• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    西藏隆巴俄桑地区玄武岩与安山玢岩的地球化学:对班公湖-怒江洋构造演化的启示

    尹滔 尹显科 秦宇龙 裴亚伦

    尹滔, 尹显科, 秦宇龙, 裴亚伦, 2020. 西藏隆巴俄桑地区玄武岩与安山玢岩的地球化学:对班公湖-怒江洋构造演化的启示. 地球科学, 45(7): 2345-2359. doi: 10.3799/dqkx.2020.045
    引用本文: 尹滔, 尹显科, 秦宇龙, 裴亚伦, 2020. 西藏隆巴俄桑地区玄武岩与安山玢岩的地球化学:对班公湖-怒江洋构造演化的启示. 地球科学, 45(7): 2345-2359. doi: 10.3799/dqkx.2020.045
    Yin Tao, Yin Xianke, Qin Yulong, Pei Yalun, 2020. Geochemistry of Basalt and Andesitic Porphyrite in Longbaesang Area, Tibet: Implications for the Tectonic Evolution of the Bangonghu-Nujiang Ocean. Earth Science, 45(7): 2345-2359. doi: 10.3799/dqkx.2020.045
    Citation: Yin Tao, Yin Xianke, Qin Yulong, Pei Yalun, 2020. Geochemistry of Basalt and Andesitic Porphyrite in Longbaesang Area, Tibet: Implications for the Tectonic Evolution of the Bangonghu-Nujiang Ocean. Earth Science, 45(7): 2345-2359. doi: 10.3799/dqkx.2020.045

    西藏隆巴俄桑地区玄武岩与安山玢岩的地球化学:对班公湖-怒江洋构造演化的启示

    doi: 10.3799/dqkx.2020.045
    基金项目: 

    中国地质调查局项目 DD20160026

    中国地质调查局项目 DD20191029

    详细信息
      作者简介:

      尹滔(1983-), 男, 工程师, 硕士, 主要从事区域地质与矿产地质调查相关的研究工作.ORCID:0000-0001-9002-5890.E-mail:406593621@qq.com

    • 中图分类号: P581

    Geochemistry of Basalt and Andesitic Porphyrite in Longbaesang Area, Tibet: Implications for the Tectonic Evolution of the Bangonghu-Nujiang Ocean

    • 摘要: 狮泉河-永珠-嘉黎蛇绿混杂岩带的构造属性及其与班公湖-怒江缝合带演化的关系,是了解班公湖-怒江洋中生代构造演化的关键.对隆巴俄桑地区的玄武岩和安山玢岩脉开展了岩石地球化学研究.结果表明,玄武岩属拉斑玄武岩系列,富集LREE和大离子亲石元素Rb、Ba、K、Sr、Pb等,亏损高场强元素Nb、Ta、Ti,与岛弧拉斑玄武岩特征一致.安山玢岩脉属拉斑玄武岩系列,有向钙碱系列演化的趋势,富集大离子亲石元素Rb、Ba、K、Sr、Pb、U等,亏损高场强元素Nb、Ta,显示岛弧成因岩浆岩地球化学特征,低ΣREE(11.8×10-6~13.8×10-6),(La/Yb)N=0.37~0.43,亏损LREE,与N-MORB相似,具有岛弧岩浆岩(IAB)和正常洋中脊玄武岩(N-MORB)双重特征,与不成熟的弧后盆地玄武岩(BABB)特征一致.综合区域地质资料认为,隆巴俄桑玄武岩和安山玢岩形成的构造环境均与俯冲相关,可能分别形成于班公湖-怒江洋壳南向俯冲消减相关的洋内或者活动大陆边缘的岛弧环境和不成熟的弧后盆地环境,是中侏罗至早白垩世期间班公湖-怒江洋壳南向俯冲消减的再循环的产物.

