Zhou G., Zheng R.F., et al.2016.Oil Origin and Accumulation Characteristics in Middle-Deep Strata of Wenchang A Sag, Pearl River Mouth Basin.China Offshore Oil and Gas, 28(1):20-28(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZHSD201601003.htm [12] Luo Z.T., Cui B.Q., Huang S.J., et al.1991.The Theoretical Approach and the Case Application of the Control of Reservoir Evaluation for the Clastic Reservoir by Means of Clay Minerals.Journal of Chengdu College of Geology, 18(3):1-12(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-cdlg199103000.htm [13] Morad S., Al-Ramadan K., Ketzer J.M., et al.2010.The Impact of Diagenesis on the Heterogeneity of Sandstone Reservoirs:A Review of the Role of Depositional Facies and Sequence Stratigraphy.AAPG Bulletin, 94(8):1267-1309. https://doi.org/10.1306/04211009178 [14] Pan G.C., Zhou J.X., Han G.M., et al.2016.Seismic Prediction Method of "Sweet" Reservoir in Middle-Deep Zone:A Case Study from Wenchang A Sag, Western Pearl River Mouth Basin.Lithologic Reservoirs, 28(1):94-100(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YANX201601015.htm [15] Pittman E.D., Larese R.E..1991.Compaction of Lithic Sands:Experimental Results and Applications.AAPG Bulletin, 75:1279-1299. https://www.researchgate.net/publication/236542974_Compaction_of_lithic_sands_Experimental_results_and_applications [16] Schmid S., Worden R.H., Fisher Q.J..2004.Diagenesis and Reservoir Quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, West of Ireland.Marine and Petroleum Geology, 21(3):299-315. https://doi.org/10.1016/j.marpetgeo.2003.11.015 [17] Surdam R.C., Crossey L.J., Hagen E.S., et al.1989.Organic-Inorganic and Sandstone Diagenesis.AAPG Bulletin, 73(1):1-23. https://www.mendeley.com/catalogue/b414b5a5-119f-3e3f-9fd0-f0e1c1a097f1/ [18] Wu S.J., Fan C.W., Zhao Z.J., et al.2019.Origin of Carbonate Cement in Reservoirs of Ledong Area, Yinggehai Basin and Its Geological Significance.Earth Science, 44(8):2686-2694(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201908013 [19] Xie Y.H., Fu M.Y., Chen Q.Q., et al.2016.Controlling Factors of Reservoir Development under High Temperature in an Extensional Basin:A Case Study from Wenchang A Sag in Pearl River Estuary Basin.Geological Science and Technology Information, 35(1):59-67(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201601009.htm [20] Xu S.L., You L., Li C., et al.2016.Characterization of Pore-Throat Structure in Low-Permeability Reservoir from Zhuhai Formation of 10 Area in Wenchang A Sag.Journal of Northeast Petroleum University, 40(5):55-62(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQSY201605007.htm [21] Yang X.F., Xie Y.F., Zhang Z.W., et al.2016.Genetic Type and Sedimentary Geological Significance of Cretaceous Glauconite in Oriente Basin, Ecuador.Earth Science, 41(10):1696-1708(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201610006 [22] You L., Li C., Liu J.H..2012.Regional Diagenesis Feature and Quantitative Evaluation from Zhuhai Formation Reservoir in