• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    硫介导细菌还原载砷铁矿对砷迁移转化的影响

    王晶 谢作明 王佳 杨洋 刘恩杨

    王晶, 谢作明, 王佳, 杨洋, 刘恩杨, 2021. 硫介导细菌还原载砷铁矿对砷迁移转化的影响. 地球科学, 46(2): 642-651. doi: 10.3799/dqkx.2020.054
    引用本文: 王晶, 谢作明, 王佳, 杨洋, 刘恩杨, 2021. 硫介导细菌还原载砷铁矿对砷迁移转化的影响. 地球科学, 46(2): 642-651. doi: 10.3799/dqkx.2020.054
    Wang Jing, Xie Zuoming, Wang Jia, Yang Yang, Liu Enyang, 2021. Influence of Bioreduction of Arsenic-Bearing Goethite by Bacteria under Sulfur Mediation on Migration and Transformation of Arsenic. Earth Science, 46(2): 642-651. doi: 10.3799/dqkx.2020.054
    Citation: Wang Jing, Xie Zuoming, Wang Jia, Yang Yang, Liu Enyang, 2021. Influence of Bioreduction of Arsenic-Bearing Goethite by Bacteria under Sulfur Mediation on Migration and Transformation of Arsenic. Earth Science, 46(2): 642-651. doi: 10.3799/dqkx.2020.054

    硫介导细菌还原载砷铁矿对砷迁移转化的影响

    doi: 10.3799/dqkx.2020.054
    基金项目: 

    国家自然科学基金面上项目 41572230

    国家自然科学基金面上项目 41172219

    国家自然科学基金创新研究群体项目 41521001

    详细信息
      作者简介:

      王晶(1995-), 女, 硕士研究生, 主要从事环境生物地球化学方面的研究.ORCID: 0000-0001-8643-8916.E-mail: 1766743112@qq.com

      通讯作者:

      谢作明, E-mail: zuoming.xie@cug.edu.cn

    • 中图分类号: P593

    Influence of Bioreduction of Arsenic-Bearing Goethite by Bacteria under Sulfur Mediation on Migration and Transformation of Arsenic

    • 摘要: 硫在铁和砷的生物地球化学循环中发挥着重要作用,但地下水系统中硫循环的中间产物S(0)对细菌转化铁和砷的影响尚不清楚.采用室内模拟实验,研究硫参与下细菌D2201对液相和载砷针铁矿中Fe(III)和As(V)的还原作用.结果表明:细菌D2201具有很强的铁还原能力,可以将液相中74%的Fe(III)还原;加入硫后,细菌还原S(0)产生的S(-II)使铁还原率提高到94%.但是,硫没有明显影响细菌对砷的还原.在实验初期,细菌明显加速了载砷针铁矿的还原,最终还原释放到液相中的Fe(II)浓度为32.12 μmol/L;硫的加入增强了细菌对载砷针铁矿的还原,还原溶解的Fe(II)增加至284.13 μmol/L,同时,砷的释放量也增加了1.6倍.这些结果表明硫显著促进了细菌对针铁矿的还原溶解并加速砷的释放.XRD和SEM-EDS结果显示,细菌还原针铁矿但不改变其矿相,而硫的加入也仅使矿物发生一定程度的团聚,并没有使其转变为其他矿物,也未导致砷的再吸附.

       

    • 图  1  细菌还原铁过程中硫对Fe(II)含量的影响

      Fig.  1.  Changes of Fe(II) content during the effect of sulfur on the reduction of iron by bacteria

      图  2  细菌还原砷过程中硫对砷含量和形态变化的影响

      Fig.  2.  Changes of arsenic content and species during the effect of sulfur on the reduction of arsenic by bacteria

      图  3  硫作用下细菌对载砷针铁矿还原过程中液相Fe(II)、S(-II)、As含量变化

      Fig.  3.  Changes of Fe(II), S(-II) and As contents in liquid phase during the effect of sulfur on the reduction of arsenic-bearing goethite by bacteria