       

    • 图  1  昂龙岗日地区地质简图

      a.青藏高原构造单元划分(JSSZ.金沙江缝合带;LSSZ.龙木错-双湖缝合带;BNSZ.班公湖-怒江缝合带;SNMZ.狮泉河-纳木错蛇绿混杂岩带;LMF.洛巴堆-米拉山断裂带;IYZSZ.印度河-雅鲁藏布缝合带;据Zhu et al., 2013修改);b.研究区地质图(据1:25万革吉幅地质图、1:25万狮泉河幅地质图修改)

      Fig.  1.  Simplified geological map in the Anglonggangri region

      图  2  隆巴俄桑火山岩实测剖面

      Fig.  2.  Section of the Longbaesang volcanic rocks

      图  3  隆巴俄桑火山岩样品野外露头及镜下照片

      a.斑状玄武岩火山角砾岩筒;b.安山玢岩;c.玄武质火山角砾岩火山角砾结构;d.安山玢岩斑状结构;Ep.绿帘石;vb(β).玄武质火山角砾;Cel.绿鳞石;Pl.斜长石;Cal.方解石;Tr+Act.透闪石和阳起石集合体(次闪石化,保留辉石假象)

      Fig.  3.  Field and petrogranphic photographs of the Longbaesang volcanic rocks

      图  4  隆巴俄桑玄武岩和安山玢岩TAS(a)及SiO2-FeO*/MgO(b)图解

      Le Maitre(1989)Miyashiro(1974)

      Fig.  4.  Total alkalis–silica (a) and SiO2⁃K2O(b) diagrams of the Longbaesang basalt and andesitic porphyrite

      图  5  隆巴俄桑玄武岩和安山玢岩球粒陨石标准化稀土元素配分曲线图(a)及原始地幔标准化微量元素蛛网图(b)

      a.标准化值据Boynton(1984);b.标准化值据Sun and McDonough(1989);OIB. E-type MORB、N-type MORB数据引自Sun and McDonough(1989),IAB数据为平均值杨婧等(2016a)

      Fig.  5.  Chondrite-normalized REE patterns (a) and primitive mantle-normalized trace element spider diagrams (a) of the Longbaesang basalt and andesitic porphyrite

      图  6  隆巴俄桑玄武岩选择性地球化学图解

      Fig.  6.  Selective geochemical diagrams of the Longbaesang basalt

      图  7  隆巴俄桑玄武岩和安山玢岩脉的Ba/La-La/Yb图解

      朱弟成等(2006a)

      Fig.  7.  Ba/La-La/Yb diagram of the Longbaesang basalt and andesitic porphyrite

      图  8  火山岩构造判别图解

      a. V⁃Ti/1 000图解;b. Th/Yb-Nb/Yb图解(Pearce, 1982);c. Ti/100⁃Zr⁃Sr/2图解(Pearce and Cann, 1973);d. Hf/3⁃Th⁃Nb/16图解(Wood, 1980);SHO.橄榄安粗岩系;CA.钙碱系列;TH.拉斑系列;CAB.活动陆缘玄武岩;IAT.岛弧拉斑玄武岩;IAB.岛弧玄武岩;OFB.扩张板块边缘的玄武岩;N⁃MORB. N型洋中脊玄武岩;E⁃MORB.富集型洋中脊玄武岩;WPT.板内拉斑玄武岩;WPAB.板内碱性玄武岩

      Fig.  8.  Tectonic setting discrimination diagrams of the volcanic rocks

      表  1  隆巴俄桑玄武岩和安山玢岩全岩地球化学数据(主量元素:%;微量元素:10-6

      Table  1.   Bulk-rock major(%), trace elements(10-6) of the Longbaesang porphyry basalt and andesitic porphyrite

