[1] |
dos Santos Afonso, M. , Stumm, W. , 1992. Reductive Dissolution of Iron (III) (Hydr)Oxides by Hydrogen Sulfide. Langmuir, 8(6): 1671-1675. https://doi.org/10.1021/la00042a030
|
[2] |
Brennan, E. W. , Lindsay, W. L. , 1998. Reduction and Oxidation Effect on the Solubility and Transformation of Iron Oxides. Soil Science Society of America Journal, 62(4): 930-937. https://doi.org/10.2136/sssaj1998.03615995006200040012x
|
[3] |
Burton, E. D. , Johnston, S. G. , Planer-Friedrich, B. , 2013. Coupling of Arsenic Mobility to Sulfur Transformations during Microbial Sulfate Reduction in the Presence and Absence of Humic Acid. Chemical Geology, 343: 12-24. https://doi.org/10.1016/j.chemgeo.2013.02.005
|
[4] |
Burton, E. D. , Johnston, S. G. , Kocar, B. D. , 2014. Arsenic Mobility during Flooding of Contaminated Soil: The Effect of Microbial Sulfate Reduction. Environmental Science & Technology, 48(23): 13660-13667. https://doi.org/10.1021/es503963k
|
[5] |
Couture, R. M. , van Cappellen, P. , 2011. Reassessing the Role of Sulfur Geochemistry on Arsenic Speciation in Reducing Environments. Journal of Hazardous Materials, 189(3): 647-652. https://doi.org/10.1016/j.jhazmat.2011.02.029
|
[6] |
Fan, L. J. , Zhao, F. H. , Liu, J. , et al. , 2018. The As Behavior of Natural Arsenical-Containing Colloidal Ferric Oxyhydroxide Reacted with Sulfate Reducing Bacteria. Chemical Engineering Journal, 332: 183-191. https://doi.org/10.1016/j.cej.2017.09.078
|
[7] |
Flynn, T. M. , O'Loughlin, E. J. , Mishra, B. , et al. , 2014. Sulfur-Mediated Electron Shuttling during Bacterial Iron Reduction. Science, 344(6187): 1039-1042. https://doi.org/10.1126/science.1252066
|
[8] |
Hedderich, R. , Klimmek, O. , Kröger, A. , et al. , 1998. Anaerobic Respiration with Elemental Sulfur and with Disulfides. FEMS Microbiology Reviews, 22(5): 353-381. https://doi.org/10.1016/s0168-6445(98)00035-7
|
[9] |
Huang, F. G. , Jia, S. Y. , Liu, Y. , et al. , 2015. Reductive Dissolution of Ferrihydrite with the Release of As(V) in the Presence of Dissolved S(-II). Journal of Hazardous Materials, 286: 291-297. https://doi.org/10.1016/j.jhazmat.2014.12.035
|
[10] |
Kirk, M. F. , Roden, E. E. , Crossey, L. J. , et al. , 2010. Experimental Analysis of Arsenic Precipitation during Microbial Sulfate and Iron Reduction in Model Aquifer Sediment Reactors. Geochimica et Cosmochimica Acta, 74(9): 2538-2555. https://doi.org/10.1016/j.gca.2010.02.002
|
[11] |
Knappová, M. , Drahota, P. , Falteisek, L. , et al. , 2019. Microbial Sulfidogenesis of Arsenic in Naturally Contaminated Wetland Soil. Geochimica et Cosmochimica Acta, 267: 33-50. https://doi.org/10.1016/j.gca.2019.09.021
|
[12] |
Le, X. C. , Yalcin, S. , Ma, M. S. , 2000. Speciation of Submicrogram Per Liter Levels of Arsenic in Water: On-Site Species Separation Integrated with Sample Collection. Environmental Science & Technology, 34(11): 2342-2347. https://doi.org/10.1021/es991203u
|
[13] |
Li, Y. R. , Xu, L. , Shi, P. , 2018. Discussion on the Determination of Sulfide Content in the Water by Methylene Blue Spectrophometry. Environmental Science and Technology, 31(4): 57-59 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-JSHJ201804011.htm
|
[14] |
Liu, G. F. , Zhu, J. Q. , Yu, H. L. , et al. , 2018. Review on Electron-Shuttle-Mediated Microbial Reduction of Iron Oxides Minerals. Earth Science, 43(Suppl. 1): 157-170 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX2018S1016.htm
|
[15] |
Ma, J. , Guo, H. M. , Lei, M. , 2017. Disparity of Adsorbed Arsenic Species and Fractions on the Soil and Soil Colloids. Procedia Earth and Planetary Science, 17: 642-645. https://doi.org/10.1016/j.proeps.2016.12.172
|
[16] |
Mitchell, V. L. , 2014. Health Risks Associated with Chronic Exposures to Arsenic in the Environment. Reviews in Mineralogy and Geochemistry, 79(1): 435-449. https://doi.org/10.2138/rmg.2014.79.8
|
[17] |
Moon, H. S. , Kim, B. A. , Hyun, S. P. , et al. , 2017. Effect of the Redox Dynamics on Microbial-Mediated as Transformation Coupled with Fe and S in Flow-through Sediment Columns. Journal of Hazardous Materials, 329: 280-289. https://doi.org/10.1016/j.jhazmat.2017.01.034
|
[18] |