      图  4  固体样品的XRD谱图

      Fig.  4.  XRD spectrum of solid sample

      图  5  固体样品的SEM图及EDS分析结果

      图a、b、c为不加硫条件下,图d、e、f为加硫条件下;图中黄色方框为做EDS分析部分

      Fig.  5.  SEM images and EDS analysis results of solid samples

    • [1] dos Santos Afonso, M. , Stumm, W. , 1992. Reductive Dissolution of Iron (III) (Hydr)Oxides by Hydrogen Sulfide. Langmuir, 8(6): 1671-1675. https://doi.org/10.1021/la00042a030
      [2] Brennan, E. W. , Lindsay, W. L. , 1998. Reduction and Oxidation Effect on the Solubility and Transformation of Iron Oxides. Soil Science Society of America Journal, 62(4): 930-937. https://doi.org/10.2136/sssaj1998.03615995006200040012x
      [3] Burton, E. D. , Johnston, S. G. , Planer-Friedrich, B. , 2013. Coupling of Arsenic Mobility to Sulfur Transformations during Microbial Sulfate Reduction in the Presence and Absence of Humic Acid. Chemical Geology, 343: 12-24. https://doi.org/10.1016/j.chemgeo.2013.02.005
      [4] Burton, E. D. , Johnston, S. G. , Kocar, B. D. , 2014. Arsenic Mobility during Flooding of Contaminated Soil: The Effect of Microbial Sulfate Reduction. Environmental Science & Technology, 48(23): 13660-13667. https://doi.org/10.1021/es503963k
      [5] Couture, R. M. , van Cappellen, P. , 2011. Reassessing the Role of Sulfur Geochemistry on Arsenic Speciation in Reducing Environments. Journal of Hazardous Materials, 189(3): 647-652. https://doi.org/10.1016/j.jhazmat.2011.02.029
      [6] Fan, L. J. , Zhao, F. H. , Liu, J. , et al. , 2018. The As Behavior of Natural Arsenical-Containing Colloidal Ferric Oxyhydroxide Reacted with Sulfate Reducing Bacteria. Chemical Engineering Journal, 332: 183-191. https://doi.org/10.1016/j.cej.2017.09.078
      [7] Flynn, T. M. , O'Loughlin, E. J. , Mishra, B. , et al. , 2014. Sulfur-Mediated Electron Shuttling during Bacterial Iron Reduction. Science, 344(6187): 1039-1042. https://doi.org/10.1126/science.1252066
      [8] Hedderich, R. , Klimmek, O. , Kröger, A. , et al. , 1998. Anaerobic Respiration with Elemental Sulfur and with Disulfides. FEMS Microbiology Reviews, 22(5): 353-381. https://doi.org/10.1016/s0168-6445(98)00035-7
      [9] Huang, F. G. , Jia, S. Y. , Liu, Y. , et al. , 2015. Reductive Dissolution of Ferrihydrite with the Release of As(V) in the Presence of Dissolved S(-II). Journal of Hazardous Materials, 286: 291-297. https://doi.org/10.1016/j.jhazmat.2014.12.035
      [10] Kirk, M. F. , Roden, E. E. , Crossey, L. J. , et al. , 2010. Experimental Analysis of Arsenic Precipitation during Microbial Sulfate and Iron Reduction in Model Aquifer Sediment Reactors. Geochimica et Cosmochimica Acta, 74(9): 2538-2555. https://doi.org/10.1016/j.gca.2010.02.002
      [11] Knappová, M. , Drahota, P. , Falteisek, L. , et al. , 2019. Microbial Sulfidogenesis of Arsenic in Naturally Contaminated Wetland Soil. Geochimica et Cosmochimica Acta, 267: 33-50. https://doi.org/10.1016/j.gca.2019.09.021
      [12] Le, X. C. , Yalcin, S. , Ma, M. S. , 2000. Speciation of Submicrogram Per Liter Levels of Arsenic in Water: On-Site Species Separation Integrated with Sample Collection. Environmental Science & Technology, 34(11): 2342-2347. https://doi.org/10.1021/es991203u
      [13] Li, Y. R. , Xu, L. , Shi, P. , 2018. Discussion on the Determination of Sulfide Content in the Water by Methylene Blue Spectrophometry. Environmental Science and Technology, 31(4): 57-59 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JSHJ201804011.htm
      [14] Liu, G. F. , Zhu, J. Q. , Yu, H. L. , et al. , 2018. Review on Electron-Shuttle-Mediated Microbial Reduction of Iron Oxides Minerals. Earth Science, 43(Suppl. 1): 157-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1016.htm