      样品编号 PM9ZH9 PM9ZH10 PM9ZH11 PM9ZH12 PM9ZH14 PM9ZH16 PM9ZH13 PM9ZH15
      样品名称 玄武岩 玄武岩 玄武岩 玄武岩 玄武岩 玄武岩 安山玢岩 安山玢岩
      SiO2 52.1 51.9 52.3 52.3 48.9 51.9 58.4 55.8
      TiO2 0.71 0.74 0.83 0.78 0.81 0.73 0.50 0.35
      Al2O3 15.3 15.6 14.9 15.8 14.6 16.0 14.0 13.1
      TFe2O3 10.8 10.7 10.9 11.4 11.8 10.9 9.87 9.66
      FeO 7.33 7.45 5.76 5.41 7.54 7.79 6.84 7.37
      MnO 0.18 0.17 0.16 0.10 0.16 0.17 0.12 0.13
      MgO 6.28 6.34 3.78 2.80 4.52 6.18 4.41 4.81
      CaO 5.71 5.35 4.93 4.90 5.64 4.44 5.15 5.27
      Na2O 4.01 3.94 4.09 4.67 4.34 4.29 3.93 2.50
      K2O 1.72 1.78 1.18 1.70 0.63 1.54 0.20 0.90
      P2O5 0.21 0.21 0.27 0.22 0.26 0.21 0.02 0.02
      LOI 1000 2.95 2.88 6.49 5.18 7.77 3.31 3.26 7.35
      Total 100 99.7 99.8 99.8 99.5 99.6 99.8 99.9
      Mg# 53.6 54.0 40.7 32.7 43.1 53.0 47.0 49.7
      Be 0.5 0.5 0.7 0.5 < 0.5 0.5 < 0.5 < 0.5
      Cu 155 154 131 280 161 178 121 164
      Zn 79 79 95 80 111 85 79 78
      Ga 17.6 19.6 17.6 19.4 16.7 17.9 13.5 12.6
      Sc 25 27 23 24 26 28 39 39
      V 316 329 341 369 334 339 359 295
      Cr 90 90 19 4 17 106 16 9
      Co 29 31 24 23 30 31 14 25
      Ni 46 47 17 12 19 50 12 9
      Rb 26.2 29.7 31.7 50.6 15.4 23.2 2.9 25.3
      Sr 298 333 332 310 197 316 125 80.3
      Y 17.9 19.8 21.6 18.9 22.1 18.9 12.4 9.9
      Zr 62 72 77 70 73 64 15 12
      Nb 1.8 2.0 2.0 1.9 1.9 1.8 0.3 0.3
      Ba 421 469 273 477 132 481 33.5 61.7
      Cs 0.84 1.18 3.25 3.43 1.09 0.78 0.21 1.32
      La 14.7 15.5 18.3 16.0 16.3 15.1 0.8 0.8
      Ce 26.5 28.3 32.3 29.4 29.7 27.3 1.9 1.7
      Pr 3.60 3.89 4.41 4.06 4.10 3.76 0.33 0.28
      Nd 14.7 16.1 18.0 16.9 16.9 15.8 1.8 1.5
      Sm 3.41 3.77 4.09 3.85 4.03 3.60 0.86 0.67
      Eu 1.10 1.13 1.24 1.24 1.18 1.11 0.36 0.27
      Gd 3.47 3.73 4.02 3.85 3.98 3.57 1.49 1.23
      Tb 0.51 0.60 0.59 0.57 0.62 0.58 0.31 0.26
      Dy 3.23 3.59 3.86 3.50 3.78 3.50 2.08 1.72
      Ho 0.64 0.71 0.76 0.71 0.78 0.69 0.46 0.36
      Er 1.87 2.14 2.23 2.07 2.37 2.02 1.37 1.24
      Tm 0.30 0.34 0.36 0.32 0.36 0.32 0.23 0.20
      Yb 1.98 2.31 2.46 2.10 2.52 2.12 1.56 1.33
      Lu 0.31 0.34 0.38 0.32 0.40 0.33 0.24 0.20
      Hf 1.8 1.9 2.1 2.0 2.0 1.8 0.6 0.5
      Ta 0.1 0.1 0.1 0.1 0.1 0.1 < 0.1 < 0.1
      Pb 2 2 4 3 4 2 2 < 2
      Th 2.71 3.02 3.28 3.29 3.12 2.82 0.14 0.17
      U 0.82 0.93 0.48 0.92 0.62 0.85 0.31 0.12
      ΣREE 76.3 82.5 93.0 84.9 87.0 79.8 13.8 11.8
      LREE 64.0 68.7 78.3 71.5 72.2 66.7 6.05 5.22
      HREE 12.3 13.8 14.7 13.4 14.8 13.1 7.74 6.54
      LREE/HREE 5.20 4.99 5.34 5.32 4.88 5.08 0.78 0.80
      LaN/YbN 5.33 4.81 5.34 5.47 4.64 5.11 0.37 0.43
      δEu 0.97 0.91 0.92 0.97 0.89 0.94 0.96 0.90
      δCe 0.87 0.87 0.85 0.87 0.87 0.86 0.91 0.88
      Nb/Ta 18 20 20 19 19 18 / /
      注:Mg# =100×Mg(Mg+∑Fe);FeO*=FeO+0.998×Fe2O3
      下载: 导出CSV
    • [1] Atherton, M. P., Petford, N., 1993. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 362(6416):144-146. https://doi.org/10.1038/362144a0
      [2] Berly, T.J., Hermann, J., Arculus, R.J., et al., 2006. Supra-Subduction Zone Pyroxenites from San Jorge and Santa Isabel (Solomon Islands). Journal of Petrology, 47(8):1531-1555. https://doi.org/10.1093/petrology/egl019
      [3] Boynton, W.V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63-114.