Muehe, E. M. , Scheer, L. , Daus, B. , et al. , 2013. Fate of Arsenic during Microbial Reduction of Biogenic versus Abiogenic As-Fe(III) -Mineral Coprecipitates. Environmental Science & Technology, 47(15): 8297-8307. https://doi.org/10.1021/es400801z
|
[19] |
Nealson, K. H. , 1997. Sediment Bacteria: Who's There, What are They Doing, and What's New? Annual Review of Earth and Planetary Sciences, 25(1): 403-434. https://doi.org/10.1146/annurev.earth.25.1.403
|
[20] |
Newman, D. K. , Kennedy, E. K. , Coates, J. D. , et al. , 1997. Dissimilatory Arsenate and Sulfate Reduction in Desulfotomaculum auripigmentum sp. nov. . Archives of Microbiology, 168(5): 380-388. https://doi.org/10.1007/s002030050512
|
[21] |
Ouyang, B. J. , Lu, X. C. , Li, J. , et al. , 2019. Microbial Reductive Transformation of Iron-Rich Tailings in a Column Reactor and Its Environmental Implications to Arsenic Reactive Transport in Mining Tailings. Science of the Total Environment, 670: 1008-1018. https://doi.org/10.1016/j.scitotenv.2019.03.285
|
[22] |
Pedersen, H. D. , Postma, D. , Jakobsen, R. , 2006. Release of Arsenic Associated with the Reduction and Transformation of Iron Oxides. Geochimica et Cosmochimica Acta, 70(16): 4116-4129. https://doi.org/10.1016/j.gca.2006.06.1370
|
[23] |
Poulton, S. W. , Krom, M. D. , Raiswell, R. , 2004. A Revised Scheme for the Reactivity of Iron (Oxyhydr) Oxide Minerals towards Dissolved Sulfide. Geochimica et Cosmochimica Acta, 68(18): 3703-3715. https://doi.org/10.1016/j.gca.2004.03.012
|
[24] |
Rochette, E. A. , Bostick, B. C. , Li, G. C. , et al. , 2000. Kinetics of Arsenate Reduction by Dissolved Sulfide. Environmental Science & Technology, 34(22): 4714-4720. https://doi.org/10.1021/es000963y
|
[25] |
Roden, E. E. , Zachara, J. M. , 1996. Microbial Reduction of Crystalline Iron (III) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth. Environmental Science & Technology, 30(5): 1618-1628. https://doi.org/10.1021/es9506216
|
[26] |
Schwertmann, U., Cornell, R., 2000. Iron Oxides in the Laboratory: Preparation and Characterization. Wiley-VCH, Weinheim.
|
[27] |
Serrano, J. , Leiva, E. , 2017. Removal of Arsenic Using Acid/Metal-Tolerant Sulfate Reducing Bacteria: A New Approach for Bioremediation of High-Arsenic Acid Mine Waters. Water, 9(12): 994. https://doi.org/10.3390/w9120994
|
[28] |
Song, X. Q. , Peng, Q. , Wang, W. , et al. , 2019. Analysis of Environmental Background Values of Chloride and Sulfate in Shallow Groundwater in Karst Area of Guizhou. Earth Science, 44(11): 3926-3938 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQKX201911027.htm
|
[29] |
Sun, J. , Quicksall, A. N. , Chillrud, S. N. , et al. , 2016. Arsenic Mobilization from Sediments in Microcosms under Sulfate Reduction. Chemosphere, 153: 254-261. https://doi.org/10.1016/j.chemosphere.2016.02.117
|
[30] |
Thamdrup, B. , Finster, K. , Hansen, J. W. , et al. , 1993. Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese. Applied and Environmental Microbiology, 59(1): 101-108. https://doi.org/10.1128/aem.59.1.101-108.1993
|
[31] |
Viollier, E. , Inglett, P. W. , Hunter, K. , et al. , 2000. The Ferrozine Method Revisited: Fe(II)/Fe(III) Determination in Natural Waters. Applied Geochemistry, 15(6): 785-790. https://doi.org/10.1016/s0883-2927(99)00097-9
|
[32] |
Wang, Y. X. , Su, C. L. , Xie, X. J. , et al. , 2010. The Genesis of High Arsenic Groundwater: A Case Study in Datong Basin. Geology in China, 37(3): 771-780 (in Chinese with English abstract). http://www.researchgate.net/publication/285107958_The_genesis_of_high_arsenic_groundwater_a_case_study_in_Datong_basin
|
[33] |
Xu, X. W. , Wang, P. , Zhang, J. , et al. , 2019. Microbial Sulfate Reduction Decreases Arsenic Mobilization in Flooded Paddy Soils with High Potential for Microbial Fe Reduction. Environmental Pollution, 251: 952-960. https://doi.org/10.1016/j.envpol.2019.05.086
|
[34] |
Yang, C. L. , Li, S. Y. , Liu, R. B. , et al. , 2015. Effect of Reductive Dissolution of Iron (Hydr)Oxides on Arsenic Behavior in a Water-Sediment System: First Release, Then Adsorption. Ecological Engineering, 83: 176-183. https://doi.org/10.1016/j.ecoleng.2015.06.018
|
[35] |
Yang, J. , Zhu, Y. G. , 2009. Progress in Study of Mechanisms of Microbial Arsenic Transformation in Environment. Journal of Ecotoxicology, 4(6): 761-769 (in Chinese with English abstract).