      [15] Ma, J. , Guo, H. M. , Lei, M. , 2017. Disparity of Adsorbed Arsenic Species and Fractions on the Soil and Soil Colloids. Procedia Earth and Planetary Science, 17: 642-645. https://doi.org/10.1016/j.proeps.2016.12.172
      [16] Mitchell, V. L. , 2014. Health Risks Associated with Chronic Exposures to Arsenic in the Environment. Reviews in Mineralogy and Geochemistry, 79(1): 435-449. https://doi.org/10.2138/rmg.2014.79.8
      [17] Moon, H. S. , Kim, B. A. , Hyun, S. P. , et al. , 2017. Effect of the Redox Dynamics on Microbial-Mediated as Transformation Coupled with Fe and S in Flow-through Sediment Columns. Journal of Hazardous Materials, 329: 280-289. https://doi.org/10.1016/j.jhazmat.2017.01.034
      [18] Muehe, E. M. , Scheer, L. , Daus, B. , et al. , 2013. Fate of Arsenic during Microbial Reduction of Biogenic versus Abiogenic As-Fe(III) -Mineral Coprecipitates. Environmental Science & Technology, 47(15): 8297-8307. https://doi.org/10.1021/es400801z
      [19] Nealson, K. H. , 1997. Sediment Bacteria: Who's There, What are They Doing, and What's New? Annual Review of Earth and Planetary Sciences, 25(1): 403-434. https://doi.org/10.1146/annurev.earth.25.1.403
      [20] Newman, D. K. , Kennedy, E. K. , Coates, J. D. , et al. , 1997. Dissimilatory Arsenate and Sulfate Reduction in Desulfotomaculum auripigmentum sp. nov. . Archives of Microbiology, 168(5): 380-388. https://doi.org/10.1007/s002030050512
      [21] Ouyang, B. J. , Lu, X. C. , Li, J. , et al. , 2019. Microbial Reductive Transformation of Iron-Rich Tailings in a Column Reactor and Its Environmental Implications to Arsenic Reactive Transport in Mining Tailings. Science of the Total Environment, 670: 1008-1018. https://doi.org/10.1016/j.scitotenv.2019.03.285
      [22] Pedersen, H. D. , Postma, D. , Jakobsen, R. , 2006. Release of Arsenic Associated with the Reduction and Transformation of Iron Oxides. Geochimica et Cosmochimica Acta, 70(16): 4116-4129. https://doi.org/10.1016/j.gca.2006.06.1370
      [23] Poulton, S. W. , Krom, M. D. , Raiswell, R. , 2004. A Revised Scheme for the Reactivity of Iron (Oxyhydr) Oxide Minerals towards Dissolved Sulfide. Geochimica et Cosmochimica Acta, 68(18): 3703-3715. https://doi.org/10.1016/j.gca.2004.03.012
      [24] Rochette, E. A. , Bostick, B. C. , Li, G. C. , et al. , 2000. Kinetics of Arsenate Reduction by Dissolved Sulfide. Environmental Science & Technology, 34(22): 4714-4720. https://doi.org/10.1021/es000963y
      [25] Roden, E. E. , Zachara, J. M. , 1996. Microbial Reduction of Crystalline Iron (III) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth. Environmental Science & Technology, 30(5): 1618-1628. https://doi.org/10.1021/es9506216
      [26] Schwertmann, U., Cornell, R., 2000. Iron Oxides in the Laboratory: Preparation and Characterization. Wiley-VCH, Weinheim.
      [27] Serrano, J. , Leiva, E. , 2017. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters. Water, 9(12): 994. https://doi.org/10.3390/w9120994
      [28] Song, X. Q. , Peng, Q. , Wang, W. , et al. , 2019. Analysis of Environmental Background Values of Chloride and Sulfate in Shallow Groundwater in Karst Area of Guizhou. Earth Science, 44(11): 3926-3938 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911027.htm
      [29] Sun, J. , Quicksall, A. N. , Chillrud, S. N. , et al. , 2016. Arsenic Mobilization from Sediments in Microcosms under Sulfate Reduction. Chemosphere, 153: 254-261. https://doi.org/10.1016/j.chemosphere.2016.02.117
      [30] Thamdrup, B. , Finster, K. , Hansen, J. W. , et al. , 1993. Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese. Applied and Environmental Microbiology, 59(1): 101-108. https://doi.org/10.1128/aem.59.1.101-108.1993