      [4] Castillo, P.R., Newhall, C.G., 2004. Geochemical Constraints on Possible Subduction Components in Lavas of Mayon and Taal Volcanoes, Southern Luzon, Philippines. Journal of Petrology, 45(6):1089-1108. https://doi.org/10.1093/petrology/egh005
      [5] Condie, K. C., 1999. Mafic Crustal Xenoliths and the Origin of the Lower Continental Crust. Lithos, 46(1):95-101. https://doi.org/10.1016/s0024-4937(98)00056-5
      [6] Fan, J. J., Li, C., Liu, J. H., et al., 2018. The Middle Triassic Evolution of the Bangong-Nujiang Tethyan Ocean:Evidence from Analyses of OIB-Type Basalts and OIB-Derived Phonolites in Northern Tibet. International Journal of Earth Sciences, 107(5):1755-1775. https://doi.org/10.1007/s00531-017-1570-x
      [7] Fan, J. J., Li, C., Xie, C. M., et al., 2014. Petrology, Geochemistry, and Geochronology of the Zhonggang Ocean Island, Northern Tibet:Implications for the Evolution of the Banggongco-Nujiang Oceanic Arm of the Neo-Tethys. International Geology Review, 56(12):1504-1520. https://doi.org/10.1080/00206814.2014.947639
      [8] Gribble, R. F., Stern, R. J., Newman, S., et al., 1998. Chemical and Isotopic Composition of Lavas from the Northern Mariana Trough:Implications for Magmagenesis in Back-Arc Basins. Journal of Petrology, 39(1):125-154. https://doi.org/10.1093/petroj/39.1.125
      [9] Guo, K., Zhai, S.K., Yu, Z.H., et al., 2016. Determination and Tectonic Sighificance of Volcanic Rock Series in the Okinawa Trough. Earth Science, 41(10):1655-1664 (in Chinese with English abstract).
      [10] Guo, T.Y., Liang, D.Y., Zhang, Y.Z., et al., 1991. Geology of Ngari Tibet. China University of Geosciences Press, Wuhan, 1-464 (in Chinese).
      [11] He, Z.H., Yang, D.M., Wang, T.W., 2006. Age, Geochemistry and Its Tectonic Significance of Kaimeng Ophiolites in Jiali Fault Belt, Tibet. Acta Petrologica Sinica, 22(2):653-660 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603014
      [12] Kang, Z.Q., Xu, J.F., Wang, B.D., et al., 2010. Qushenla Formation Volcanic Rocks in North Lhasa Block:Products of Bangong Co-Nujiang Tethy's Southward Subduction. Acta Petrologica Sinica, 26(10):3106-3116 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201010022.htm
      [13] Kapp, P., Murphy, M. A., Yin, A., et al., 2003. Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet. Tectonics, 22(4):3-1-3-24. https://doi.org/10.1029/2001tc001332
      [14] Le Maitre, R.W., 1989. A Classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, 1-193.
      [15] Li, X.B., Wang, B.D., Liu, H., et al., 2015. The Late Jurassic High-Mg Andesites in the DaruTso Area, Tibet:Evidence for the Subduction of the Bangong Co-Nujiang River Oceanic Lithosphere. Geological Bulletin of China, 34(2-3):251-261(in Chinese with English abstract).
      [16] Li, Y. L., He, J., Han, Z. P., et al., 2016. Late Jurassic Sodium-Rich Adakitic Intrusive Rocks in the Southern Qiangtang Terrane, Central Tibet, and Their Implications for the Bangong-Nujiang Ocean Subduction. Lithos, 245:34-46. https://doi.org/10.1016/j.lithos.2015.10.014
      [17] Liu, W. L., Huang, Q. T., Gu, M., et al., 2018. Origin and Tectonic Implications of the Shiquanhe High-Mg Andesite, Western Bangong Suture, Tibet. Gondwana Research, 60:1-14. https://doi.org/10.1016/j.gr.2018.03.017