Wenchang A Sag.Journal of Daqing Petroleum Institute, 36(2):7-13(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQSY201202003.htm [23] You L., Xu S.L., Li C., et al.2018.Diagenesis-Porosity Evolution and "Sweet Spot" Distribution of Low Permeability Reservoirs:A Case Study from Oligocene Zhuhai Formation in Wenchang A Sag, Pearl River Mouth Basin, Northern South China Sea.Petroleum Exploration and Development, 45(2):235-246(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380418300284 [24] Yu X.H., Li S.L., Yang Z.H..2015.Discussion on Deposition-Diagenesis Genetic Mechanism and Hot Issues of Tight Sandstone Gas Reservoir.Lithologic Reservoirs, 27(1):1-13(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc201501001 [25] Yuan X.Q., Yao G.Q., Yang X.H., et al.2019.Constraints of Authigenic Clay Minerals on Deep Reservoirs in Wenchang A Sag.Earth Science, 44(3):909-918(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201903018 [26] Zhang X.L..1985.Relationship between Carbon and Oxygen Stable Isotope in Carbonate Rocks and Paleosalinity and Paleotemperature of Seawater.Acta Sedimentologica Sinica, 3(4):17-30(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB198504001.htm [27] 范洪军, 王晖, 杨希濮.2013.文昌A凹陷珠海组低渗储层主控因素分析.山东国土资源, 29(7):25-30. doi: 10.3969/j.issn.1672-6979.2013.07.004 [28] 甘军, 张迎朝, 邓勇, 等.2009.珠江口盆地西部文昌A凹陷古近系天然气富集主控因素与勘探方向.中国海上油气, 21(6):367-371. doi: 10.3969/j.issn.1673-1506.2009.06.002 [29] 季洪泉, 王新海.2004.珠江口盆地西部文昌A凹陷油气勘探潜力分析与预测.天然气地球科学, 15(3):238-242. doi: 10.3969/j.issn.1672-1926.2004.03.007 [30] 陆江, 周刚, 郑榕芬, 等.2016.珠江口盆地文昌A凹陷中深层原油来源及成藏特征.中国海上油气, 28(1):20-28. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201601003 [31] 罗蛰潭, 崔秉荃, 黄思静, 等.1991.粘土矿物对碎屑岩储层评价的控制理论探讨及应用实例.成都地质学院学报, 18(3):1-12. http://www.cnki.com.cn/Article/CJFDTotal-CDLG199103000.htm [32] 潘光超, 周家雄, 韩光明, 等.2016.中深层"甜点"储层地震预测方法探讨——以珠江口盆地西部文昌A凹陷为例.岩性油气藏, 28(1):94-100. doi: 10.3969/j.issn.1673-8926.2016.01.012 [33] 吴仕玖, 范彩伟, 招湛杰, 等.2019.莺歌海盆地乐东区碳酸盐胶结物成因及地质意义.地球科学, 44(8):2686-2694. doi: 10.3799/dqkx.2019.154 [34] 谢玉洪, 伏美燕, 陈倩倩, 等.2016.张性盆地高温砂岩储层发育控制因素:以珠江口盆地文昌A凹陷为例.地质科技情报, 35(1):59-67. http://www.cqvip.com/QK/93477A/201601/667744839.html [35] 徐守立, 尤丽, 李才, 等.2016.文昌A凹陷10区珠海组低渗储层孔喉结构特征.东北石油大学学报, 40(5):55-62. doi: 10.3969/j.issn.2095-4107.2016.05.007 [36] 阳孝法, 谢寅符, 张志伟, 等.2016.奥连特盆地白垩系海绿石成因类型及沉积地质意义.地球科学, 41(10):1696-1708. doi: 10.3799/dqkx.2016.501 [37] 尤丽, 李才, 刘景环.2012.文昌A凹陷珠海组储层区域成岩作用特征及定量评价.大庆石油学院学报, 36(2):7-13. http://d.old.wanfangdata.com.cn/Periodical/dqsyxyxb201202002 [38] 尤丽, 徐守立, 李才, 等.2018.低渗储集层成岩孔隙演化与"甜点"分布——以南海北部珠江口盆地文昌A凹陷渐新统珠海组为例.石油勘探与开发, 45(2):235-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201802006 [39] 于兴河, 李顺利, 杨志浩.2015.致密砂岩气储层的沉积-成岩成因机理探讨与热点问题.岩性油气藏, 27(1):1-13. doi: 10.3969/j.issn.1673-8926.2015.01.001 [40] 袁晓蔷, 姚光庆, 杨香华, 等.2019.自生粘土矿物对文昌A凹陷深部储层的制约.地球科学, 44(3):909-918. doi: 10.3799/dqkx.2018.368 [41] 张秀莲.1985.碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系.沉积学报, 3(4):17-30. http://www.cnki.com.cn/Article/CJFD1985-CJXB198504001.htm -
dqkx-45-6-2172-Table1-5.pdf