      [31] Viollier, E. , Inglett, P. W. , Hunter, K. , et al. , 2000. The Ferrozine Method Revisited: Fe(II)/Fe(III) Determination in Natural Waters. Applied Geochemistry, 15(6): 785-790. https://doi.org/10.1016/s0883-2927(99)00097-9
      [32] Wang, Y. X. , Su, C. L. , Xie, X. J. , et al. , 2010. The Genesis of High Arsenic Groundwater: A Case Study in Datong Basin. Geology in China, 37(3): 771-780 (in Chinese with English abstract). http://www.researchgate.net/publication/285107958_The_genesis_of_high_arsenic_groundwater_a_case_study_in_Datong_basin
      [33] Xu, X. W. , Wang, P. , Zhang, J. , et al. , 2019. Microbial Sulfate Reduction Decreases Arsenic Mobilization in Flooded Paddy Soils with High Potential for Microbial Fe Reduction. Environmental Pollution, 251: 952-960. https://doi.org/10.1016/j.envpol.2019.05.086
      [34] Yang, C. L. , Li, S. Y. , Liu, R. B. , et al. , 2015. Effect of Reductive Dissolution of Iron (Hydr)Oxides on Arsenic Behavior in a Water-Sediment System: First Release, Then Adsorption. Ecological Engineering, 83: 176-183. https://doi.org/10.1016/j.ecoleng.2015.06.018
      [35] Yang, J. , Zhu, Y. G. , 2009. Progress in Study of Mechanisms of Microbial Arsenic Transformation in Environment. Journal of Ecotoxicology, 4(6): 761-769 (in Chinese with English abstract).
      [36] Ye, L. , Wang, L. Y. , Jing, C. Y. , 2020. Biotransformation of Adsorbed Arsenic on Iron Minerals by Coexisting Arsenate-Reducing and Arsenite-Oxidizing Bacteria. Environmental Pollution, 256: 113471. https://doi.org/10.1016/j.envpol.2019.113471
      [37] Ye, L. H. , 2019. Experimental Inquiry on the Reaction of Fe3+ and S2-. Chinese Journal of Chemical Education, 40(1): 74-77 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-journal-chemical-education_thesis/0201271830403.html
      [38] Zhang, J. W. , Ma, T. , Yan, Y. N. , et al. , 2018. Effects of Fe-S-As Coupled Redox Processes on Arsenic Mobilization in Shallow Aquifers of Datong Basin, Northern China. Environmental Pollution, 237: 28-38. https://doi.org/10.1016/j.envpol.2018.01.092
      [39] Zhang, X. , Chen, T. H. , Wang, J. , et al. , 2018. Influence of Iron Oxides on Methanogenic Process of Organic Matter and Related Mechanism. Earth Science, 43(Suppl. 1): 136-144 (in Chinese with English abstract).
      [40] Zhao, Z. X. , Wang, S. F. , Jia, Y. F. , 2017. Effect of Sulfide on As(III) and As(V) Sequestration by Ferrihydrite. Chemosphere, 185: 321-328. https://doi.org/10.1016/j.chemosphere.2017.06.134
      [41] Zhou, J. M. , Chen, S. , Liu, J. , et al. , 2018. Adsorption Kinetic and Species Variation of Arsenic for As(V) Removal by Biologically Mackinawite (FeS). Chemical Engineering Journal, 354: 237-244. https://doi.org/10.1016/j.cej.2018.08.004
      [42] 李艳荣, 徐蕾, 师培, 2018. 采用亚甲基蓝分光光度法测定水中硫化物的探讨. 环境科技, 31(4): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JSHJ201804011.htm
      [43] 柳广飞, 朱佳琪, 于华莉, 等, 2018. 电子穿梭体介导微生物还原铁氧化物的研究进展. 地球科学, 43(增刊1): 157-170. doi: 10.3799/dqkx.2018.590
      [44] 宋小庆, 彭钦, 王伟, 等, 2019. 贵州岩溶区浅层地下水氯化物及硫酸盐环境背景值. 地球科学, 44(11): 3926-3938. doi: 10.3799/dqkx.2019.166
      [45] 王焰新, 苏春利, 谢先军, 等, 2010. 大同盆地地下水砷异常及其成因研究. 中国地质, 37(3): 771-780. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201003034.htm
      [46] 杨婧, 朱永官, 2009. 微生物砷代谢机制的研究进展. 生态毒理学报, 4(6): 761-769. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL200906001.htm
      [47] 叶礼华, 2019. 三价铁离子与硫离子反应的实验探究. 化学教育(中英文), 40(1): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-FXJJ201901019.htm
      [48] 张勋, 陈天虎, 王进, 等, 2018. 铁氧化物对有机质厌氧产甲烷过程的影响及其机制. 地球科学, 43(增刊1): 136-144. doi: 10.3799/dqkx.2018.545
    • 加载中
    图(5)
    计量
    • 文章访问数:  592
    • HTML全文浏览量:  187
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-01-20
    • 刊出日期:  2021-02-15

    目录

      /

      返回文章
      返回