      [18] Liu, W. L., Xia, B., Zhong, Y., et al., 2014. Age and Composition of the Rebang Co and Julu Ophiolites, Central Tibet:Implications for the Evolution of the Bangong Meso-Tethys. International Geology Review, 56(4):430-447. https://doi.org/10.1080/00206814.2013.873356
      [19] Miyashiro, A., 1974. Volcanic Rock Series in Island Arcs and Active Continental Margins. American Journal of Science, 274(4):321-355. https://doi.org/10.2475/ajs.274.4.321
      [20] Olsen, K.H., 1995. Continental Rifts: Evolution, Structure, Tectonics. Amsterdam: Elsevier, 1-466.
      [21] Pearce, J. A., Cann, J. R., 1973. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19(2):290-300. https://doi.org/10.1016/0012-821x(73)90129-5
      [22] Pearce, J.A., Stern, R.J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Geophys. Monogr. Ser. AGU, Washington, DC, 63-86.
      [23] Pearce, J.A., 1982. Trace Elements Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R.S., ed., Andesites. Wiley, New York, 525-548.
      [24] Plank, T., Langmuir, C. H., 1998. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 145(3/4):325-394. https://doi.org/10.1016/s0009-2541(97)00150-2
      [25] Qiu, R.Z., Deng, J.F., Zhou, S., et al., 2005. Ophiolite Types in Western Qinghai Tibetan Plateau:Evidences from Petrology and Geochemistry. Earth Science Frontiers, 12(2):277-291 (in Chinese with English abstract).
      [26] Shi, R.D., 2007. SHPIMP Dating of the Bangong Lake SSZ-Type Ophiolite:Constraints on the Closure Time of Ocean in the Bangong Lake-Nujiang River, Northwestern Tibet. Chinese Science Bulletin, 52(2):223-227 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXTW200707010.htm
      [27] Sui, Q.L., 2014. Chronology, Petrogenesis, and Tectonic Implication of Magmatic Rocks from Yanhu in Northern Lhasa Terrane, Tibet(Dissertation). China University of Geosciences, Beijing, 1-109 (in Chinese with English abstract).
      [28] Sun, S.S., McDonough, W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.In:Saunders, A.D., Norry, M.J., eds., Magmatism in the Oceanic Basins. Geological Society, London, Special Publications, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19
      [29] Wang Y.S., Qu Y.G., Lü P., et al., 2003. The Geologic Features of Ophiolite Zone in the Yongzhu Area, Tibet. Jilin Geology, 22(2):1-14 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jldz200302001
      [30] Wang, B. D., Wang, L. Q., Chung, S. L., et al., 2016. Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites. Lithos, 245:18-33. https://doi.org/10.1016/j.lithos.2015.07.016
      [31] Wang, B.D., Xu, J.F., Zeng, Q.G., et al., 2007. Geochemistry and Genesis of Lhaguo Tso Ophiolite in South of Gerze Area, Center Tibet. Acta Petrologica Sinica, 23(6):1521-1530 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200706025.htm
      [32] Wang, W. L., Aitchison, J. C., Lo, C. H., et al., 2008. Geochemistry and Geochronology of the Amphibolite Blocks in Ophiolitic Mélanges along Bangong-Nujiang Suture, Central Tibet. Journal of Asian Earth Sciences, 33(1/2):122-138. https://doi.org/10.1016/j.jseaes.2007.10.022
      [33] Wood, D. A., 1980. The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province. Earth and Planetary Science Letters, 50(1):11-30. https://doi.org/10.1016/0012-821x(80)90116-8