|
[36] |
Ye, L. , Wang, L. Y. , Jing, C. Y. , 2020. Biotransformation of Adsorbed Arsenic on Iron Minerals by Coexisting Arsenate-Reducing and Arsenite-Oxidizing Bacteria. Environmental Pollution, 256: 113471. https://doi.org/10.1016/j.envpol.2019.113471
|
[37] |
Ye, L. H. , 2019. Experimental Inquiry on the Reaction of Fe3+ and S2-. Chinese Journal of Chemical Education, 40(1): 74-77 (in Chinese with English abstract). http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-journal-chemical-education_thesis/0201271830403.html
|
[38] |
Zhang, J. W. , Ma, T. , Yan, Y. N. , et al. , 2018. Effects of Fe-S-As Coupled Redox Processes on Arsenic Mobilization in Shallow Aquifers of Datong Basin, Northern China. Environmental Pollution, 237: 28-38. https://doi.org/10.1016/j.envpol.2018.01.092
|
[39] |
Zhang, X. , Chen, T. H. , Wang, J. , et al. , 2018. Influence of Iron Oxides on Methanogenic Process of Organic Matter and Related Mechanism. Earth Science, 43(Suppl. 1): 136-144 (in Chinese with English abstract).
|
[40] |
Zhao, Z. X. , Wang, S. F. , Jia, Y. F. , 2017. Effect of Sulfide on As(III) and As(V) Sequestration by Ferrihydrite. Chemosphere, 185: 321-328. https://doi.org/10.1016/j.chemosphere.2017.06.134
|
[41] |
Zhou, J. M. , Chen, S. , Liu, J. , et al. , 2018. Adsorption Kinetic and Species Variation of Arsenic for As(V) Removal by Biologically Mackinawite (FeS). Chemical Engineering Journal, 354: 237-244. https://doi.org/10.1016/j.cej.2018.08.004
|
[42] |
李艳荣, 徐蕾, 师培, 2018. 采用亚甲基蓝分光光度法测定水中硫化物的探讨. 环境科技, 31(4): 57-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JSHJ201804011.htm
|
[43] |
柳广飞, 朱佳琪, 于华莉, 等, 2018. 电子穿梭体介导微生物还原铁氧化物的研究进展. 地球科学, 43(增刊1): 157-170. doi: 10.3799/dqkx.2018.590
|
[44] |
宋小庆, 彭钦, 王伟, 等, 2019. 贵州岩溶区浅层地下水氯化物及硫酸盐环境背景值. 地球科学, 44(11): 3926-3938. doi: 10.3799/dqkx.2019.166
|
[45] |
王焰新, 苏春利, 谢先军, 等, 2010. 大同盆地地下水砷异常及其成因研究. 中国地质, 37(3): 771-780. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201003034.htm
|
[46] |
杨婧, 朱永官, 2009. 微生物砷代谢机制的研究进展. 生态毒理学报, 4(6): 761-769. https://www.cnki.com.cn/Article/CJFDTOTAL-STDL200906001.htm
|
[47] |
叶礼华, 2019. 三价铁离子与硫离子反应的实验探究. 化学教育(中英文), 40(1): 74-77. https://www.cnki.com.cn/Article/CJFDTOTAL-FXJJ201901019.htm
|
[48] |
张勋, 陈天虎, 王进, 等, 2018. 铁氧化物对有机质厌氧产甲烷过程的影响及其机制. 地球科学, 43(增刊1): 136-144. doi: 10.3799/dqkx.2018.545
|