      [34] Wu, Y., Chen, S.Y., Qin, M.K., et al., 2018. Zircon U-Pb Ages of Dongcuo Ophiolite in Western Bangonghu-Nujiang Suture Zone and Their Geological Significance. Earth Science, 43(4):1070-1084 (in Chinese with English abstract). https://www.researchgate.net/publication/325534225_Zircon_U-Pb_Ages_of_Dongcuo_Ophiolite_in_Western_Bangonghu-Nujiang_Suture_Zone_and_Their_Geological_Significance
      [35] Xu, M.J., 2014. The evolution of Shiquanhe-Yongzhu-Jiali Ophiolitic Mélange Belt, Tibetan Plateau(Dissertation). Jilin University, Jilin, 1-152 (in Chinese with English abstract)
      [36] Xu, M.J., Li, C., Wu, Y.W., et al., 2014. Geochemical Characteristics and Sedimentary Environments of Siliceous Rocks in Guomang-Co Ophiolitic Mélange of Tibet. Geological Bulletin of China, 33(7):1061-1066. (in Chinese with English abstract) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201407013
      [37] Yang, J., Wang, J.R., Zhang, Q., et al., 2016a. Global IAB Data Excavation:The Performance in Basalt Discrimination Diagrams and Preliminary Interpretation. Geological Bulletin of China, 35(12):1937-1949 (in Chinese with English abstract).
      [38] Yang, J., Wang, J.R., Zhang, Q., et al., 2016b. Back-Arc Basin Basalt(BABB) Data Mining:Comparison with MORB and IAB. Advances in Earth Science, 31(1):66-77 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=78108c2d7d3a803a8f10c60e0726bdb8&encoded=0&v=paper_preview&mkt=zh-cn
      [39] Yang, Y.F., Jiang, Y.G., Wang, T.C., et al., 2016. PetroGeochemistry and Sedimentary Environment of the Early Cretaceous Strata from the Shiquanhe-Gegyai area in Tibet and Their Geological Significance. Geological Bulletin of China, 35(9):1456-1462 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201609008
      [40] Ye, P.S., Wu, Z.H., Hu, D.G., et al., 2005. Geochemical Characteristics of Ophiolites in Yongzhu-Guomangcuo, Tibet and Its Tectonic Significance. Geoscience, 19(4):508-514(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xddz200504005
      [41] Yin, T., Li, W., Yin, X.K., et al., 2019. The Early Cretaceous Granodiorites in the Aweng Co Area, Tibet:Evidence for the Subduction of the Bangong Co-Nujiang River Oceanic Crust to the South. Geology in China, 46(5):1105-1115 (in Chinese with English abstract).
      [42] Yuan, C., Sun, M., Xiao, W. J., et al., 2008. Garnet-Bearing Tonalitic Porphyry from East Kunlun, Northeast Tibetan Plateau:Implications for Adakite and Magmas from the MASH Zone. International Journal of Earth Sciences, 98(6):1489-1510. https://doi.org/10.1007/s00531-008-0335-y
      [43] Yuan, Y.J., Yin, Z.X., Liu, W.L., 2015. Tectonic Evolution of the Meso-Tethys in the Western Segment of Bangonghu-Nujiang Suture Zone:Insights from Geochemistry and Geochronology of the Lagkor Tso Ophiolite. Acta Geologica Sinica-English Edition, 89(2):369-388. https://doi.org/10.1111/1755-6724.12436
      [44] Zeng, X. W., Wang, M., Fan, J. J., et al., 2018. Geochemistry and Geochronology of Gabbros from the Asa Ophiolite, Tibet:Implications for the Early Cretaceous Evolution of the Meso-Tethys Ocean. Lithos, 320-321:192-206. https://doi.org/10.1016/j.lithos.2018.09.013
      [45] Zeng, Y.C., Chen, J.L., Xu, J.F., et al., 2016. Sediment Melting during Subduction Initiation:Geochronological and Geochemical Evidence from the Darutso High-Mg Andesites within Ophiolite Melange, Central Tibet. Geochemistry, Geophysics, Geosystems, 17(12):4859-4877. https://doi.org/10.1002/2016gc006456
      [46] Zeng, Y.C., 2017. Late Triassic-Late Jurassic Magmatic-Tectonic Evolution of the Lhasa Terrane(Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 1-193 (in Chinese with English abstract).
      [47] Zhang, K. J., Xia, B., Zhang, Y. X., et al., 2014. Central Tibetan Meso-Tethyan Oceanic Plateau. Lithos, 210-211: 278-288. https: //doi.org/10.1016/j.lithos.2014.09.004
      [48] Zhang, S.Q., Qi, X.X., Wei, C., et al., 2018. Geochemistry, Zircon U-Pb Dating and Hf Isotope Compositions of Early Cretaceous Magmatic Rocks in Yongzhu Area, Northern Lhasa Terrane, Tibet, and Its Geological Significance. Earth Science, 43(4):1085-1109 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201804011
      [49] Zhang, Y. X., Li, Z. W., Zhu, L. D., et al., 2016. Newly Discovered Eclogites from the Bangong Meso-Tethyan Suture Zone (Gaize, Central Tibet, Western China):Mineralogy, Geochemistry, Geochronology, and Tectonic Implications. International Geology Review, 58(5):574-587. https://doi.org/10.1080/00206814.2015.1096215
      [50] Zhang, Y.X., 2007.Tectonic Evolution of the Middle-Western Bangong-Nujiang Suture, Tibet(Dissertation).Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guang Zhou, 1-268 (in Chinese with English abstract).
      [51] Zheng, Y.Y., Xu, R.K., He, L.X., et al., 2004. The Shiquan River Ophiolitic Mélange Zone in Xizang:The Delineation and Significance of a New Archipelagic Are-Basin System. Sedimentary Geology and Tethyan Geology, 24(1):13-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TTSD200401001.htm
      [52] Zheng, Y.Y., Xu, R.K., Ma, G.T., et al., 2006. Ages of Generation and Subduction of Shiquan River Ophiolite:Restriction from SHRIMP Zircon Dating. Acta Petrologica Sinica, 22(4):895-904 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=2cb965cdcee2090594310d9c99c8e1bf&encoded=0&v=paper_preview&mkt=zh-cn
      [53] Zhong, Y., Xia, B., Liu, W.L., et al., 2015. Geochronology, Petrogenesis and Tectonic Implications of the Jurassic Namco-Renco Ophiolites, Tibet. International Geology Review, 57(4):508-528. https://doi.org/10.1080/00206814.2015.1017776
      [54] Zhu, D.C., Pan G.T., Mo, X.X., et al., 2006a. Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau:Geochronology, Geochemistry and Their Tectonic Setting. Acta Geologica Sinica, 80(9):1312-1328 (in Chinese with English abstract).
      [55] Zhu, D.C., Pan, G.T., Mo, X.X., et al., 2006b. Late Jurassic-Early Cretaceous Geodynamic Setting in Middle-Northern Gangdese:New Insights from Volcanic Rocks. Acta Petrologica Sinica, 22(3):534-546 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=70d049d7459b40ec056365e05bd370bb&encoded=0&v=paper_preview&mkt=zh-cn
      [56] Zhu, D.C., Zhao Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract).
      [57] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2013. The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002
      [58] Zhu, D. C., Zhao, Z. D., Niu, Y. L., et al., 2011. The Lhasa Terrane:Record of a Microcontinent and its Histories of Drift and Growth. Earth and Planetary Science Letters, 301(1/2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005
      [59] 曾云川, 2017.拉萨地块晚三叠纪-晚侏罗纪岩浆-构造演化(博士学位论文).广州: 中国科学院广州地球化学研究所, 1-193.
      [60] 郭铁鹰, 梁定益, 张宜智, 等, 1991.西藏阿里地质.武汉:中国地质大学出版社, 1-464.
      [61] 国坤, 翟世奎, 于增慧, 等, 2016.冲绳海槽火山岩岩石系列的厘定及构造环境意义.地球科学, 41(10):1655-1664. doi: 10.3799/dqkx.2016.524
      [62] 和钟铧, 杨德明, 王天武, 2006.西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义.岩石学报, 22(2):653-660. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603014
      [63] 康志强, 许继峰, 王保弟, 等, 2010.拉萨地块北部去申拉组火山岩:班公湖-怒江特提斯洋南向俯冲的产物?岩石学报, 26(10):3106-3116. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201010022.htm
      [64] 李小波, 王保弟, 刘函, 等, 2015.西藏达如错地区晚侏罗世高镁安山岩——班公湖-怒江洋壳俯冲消减的证据, 地质通报, 34 (2-3):251-261. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201502003
      [65] 邱瑞照, 邓晋福, 周肃, 等, 2005.青藏高原西部蛇绿岩类型:岩石学与地球化学证据.地学前缘, 12(2):277-291. doi: 10.3321/j.issn:1005-2321.2005.02.029
      [66] 史仁灯, 2007.班公湖SSZ型蛇绿岩年龄对班-怒洋时限的制约.科学通报, 52(2):223-227. doi: 10.3321/j.issn:0023-074X.2007.02.016
      [67] 隋清霖, 2014.西藏拉萨地块盐湖地区早白垩世岩浆岩年代学、岩石成因及构造意义(博士学位论文).北京:中国地质大学, 1-109.
      [68] 王保弟, 许继峰, 曾庆高, 等, 2007.西藏改则地区拉果错蛇绿岩地球化学特征及成因.岩石学报, 23(6):1521-1530. doi: 10.3969/j.issn.1000-0569.2007.06.026
      [69] 王永胜, 曲永贵, 吕鹏, 等, 2003.西藏永珠蛇绿岩带地质特征.吉林地质, 22(2):1-14. doi: 10.3969/j.issn.1001-2427.2003.02.001
      [70] 武勇, 陈松永, 秦明宽, 等, 2018.西藏班公湖-怒江缝合带西段洞错蛇绿岩中的辉长岩锆石U-Pb年代学及地质意义.地球科学, 43(4):1070-1084. doi: 10.3799/dqkx.2018.710
      [71] 徐梦婧, 2014.青藏高原狮泉河-永珠-嘉黎蛇绿混杂岩带的构造演化(博士学位论文).吉林:吉林大学, 1-152.
      [72] 徐梦婧, 李才, 吴彦旺, 等, 2014.西藏果芒错蛇绿混杂岩中硅质岩的地球化学特征及其形成环境.地质通报, 33(7):1061-1066. doi: 10.3969/j.issn.1671-2552.2014.07.013
      [73] 杨婧, 王金荣, 张旗, 等, 2016a.全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释.地质通报, 35(12):1937-1949. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201612001
      [74] 杨婧, 王金荣, 张旗, 等, 2016b.弧后盆地玄武岩(BABB)数据挖掘:与MORB及IAB的对比.地球科学进展, 31(1):66-77.
      [75] 杨永锋, 姜亚国, 王天赐, 等, 2016.西藏狮泉河-革吉一带早白垩世地层沉积环境、岩石地球化学特征及其地质意义.地质通报, 35(9):1456-1462. doi: 10.3969/j.issn.1671-2552.2016.09.008
      [76] 叶培盛, 吴珍汉, 胡道功, 等, 2005.西藏永珠-果芒错蛇绿岩的地球化学特征及其构造意义.现代地质, 19(4):508-514. doi: 10.3969/j.issn.1000-8527.2005.04.005
      [77] 尹滔, 李威, 尹显科, 等, 2019.西藏阿翁错地区早白垩世花岗闪长岩——班公湖-怒江洋壳南向俯冲消减证据.中国地质, 46(5):1105-1115.
      [78] 张诗启, 戚学祥, 韦诚, 等, 2018.拉萨地体北部永珠地区早白垩世岩浆岩地球化学、锆石U-Pb年代学、Hf同位素组成及其地质意义.地球科学, 43(4):1085-1109. doi: 10.3799/dqkx.2018.711
      [79] 张玉修, 2007.班公湖-怒江缝合带中西段构造演化.广州: 中国科学院广州地球化学研究所, 1-268.
      [80] 郑有业, 许荣科, 何来信, 等, 2004.西藏狮泉河蛇绿混杂岩带——一个新的多岛弧盆系统的厘定及意义.沉积与特提斯地质, 24(1):13-20. doi: 10.3969/j.issn.1009-3850.2004.01.002
      [81] 郑有业, 许荣科, 马国桃, 等, 2006.锆石SHRIMP测年对狮泉河蛇绿岩形成和俯冲的时间约束.岩石学报, 22(4):895-904. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200604013
      [82] 朱弟成, 潘桂棠, 莫宣学, 等, 2006a.冈底斯中北部晚侏罗世——早白垩世地球动力学环境:火山岩约束.岩石学报, 22(3):534-546. http://www.cnki.com.cn/Article/CJFDTotal-YSXB200603002.htm
      [83] 朱弟成, 潘桂棠, 莫宣学, 等, 2006b.青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境.地质学报, 80(9):1312-1328. http://www.cnki.com.cn/Article/CJFDTotal-DZXE200609008.htm
      [84] 朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1):1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  792
    • HTML全文浏览量:  250
    • PDF下载量:  61
    • 被引次数: 0
    出版历程
    • 收稿日期:  2020-03-10
    • 刊出日期:  2020-07-15

    目录

      /

      返回文章
      返回